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Abstract. As a rare hematological malignancy, T-cell prolym-
phocytic leukemia (T-PLL) has a high mortality rate. However, 
the comprehensive mechanisms of the underlying pathogenesis 
of T-PLL are unknown. The purpose of the present study was 
to investigate the pathogenesis of T-PLL based on a comprehen-
sive bioinformatics analysis. The differentially expressed genes 
(DEGs) between T-PLL blood cell samples and normal periph-
eral blood cell samples were investigated using the GSE5788 
Affymetrix microarray data from the Gene Expression Omnibus 
database. To investigate the functional changes associated with 
tumor progression, Gene Ontology and Kyoto Encyclopedia of 
Genes and Genomes pathway enrichment analyses were used 
on the identified DEGs, followed by protein‑protein interac-
tion (PPI) and sub-PPI analysis. Transcription factors and 
tumor-associated genes (TAGs) were investigated further. The 
results identified 84 upregulated genes and 354 downregulated 
genes in T-PLL samples when compared with healthy samples. 
These DEGs featured in various functions including cell death 
and various pathways including apoptosis. The functional anal-
ysis of DEGs revealed 17 dysregulated transcription factors and 
37 dysregulated TAGs. Furthermore, the PPI network analysis 
based on node degree (a network topology attribute) identified 
61 genes, including the core downregulated gene of the sub-PPI 
network, signal transducer and activator of transcription 3 
(STAT3; degree, 13) and the core upregulated gene, insulin 
receptor substrate-1 (IRS1; degree, 5), that may have important 
associations with the progression of T-PLL. Alterations to 
cell functions, including cell death, and pathways, including 

apoptosis, may contribute to the process of T-PLL. Candidate 
genes identified in the present study, including STAT3 and IRS1, 
should be targets for additional studies.

Introduction

T-cell prolymphocytic leukemia (T-PLL) has an aggres-
sive course and poor response to conventional therapy, with 
median survival times ranging between 7 and 30 months (1-4). 
Although chemotherapeutic drugs, including alemtuzumab 
and analogues, have significantly improved survival and 
response rates (5), the survival rate remains unsatisfactory. 
Furthermore, the comprehensive molecular mechanisms 
underlying the pathogenesis of T-PLL remain unknown.

The majority of T-PLL cells carry the recurrent chromo-
some translocations t(14;14)(q11;q32)/inv(14)(q11q32) or 
t(X;14)(q28;q11), which cause the activation of the genes T‑cell 
leukemia/lymphoma 1A (TCL1A) or mature T-cell prolifera-
tion 1 (6). These genes and their associated pathways are likely 
to be involved in the progression of T-PLL. Integrated genomic 
sequencing has proven the importance of mutated DNA or 
genes in T-PLL (7). Bergmann et al (8) indicated that Janus 
kinase 3 (JAK3) inhibitors may be an option to treat patients 
with T-PLL with recurrent activating JAK3 mutations. Genes 
including TCL1A (9) and SWI/SNF‑related matrix‑associated 
actin dependent regulator of chromatin B1 (10) have been 
demonstrated to be associated with the disease progress of 
T-PLL. Furthermore, apoptosis has been induced in T-PLL by 
certain drugs, including bortezomib (11), and by the induction 
of certain proteins, including p53 (12), which indicates further 
the potential association between pathways associated with 
apoptosis and T‑PLL. Specific genes and chromosomal loci 
are likely to be linked with disease progression in T-PLL (13), 
and identifying the significance of altered genes and pathways 
is vital to increasing the understanding of T-PLL. However, 
these genes and pathways have yet to be identified.

