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Abstract. Although tamoxifen is the most frequently 
used drug for the treatment of estrogen receptor positive 
(ER+)‑breast cancer (BRCA), its efficacy varies between 
patients. In the present study, Cox multivariate regression of 
the relative mRNA expression levels in two microarray‑based 
datasets (GSE17005 and GSE26971) was employed to develop 
a risk score model to evaluate the outcome of patients with 
BRCA in the GSE17005 dataset. A total of ten genes were 
used to develop the prediction model for the survival of 
tamoxifen‑treated patients with breast cancer. The survival 
time of patients in the low risk score group was significantly 
longer compared with patients in the high risk score group. 
This observation was validated in three other datasets 
(GSE26971, GSE22219 and GSE56884). The prognostic 
effect of the clinicopathological indicators and the risk score 
were tested with the 5‑year event receiving operating charac-
teristic curve, and the risk score had an improved prognostic 
value in patients with ER+‑BRCA with an area under the 
curve value of 0.733 compared with the factors of age, tumor 
stage, tumor grade, chemotherapy, lymph invasion and tumor 
size. The risk score was significantly associated with the 
tumor‑node‑metastasis stage and grade, but was independent 
of age, sex, lymph invasion and tumor size. In summary, the 
risk model for breast cancer using the expression signature 
of ten genes may be an important indicator for predicting the 
survival of patients with ER+‑breast cancer and treated with 
tamoxifen.

Introduction

Breast cancer (BRCA) is the most prevalent cancer type in 
women, with 74.1 new cases and 8.0 mortalities per 100,000 
reported cases in developing countries in 2012 (1‑3). Based 
on statistical estimation in China, 268,600 new breast cancer 
cases and 69,500 mortalities occurred due to BRCA in 
2015 (4). Although the molecular subtyping of breast cancer is 
well developed and treatments are relatively abundant, many 
patients succumb to disease due to distant metastasis.

The estrogen receptor positive (ER+) subtype is currently 
the most curable breast cancer subtype. Tamoxifen, which 
binds to the ER and disrupts the ER signaling pathway, is the 
most popular treatment for the ER+‑breast cancer. However, 
a large proportion of tamoxifen‑treated ER+‑patients still 
succumb to breast cancer  (5). The current clinical staging 
system is insufficient for predicting the survival of the patients 
with ER+‑breast cancer and treated with tamoxifen  (6). 
Therefore, gene expression biomarkers of breast cancer are 
urgently needed for prognosis and treatment optimization.

According to previous studies, a single biomarker often 
fails to predict the outcome of the ER+‑breast cancer across 
datasets, while models that are based on multiple genes signifi-
cantly are more accurate (7). Therefore, in the present study, 
using Cox multivariate regression and data on gene expression 
levels, a risk score model for the prognosis of the ER+‑breast 
cancer outcome in patients taking tamoxifen was developed 
using the GSE17005 dataset. Patients in the high‑risk group 
exhibited a significantly higher 5‑year survival rate compared 
with those in the low‑risk group. Furthermore, this result was 
also replicated in four other independent cohorts (GSE26971, 
GSE22219, GSE42568 and GSE56884). According to the 5‑year 
survival receiving operating characteristic (ROC), the area 
under the curve (AUC) of the risk score was higher compared 
with the other clinicopathological indicators in predicting the 
5‑year survival rate of the patients with ER+‑breast cancer. 
The association between the clinicopathological indicators 
and the risk score was evaluated, and a nomogram describing 
the 5‑year survival rate was also plotted. In summary, the risk 
score is a robust prognostic indicator for the survival of the 
patients with ER+‑breast cancer and treated with tamoxifen.
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Materials and methods

Data pre‑processing and sample selection. Samples in all 
datasets were filtered, and those without clear records of the 
ER+ diagnosis or tamoxifen treatment were excluded from the 
dataset. The raw data containing the GSE17005, GSE26971, 
GSE22219, GSE42568 and GSE56884 datasets were down-
loaded using the raw data format from Gene Expression 
Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/) 
according to the corresponding accession number. The 
samples that were either not from patients with ER+‑breast 
cancer or treated with tamoxifen for five years were excluded 
from the present study. Subsequent to pre‑processing, 
including normalization using Robust Multi‑array Average 
(RMA), the data were used for further analysis. The probes 
and the gene names were matched, and the average values 
were calculated for genes that match the multiple probes. 
The Cancer Genome Atlas (TCGA) datasets were not used 
because the TCGA datasets were generated using RNA‑seq 
platform while the other datasets were from microarray. The 
formula was dependent on the expression values (fragments 
per kb of transcript per million for RNA‑seq and intensity 
for microarray), therefore the TCGA dataset was not used as 
training or test dataset in the present study.

