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Abstract. The aim of the present study was to investigate the 
association between the dynamic intensity‑modulated radia-
tion therapy planned γ analysis passing rate and respiratory 
amplitude (A) and period (T) for different tumor volumes. A 
total of 30 patients with malignant lung tumors were divided 
into three groups: A; B; and C. The average tumor volumes (V) 
in the A, B and C groups were 635, 402 and 213 cm3, respec-
tively. The simulated A values were set at 0, 5, 10, 15, 20 and 
25 mm. The T values were set at 4, 5 and 6 sec. The γ analysis 
passing rate was calculated under different conditions (dose 
difference, 3%; distance difference, 3 mm). Compared with 
the γ analysis passing rate in the A group (A=0, static; T=4, 
5, 6 sec), the γ analysis passing rate deviation (A=5 mm) was 
<3.3%. However, this difference was not statistically signifi-
cant (P>0.05). With a gradual increase in A value, the passing 
rate decreased. The deviation between the 3 groups was <2.5% 
at the same A value (T=4, 5 and 6 sec). A descending trend of 
passing rate with increased A value was revealed. At the same 
A and T values, the passing rate decreased with decreased 
tumor volume. At the same tumor volume, the passing rate 
decreased when the A value increased. The respiratory cycle 
was not demonstrated to be associated with the passing rate. 
Overall, these results suggest that the A value should be 
controlled in clinical radiotherapy.

Introduction

Intensity‑modulated radiation therapy (IMRT) is used to 
deliver a high dose of radiation to a large area, particularly 
in lung tumors  (1,2). This treatment requires high quality 
assurance and quality control. Dose verification for individual 

patients prior to treatment is required to ensure accurate 
treatment (3).

Dose verification of IMRT is performed using single‑ or 
multiple‑field synthesis, and a slow photosensitive film or 
an ionization chamber matrix needle (4‑6). The ionization 
chamber matrix method is widely used for its convenience, 
high repeatability and high digitalization (7). The ionization 
chamber matrix is employed to irradiate the target area verti-
cally and to measure the beam angle 0˚ (8). At different gantry 
angles, the multileaf collimator (MLC) is affected by gravity, 
friction, inertia and other factors (9). This effect results in 
a difference between the actual MLC leaf error and that of 
the planning system (10). Therefore, in the present study, the 
rack angle zero method was used to avoid the effects of rack 
accuracy on the actual dose distribution of IMRT (11).

Computed tomography (CT) positioning images used in 
radiotherapy planning are static images. However, the respira-
tory motion of the patient during scanning alters the position 
of the lung tumors and surrounding organs, and affects the 
irradiation dose delivered to the target areas and the organs at 
risk (12,13). Respiratory motion also affects image acquisition, 
including that of cone beam CT (14). Based on the IMRT of an 
MLC, the deviation of the target area irradiation dose caused 
by respiratory motion was ≤47.8% (15).

The γ analysis method was applied in the present study (16). 
The association between the dynamic IMRT planned γ 
analysis passing rate and respiratory amplitude (A), and tumor 
volume, was investigated using a semiconductor detector and 
respiratory motion platform. The experiments were performed 
to provide a reference for the design and evaluation of IMRT 
plans.

Patients and methods

Patients. A total of 30 patients with lung tumors were admitted 
to The Second People's Hospital of Changzhou (Changzhou, 
China) and underwent radiation therapy between July 2016 and 
December 2016. Patients comprised 18 males and 12 females 
with a mean age of 44.5±7.9 years (age range, 36‑52 years). 
The patients were divided into groups A, B and C, with each 
group comprising 10 patients. The average volumes of the 
tumor target area (PTV) were 635, 402 and 213 cm3 in groups 
A, B and C, respectively. The volume ratio of the three groups 
was ~3:2:1. The prescribed doses of PTV were 60 Gy for 
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all patients, administered in 30 fractions. The whole course 
of treatment was ~42 days. The present study was approved 
by the Medical Ethics Committee of The Second People's 
Hospital of Changzhou (Changzhou, China), and all patients 
provided written informed consent for participation.

Equipment and materials. An Infinity linear accelerator 
(Elekta Instrument AB, Stockholm, Sweden) was used in 
the present study. The MLC possessed 80 pairs of leaves, 
and the width of each leaf was 5 mm. The algorithm of the 
Monaco treatment planning system (TPS, version 5.11.01; 
Elekta Instrument AB) was the Monte Carlo calculation. 
The Matrixx evolution dose verification system adopted 
a 2D ionization chamber array system (IBA Dosimetry, 
Bartlett, TN, USA). This system was composed of 1,020 air 
ionization chambers and arranged in a 32x32 matrix. The 
ionization chamber was 4.5 mm in diameter and 5 mm in 
height, with an adjacent spacing of 7.62 mm and a sensitive 
volume of 0.08  cm3. The effective measurement range 
was 24.4x24.4  cm. The periphery of the matrix system 
was wrapped in a 5 cm polymethyl methacrylate material 
(MiniPhantom; IBA Dosimetry, Bartlett, TN, USA). The 
simulated respiratory motion apparatus was a 008PL dynamic 
platform (CIRS, Norfolk, VA, USA). The maximum A value 
of the simulated respiratory motion range was ~25 mm. The 
respiratory frequency and A value were set using the program 
control. In the present study, the sine wave function sin 
was used to simulate the human respiratory waveform. The 
quality assurance (QA) phantom center (tumor center) was set 
at the center of the accelerator when A=0 (17). The overall 
QA experimental device is demonstrated in Fig. 1, with the 
Matrixx evolution device placed on the dynamic platform.