To investigate the molecular basis of T-PLL in the present 
study, a bioinformatics analysis of gene expression profile data 
(GSE5788) was performed. The differentially expressed genes 
(DEGs) in T‑PLL were identified by comparing the micro-
array data from 6 T-cell T-PLL blood cell samples with those 
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of 8 cluster of differentiation 3 (CD3)+ T-cell samples from 
healthy donors. Gene ontology (GO; http://www.geneontology.
org/) function and Kyoto Encyclopedia of Genes and Genomes 
(KEGG; http://www.genome.jp/kegg/) pathway enrichment 
analyses were performed, followed by protein-protein interac-
tion (PPI) network and sub-PPI network analyses. The aim 
was to elucidate the molecular mechanisms of T-PLL, which 
may aid in the selection of appropriate treatment strategies and 
the development of novel treatments for T-PLL.

Materials and methods

Samples. The expression profile dataset GSE5788 (13), which 
was created using the microarray platform Affymetrix Human 
Genome U133 Plus 2.0 Array (Santa Clara, CA, USA), was 
downloaded from the Gene Expression Omnibus (GEO; 
http://www.ncbi.nlm.nih.gov/geo/). In order to compare the 
difference between the T-PLL cells and the normal T-cells, 
a total of 6 T‑PLL blood cell samples including GSM135264 
(the experimental group), and 8 CD3+ normal donor T-cell 
samples purified by immunomagnetic separation, including 
GSM135270 (the control group), were included in GSE5788. 
The preprocessing of the microarray data, including calcula-
tion of the robust multi-array average (14), was performed by 
using the Affy options in Bioconductor software (15) and the 
Affy microarray probe annotation file of Brain Array lab (16).

Screening DEGs. An empirical Bayes method based on the 
Limma package (17) in R software (https://journal.r-project.
org/) was used to identify DEGs among the groups. A false 
discovery rate (FDR) <0.05 and log. of fold-change >1 were 
selected as the criteria for the identification of DEGs.

GO and pathway enrichment analysis. GO (18) functional 
enrichment analysis, including associated cellular component, 
molecular function (6) and biological process categories, 
was performed to identify functional enrichment of DEGs. 
KEGG pathway enrichment (19) was performed to predict 
the pathways that the previously identified DEGs were asso-
ciated with. The Database for Annotation, Visualization and 
Integrated Discovery (DAVID 6.7 Jan. 2010) (20) was used to 
identify GO categories and significant KEGG pathways with 
the FDR set as <0.01.

Annotation of gene function. The Transcription Factor 
(TRANSFAC; ht tp://www.gene-regulation.com /pub/ 
databases.html) database provides information on eukary-
otic transcription factors, binding sites, consensus binding 
sequences and regulated genes. All DEGs were screened 
based on the TRANSFAC database to identify whether they 
had a function in transcriptional regulation. Cancer gene 
databases, including TSGene (a database of tumor suppressor 
genes) (21) and a tumor-associated gene (TAG) database as 
described by Chen et al (22), were used to screen for identified 
cancer-promoting or -inhibiting genes.

PPI network and sub‑PPI network construction. The Search 
Tool for the Retrieval of Interacting Genes (STRING, 
https://string-db.org/cgi/input.pl) (23) database made asso-
ciations based on predicted or experimental PPI information. 

From the STRING database, protein encoding genes that 
interacted with specific genes were assembled to construct a 
PPI network. As the non-DEGs of the network may be associ-
ated with multiple DEGs, the result of network analysis may be 
that the role of non-DEGs is greater compared with that of the 
DEGs. To study the role of DEGs in PPI and to avoid the inter-
ference of non DEGs, the non DEGs associated with 1-2 DEGs 
were enrolled in the network. Interactions were included when 
they had a combined score >0.95.

The sub-PPI network was additionally investigated using 
BioNet software (24). The modules were constructed based 
on the sub‑PPI network. A false discovery rate P≤0.005 was 
selected as the threshold for sub-PPI network construction.

Results

Identification of DEGs. The GSE5788 expression profile 
data from GEO was investigated to screen for DEGs 
between the experimental and control groups. A total of 438 
DEGs in T‑PLL blood sample cells, including 84 upregu-
lated genes and 354 downregulated genes, were revealed 
(Table I).