Feature selection and model development. Cox univariate 
regression was implemented on GSE17005 and GSE26971 
datasets. Genes that significantly associated with the survival 
rates in both datasets were selected as candidates. After 100 
repeats and 100 iterations, the frequencies of genes were 
counted. Genes with the highest frequency were used for model 
development, and these 10 genes were identified. Multivariate 
Cox regression was then used to construct the linear risk score 
model in GSE17005. During the risk score calculation in the 
validation datasets, the coefficient for each gene was set to a 
constant value.

Statistical analysis. Statistical analyses were implemented 
using the R software (https://www.r‑project.org/; version 3.0.1) 
and its packages. RMA normalization of the raw datasets was 
performed using the R function ‘rma’ in the R package ‘affy’. 
Cox univariate regression and multivariate regression was 
implemented using the package ‘survival’, and the ROC curve 
was plotted using functions in package ‘pROC’ (8).

Results

Candidate gene selection and model development. The work-
flow of the present study is illustrated in the Fig. 1A. Using the 
univariate Cox regression analysis, the association between 
the gene expression and the overall survival was calculated 
in 2 independent datasets: GSE17005 and GSE26971. A total 
of 48 genes that significantly associated with the survival 
rates in both datasets were identified as the candidate genes. 
Random forest variable hunting was conducted to retrieve the 
best combination of biomarkers, and ten genes were selected 
(Fig. 1B). The multivariate Cox regression analysis was imple-
mented in GSE17005 instead of GSE26971 as the sample size 
of GSE17005 is bigger. The risk score was calculated using 
the following formula: Risk score=(‑0.382802602) x NEK2 + 

1.057608407 x STC2 + 0.216378311 x CCNA2 + 0.196075897 
x AK5 + 0.553253489 x CTDSP1 + (‑0.544558722) x FOXD1 
+ (‑0.606202483) x KCNK1 + (‑0.245868702) x TNNC2 + 
(‑0.093556696) x CENPE + (‑0.212704033) x STAT6.  The 
coefficients are shown in Fig. 1C. The negative coefficient 
values indicate the tumor suppressor genes, and the positive 
values indicate the oncogenes for cancer development.

Prognostic value of the risk score in GSE17005. To evaluate 
the prognostic significance of the risk score for patients with 
ER+‑breast cancer and treated with tamoxifen, the survival 
difference in patients from the high‑risk and low‑risk groups 
was analyzed. The median value of the risk score was used as 
a cutoff. The overall survival (OS) of patients in the high‑risk 
group was significantly lower compared with the low‑risk 
group (Fig. 2A, P=0.012). As shown in Fig. 2B, patients in 
the high‑risk group were characterized with early mortality, 
low expression levels of NIMA related kinase 2, cyclin A2 
(CCNA2), forkhead box D1 (FOXD1), potassium two pore 
domain channel subfamily K member 1 and troponin C type 
1 (slow), and high expression levels of stanniocalcin 2 (STC2), 
adenylate kinase 5 (AK5), carboxy‑terminal domain RNA 
polymerase II polypeptide A small phosphatase 1 (CTDSP1) 
and signal transducer and activator of transcription 6 (STAT6). 
The ROC curve of 5‑year survival was also plotted according 
to age, stage, grade, chemotherapy, lymph invasion, tumor 
size and risk score (Fig. 2C), and the area under the receiving 
operating characteristic curve was 0.676, 0.622, 0.631, 0.663, 
0.618, 0.596 and 0.733, respectively. Collectively, these results 
indicate that the risk score is a clinically important predictor 
of the 5‑year survival of patients with ER+‑breast cancer and 
treated with tamoxifen.

Validation of risk score performance. The good performance 
of the model in the training dataset may be due to over‑fitness 
of the model to this dataset, particularly in multivariate 
analysis (9). Therefore, in order to evaluate this possibility, 
the risk scores for samples in four other datasets (GSE26971, 
GSE22219, GSE42568 and GSE56884) were calculated after 
the coefficients were fixed (Fig. 3). Similar to the survival profile 
in the training dataset, the survival of patients in the high‑risk 
group was significantly poorer compared with the patients in the 
low‑risk group in three of the four datasets (P=0.012, 7.2x10‑10 

and 0.0068 for GSE26971, GSE22219 and GSE56884, respec-
tively; Fig. 3A, B and D, top panel). The survival profile of the 
patients in the GSE42568 dataset was not significantly different 
between the two groups, which may be due to a smaller sample 
size. Similar expression trends were also observed in all four 
datasets (Fig. 3A, middle and bottom panel).