GO enrichment analysis. To investigate the function changes 
in tumor development, GO enrichment analysis of the previ-
ously identified DEGs was performed using DAVID. The top 
10 up- and downregulated DEGs according to P-value are 
listed in Table II. The downregulated DEGs were frequently 
enriched for ontology labels associated with immune func-
tion, including immune response (GO:0006955; P=3.21x10-9), 
and tumor progression, including cell death (GO:0008219; 
P=2.37x10-7). Upregulated DEGs were frequently enriched in 
cell proliferation (GO:0008283; P=7.12x10‑4) and skin devel-
opment (GO:0043588; P=9.00x10‑4).

KEGG pathway enrichment analysis. KEGG pathway enrich-
ment analysis using DAVID was performed on the DEGs 
(Table III). The results revealed that the upregulated DEGs 
were frequently associated with tumor metastasis pathways, 
including apoptosis (P=6.20x10-5), immune response path-
ways, including graft-versus-host disease (P=1.61x10‑4), and 
immune response or antigen reaction pathways, including 
Chagas disease (American trypanosomiasis; P=5.18x10-3). The 
downregulated DEGs were enriched in the malaria pathway 
(P=3.33x10-3).

Table I. Differentially expressed genes in the present study 
(FDR <0.05 and |logFC| >1).

Type Transcript count Gene count

Downregulated 1,249 354
Upregulated    305   84
Total 1,554 438

Transcript count refers to the number of differentially expressed 
transcripts; Gene count refers to the number of DEGs. FDR, false 
discovery rate; |logFC|, log fold-change; DEG, differentially 
expressed gene.
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Table II. Top 10 upregulated and downregulated differentially expressed gene ontologies identified by GO functional enrichment 
analysis.

A, Downregulated genes

GO ID Description Gene count P-value

GO:0006955 Immune response   58 3.21x10-9

GO:0002376 Immune system process   77 1.40x10-8

GO:0008219 Cell death   66 2.37x10-7

GO:0016265 Death   66 2.53x10-7

GO:0046649 Lymphocyte activation   28 5.42x10-7

GO:0042110 T cell activation   23 5.57x10-7

GO:0051249 Regulation of lymphocyte activation   21 9.52x10-7

GO:0030098 Lymphocyte differentiation   18 1.44x10-6

GO:0044267 Cellular protein metabolic process 103 1.49x10-6

B, Upregulated genes

GO ID Description Gene count P-value

GO:0045321 Leukocyte activation 30 1.86x10-6

GO:0008283 Cell proliferation 18 7.12x10‑4

GO:0043588 Skin development   7 8.97x10‑4

GO:0009913 Epidermal cell differentiation   5 1.02x10-3

GO:0006228 UTP biosynthetic process   2 1.57x10-3

GO:0042455 Ribonucleoside biosynthetic process   4 1.61x10-3

GO:0046051 UTP metabolic process   2 1.85x10-3

GO:0006213 Pyrimidine nucleoside metabolic process   3 2.09x10-3

GO:1901070 Guanosine-containing compound biosynthetic process   2 2.15x10-3

GO:0009163 Nucleoside biosynthetic process   4 2.21x10-3

GO:1901659 Glycosyl compound biosynthetic process   4 2.28x10-3

GO, Gene Ontology; UTP, uridine 5'-triphosphate.

Table III. Top 10 downregulated pathways and a unique upregulated pathway significantly enriched by DEGs in T‑cell prolym-
phocytic leukemia.

Regulation KEGG pathway Gene count P-value

Down Apoptosis 9 6.20x10-5

 Graft-versus-host disease 6 1.61x10‑4

 T cell receptor signaling pathway 9 3.30x10‑4

 Allograft rejection 5 8.48x10‑4

 Type I diabetes mellitus 5 1.70x10-3

 Natural killer cell mediated cytotoxicity 9 1.75x10-3

 Autoimmune thyroid disease 5 3.96x10-3

 Antigen processing and presentation 6 4.39x10-3

 Chagas disease (American trypanosomiasis) 7 5.18x10-3

 Prion diseases 4 5.33x10-3

Up Malaria 3 3.33x10-3

DEG, differentially expressed gene; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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Table IV. Functional analysis of DEGs.

 Downregulated Upregulated
 -------------------------------------------------------------------------------------------------- --------------------------------------------------------------------------------------
Type Count DEGs Count DEGs

Transcription factors 13 TBX21, STAT4, STAT3, RORA,    4 TCF7L2, NME2, KLF4, ENO1
  NR3C2, NR3C1, MAF, IRF1, ID2,   
  GTF2B, GATA3, CDK7, ARNTL  
Tumor-associated genes 27  10 
  Oncogenes   4 SET, KRAS, GNA13, FYN   1 TCL1A
  Tumor suppressors 16 TGFBR3, TGFBR2, SP100, RARRES3,    4 TCF7L2, RAB25, ESRP1,
  PPP3CC, MFHAS1, IRF1, ING3, HOPX,   CDK2AP1
  HECA, HBP1, FHIT, DOK2, CYLD,   
  CDKN1B, CASP8  
  Others   7 STAT3, PRKCB, MAP3K5, MAF,    5 KLF4, GSTM1, FES, ENO1, DDR1
  EVI2B, EPS15, ATM  

DEGs, differentially expressed genes.

Figure 1. A protein-protein interaction network. The red nodes represent upregulated genes; the green nodes represent the downregulated genes; the yellow 
nodes represent genes in which expression level was unaltered between T-cell prolymphocytic leukemia and normal T-cells.
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Functional annotation of DEGs. From the T-PLL blood 
sample microarray data, a total of 13 downregulated 
[including signal transducer and activator of transcription 3 
(STAT3)] and 4 upregulated [including transcription factor 7 
like 2 (TCF7L2)] transcription factors, as well as 27 down-
regulated (including FYN) and 10 upregulated (including 
TCL1A) TAGs were revealed to be associated with T-PLL 
(Table IV).

Using the Disease Ontology database (25), the down-
regulated genes, including ARL6IP5, ATM, CCL4, CCL5, 
CDKN1B, CFLAR, FAS, GNLY, IL2RB, KAT2B, MAP3K5, 
SET and TRIM22, were revealed to be associated with 
leukemia and chronic lymphocytic leukemia.

PPI module investigation and pathway regulation analysis. A 
PPI network of DEGs associated with T-PLL was constructed 
based on the STRING database (Fig. 1). A total of 10 nodes 
with the highest degree were selected, including FYN 
(degree, 90), STAT3 (degree, 76), ATM (degree, 51), KAT2B 
(degree, 48), IRS1 (insulin receptor substrate‑1; degree, 45), 
PSMD12 (degree, 41), PSMB1 (degree, 40), CDKN1B (degree, 
40), CASP8 (degree, 38) and CYC1 (degree, 34).

A sub-PPI network was constructed based on the aforemen-
tioned PPI network. BioNet software was used to analyze the 
sub-PPI network. A total of 61 gene nodes, including STAT3 
(the most significantly downregulated gene in the sub-PPI 
network, degree, 14) and IRS1 (the most significantly upregu-
lated gene in the sub-PPI network, degree, 6), were included in 
the sub-PPI network (Fig. 2).

The KEGG pathway analysis was performed based on the 
DEGs in the sub-PPI network. As presented in Table V, the 
sub-network of STAT3 is involved in growth signal pathways 
[including the JAK-STAT signaling pathway (P=3.0x10-8)], cell 
differentiation pathways [including osteoclast differentiation 

(P=7.5x10-6)], cancer-associated pathways [including prostate 
cancer (P=4.7x10-7)], and viral disease-associated pathways 
[including hepatitis C (P=1.1x10-5)].