Risk score and clinicopathological indicators. Next, the asso-
ciation between the clinical observations and the risk score was 
calculated. The risk score was significantly associated with 
the breast cancer grade and the TNM stage. The risk score 
was independent from other clinical parameters (Fig. 4A). In 
order to compare the clinical significance and survival predic-
tion of clinicopathological observations and the risk score, a 
nomogram of the 5‑year survival rate was plotted (Fig. 4B). 
According to the nomogram, the risk score exhibited the widest 
range, indicating that it is an important prognostic indicator.
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Discussion

Although the therapy of the ER+‑breast cancer is relatively 
well‑established to date and mostly consists of prescribing 
tamoxifen, the survival prognosis for patients with 
ER+‑breast cancer and treated with tamoxifen varies, and 

clinicopathological observations remain insufficient (10,11). 
Therefore, gene biomarkers for prognosis, drug selection 
and follow‑up are urgently needed. Although many single 
molecular biomarkers for breast cancer prognosis have been 
studied in the past years, the clinical effect across datasets 
was observed to be limited, a multiple gene‑based model is 

Figure 1. Workflow of the present study and candidate genes used for model development. (A) Workflow of the present study. (B) Frequency of genes in random 
forest variable hunting. (C) Coefficient for each gene in the risk score calculation formula. AK5, adenylate kinase 5; CCNA2, cyclin A2; CENPE, centromere 
protein E; CTDSP1, carboxy‑terminal domain RNA polymerase II polypeptide A small phosphatase 1; FOXD1, forkhead box D1; KCNK1, potassium two pore 
domain channel subfamily K member 1 and troponin C type 1 (Slow); NEK2, NIMA related kinase 2; STAT6, signal transducer and activator of transcription 
6; STC2, stanniocalcin 2; TNNC2, troponin C, skeletal muscle.
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now preferred (8,12‑15). In the present study, Cox multivariate 
regression and random forest variable hunting were used on 
the GSE17005 dataset, and a risk score model for survival 
prediction was constructed. Patient groups with high and low 
risk scores were significantly different in terms of survival. 
Furthermore, this result was validated in three independent 
datasets. Compared with other clinicopathological indica-
tors, the risk score is also an important prognostic indicator. 
Consistent with this, the value of 5‑year survival ROC of the 
risk score is 0.733, which is considerably higher compared 
with other clinical parameters (age, tumor stage, tumor grade, 
chemotherapy, lymph invasion and tumor size). In a previous 
study, tamoxifen‑resistant biomarkers were identified using 

transcriptomic signatures. Among these genes, the highest 
5‑year relapse ROC was 0.64 for a single biomarker (16), while 
in the present study, it reached 0.733, which indicates the high 
performance of the model.

Among these genes, STAT6 was previously shown to be 
associated with mortality and metastasis in breast cancer (17,18). 
CENPE was reported to be associated with cell cycle (19), and 
FOXD1 was indicated to be associated with proliferation and drug 
resistance in breast cancer (20). CTDSP1 was reported to inhibit 
the migration and invasion of breast cancer cells (21). Aberrant 
methylation of AK5 was identified in breast cancer, although the 
mechanism is unclear (22). CCNA2 expression was associated 
with resistance to tamoxifen in ER+‑breast cancer (23). STC2 

Figure 2. Risk score for prognosis in the training dataset. (A) Overall survival rate of the high‑ and low‑risk groups. (B) The survival, mortality and the 
gene expression level in the high and low‑risk groups. Red denotes upregulated gene expression levels. Green denotes downregulated gene expression levels. 
(C) 5‑year survival receiving operating characteristic curves of the risk score and other clinical observations.
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Figure 3. Impact of the risk score on survival in the validation datasets. Overall survival rate of the high‑risk group and the low‑risk group in four independent 
datasets: (A) GSE26971, (B) GSE22219, (C) GSE42568 and (D) GSE56884 (top panels). Detailed survival and expression information is provided in the middle 
and bottom panels.
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expression was associated with patient prognosis across different 
cancer types (24,25). These reports indicate that the genes used 
for the development of this model are relatively reliable.

The present study has several limitations. The platform 
used in the four datasets is a microarray, which may limit 
the utilization of the risk score. Additionally, since the 
present study is a retrospective study, other epidemiological 
characteristics, clinical manifestations, pathological features 
and treatment methods of the samples were not assessed, and 
therefore a comprehensive analysis of the correlation scores 
between clinicopathological observations and risk score 
cannot be performed. Finally, the risk score formula was 
developed using the GSE17005 dataset, and a different formula 
was generated using the other datasets. It is difficult to justify 
which formula is better. In this article, the GSE17005 dataset 
was used for model development to minimize prediction error, 
and therefore bias may also exist.
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