Discussion

T-PLL is a rare, aggressive T-cell leukemia, which has 
not been well characterized, particularly in terms of its 
molecular mechanisms. In the present study, the molecular 
pathogenesis of T-PLL was investigated based on a compre-
hensive bioinformatics analysis. The results identified 84 
upregulated and 354 downregulated genes in T‑PLL sample 
microarrays. These DEGs were associated with various func-
tions including cell death, and various pathways, including 
apoptosis. A total of 17 dysregulated transcription factors 
and 37 dysregulated TAG were revealed based on functional 
analysis of DEGs. A PPI network analysis identified a total 
of 61 genes. The most significantly downregulated gene, 
STAT3 (degree, 14), and upregulated gene, IRS1 (degree, 6), 
may have significant associations with the pathogenesis and 
progression of T-PLL.

The dysregulation of specific genes, including transcrip-
tion factors, and associated pathways is commonly associated 
with increased tumor cell proliferation, based on previous 
bioinformatics analyses (26-28). These genes and pathways 
perform important roles and are likely to be significant in 
the development of cancer (29). STAT3 is activated in various 
types of cancer, including gliomas and breast cancer (30,31). 
The STAT3 signaling pathway, including the upstream JAK 
signal transducer, has been reported to participate in the devel-
opment of various cancer types (32,33).

Previous studies indicate that JAK2-STAT3 signaling is 
involved in the production of hepatic thrombopoietin (34) and 
the growth of hormone refractory prostate cancer cells (35). In 
the present study, the downregulated STAT3 was the core node 
of the sub-PPI network, and the DEGs connected to STAT3 
were involved in pathways including JAK-STAT signaling. 
This result confirms that STAT3 and the JAK2-STAT3 pathway 
are associated with the progression of T-PLL.

Figure 2. A sub-protein-protein interaction network investigation. The red 
nodes represent upregulated genes and the green nodes represent down-
regulated genes in the experimental group (T-cell prolymphocytic leukemia); 
square nodes represent high importance DEGs and circular nodes represent 
low importance DEGs in the network. DEGs, differentially expressed genes.

Table V. The top 10 most KEGG-enriched pathways for the 
network module.

KEGG pathway Gene count P-value

Pathways in cancer 17 2.65x10-10

JAK-STAT signaling pathway 11 2.97x10-8

Prostate cancer   8 4.67x10-7

TGF-β signaling pathway   7 4.37x10-6

Cell cycle   8 5.88x10-6

Osteoclast differentiation   8 7.45x10-6

Colorectal cancer   6 9.43x10-6

Hepatitis C   8 1.05x10-5

Pancreatic cancer   6 1.91x10-5

T cell receptor signaling pathway   7 2.32x10-5

KEGG, Kyoto Encyclopedia of Genes and Genomes; TGF, transcrip-
tion growth factor.
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Another gene identified to be significant was IRS1, a critical 
component of insulin signaling, which is also involved in cell 
proliferation and cancer development (36). IRS1 is associated 
with the progression of tumors, including lung cancer (37) and 
colorectal cancer (38). The significant upregulation of IRS1 in the 
present study indicated the close association of IRS1 with T-PLL, 
which was in accordance with the function of IRS1 in cancer 
identified in previous studies. The expression levels of various 
genes, including STAT3 and IRS1, were significantly altered in the 
tumor compared with the controls, implying they may be used as 
novel biomarkers for establishing a prognosis in T-PLL.

Novel drugs targeting specific pathways can be developed 
based on an understanding of the pathogenesis of T-PLL (5). 
KEGG pathway analysis in the present study revealed that 
apoptosis and T-cell receptor signaling were included among 
the enriched pathways identified. The majority of these 
outstanding pathways were enriched among the downregulated 
genes, indicating that the downregulation of genes in these 
pathways may act to inhibit T-cell activation, promoting disease 
progression. However, additional investigations are required to 
improve the understanding of the complex interaction of these 
dysregulated genes and associated pathways.

In conclusion, the mechanism of T-PLL was observed to be 
complicated. Various cell functions, including cell death, and 
pathways, including apoptosis, may be involved in the process. 
Identified candidate genes, including STAT3 and IRS1, may be 
targets for the additional study of T-PLL.
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