Plan design. The QA method used (18) is briefly described 
as follows: The CT scan image was transmitted to the 
Monaco planning system for 3D reconstruction. The radiolo-
gist outlined the patients' target area in accordance with the 
ICRU62 report (19), clinical examination and imaging tech-
nology. Radiation was administered using a 6‑MV X‑ray with 
a prescription dose of 60 Gy, which reached 95% PTV. The 
irradiation was conducted 30 times. The dynamic IMRT plans 
of the 30 patients were designed using the Monaco planning 
system. Using the Monte Carlo algorithm, a computational 
grid of 0.3x0.3 cm was obtained. Each patient plan was trans-
ferred to the QA module and the rack angle was returned to 0. 
The QA phantom coronal plane isocenter dose was outputted. 
The average γ analysis passing rate of the patients was 98% in 
the simulated static state.

Data acquisition. The respiratory apparatus was horizontally 
placed on the treatment bed to ensure that the forward and 
backward directions of movement were parallel with the bed. 
The QA phantom was placed on the respiratory apparatus in 
order that the effective measurement point of the 2D matrix 
was located at the isocenter layer of the accelerator. The 
respiratory motion was in the head‑to‑foot direction, which 
is the most common direction of motion of lung tumors (20). 
The motion function was the sinusoidal function. In a normal 
resting state, respiratory frequency is 16‑20 breaths/min (21). 
Shimizu  et  al  (22) demonstrated a lung tumor marker 

movement range of 6.8‑15.9 mm. The A values used were 
0, 5, 10, 15, 20 and 25 mm. The T values were set as 4, 5 
and 6 sec. The respiratory motion simulation period was ≥4.9 
sec in accordance with the dynamic platform. Therefore, the 
25 mm/4 sec groups were absent. Thus, a total of 17 control 
experiments were performed for A, B and C groups. The 
passing rates were measured in the A, B and C groups, with 
3%/3 mm (dose deviation, 3%; distance deviation, 3 mm) as 
the standard.

Statistical analysis. Data are expressed as the mean ± standard 
deviation and were analyzed using the SPSS statistical soft-
ware package version 20.0 software (IBM Corp., Armonk, 
NU, USA). All experiments were performed in triplicate. 
The A values and γ analysis passing rates of different tumor 
volumes were analyzed using one‑way analysis of variance 
(ANOVA). An unpaired Student's t‑test was used for two group 
comparisons and one‑way ANOVA followed by Tukey's test 
was used for three or more group comparisons. P<0.05 was 
considered to indicate a statistically significant difference.

Figure 2. Outputted dose fluxgraph example of the treatment planning system 
plan in group B.

Figure 1. Set‑up of experimental equipment.
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Results

Comparison of the measured dose fluxgraph and the output 
dose fluxgraph. Fig. 2 presents the output dose fluxgraph from 
the TPS plan of group A. Fig. 3 presents the dose fluxgraph 
in group A at A=5, 10, 15 or 20 mm (T=4 sec). Figs. 4 and 5 
present the corresponding dose fluxgraphs in the B group 
(T=5 and 6 sec). Figs. 3, 4 and 5 demonstrate that the high‑dose 
area (where dose was >90% of the maximal dose) decreased 
with increased A values. The low‑dose area (where dose was 
<60% of the maximal dose) remained constant.

Association of the γ analysis passing rate, and the A and 
T values. The passing rate deviation was <3.3% when A=5 mm 
(T=4, 5 and 6 sec) compared with the passing rate (static) in 
the A group (Fig. 6). However, this was not statistically signifi-
cant (P>0.05). The passing rate decreased when the A value 
increased from 5 mm. When the A value exceeded 10 mm, 
the passing rates significantly differed from that of the static 
state (P<0.05). When the A values were 10, 15, 20 and 25 mm, 
the passing rate deviations were 13.9, 30.7, 40.7 and 48.3%, 
respectively (T=6 sec). The passing rate deviation among the 
3 groups was <2.5% at the same A value (T=4, 5 and 6 sec).

The passing rate of group B decreased with increased A 
value (Fig. 7), reflecting the results of group A. The maximum 
passing rate deviation among the 3 groups was 2.3% at the 
same A value (P>0.05).

The passing rate of group C was similar to that of 
group  B  (Fig.  8). However, with increasing A values, the 
descending trend of group C was more evident compared with 
that of group B.

Association between the tumor volume and passing rate. 
The association between respiratory amplitude, volume and 
passing rate under different breathing cycles was analyzed. 
When the average tumor volume decreased from 635 cm3 

(group A) to 402 cm3 (group B), the maximum passing rate 
deviation was 1.7%, (P>0.05; Fig.  9). However, when the 
average tumor volume decreased from 402 cm3 (group B) to 
213 cm3 (group C), the passing rate significantly decreased, 
with a maximum deviation of 20.6% (T=4 sec). The associa-
tion between the passing rate and tumor volume at T=5 and 
6 sec were similar to that at T=4 sec (Figs. 10 and 11).

Discussion

The correct implementation of IMRT is not achievable without 
assessment of the radiation field output dose. Tumor motion 
affects the accuracy of the dose distribution (23). IMRT plan 
conformal indices may predict the effects of respiratory 
motion on the dose distribution (24).

Comparison of the TPS dose fluxgraph and the measured 
dose fluxgraph revealed that the increase in A value reduced 
high‑dose target areas, enlarged low‑dose target areas 

Figure 3. Measured dose fluxgraphs in group A at T=4 sec, and at (A) A=5 mm; (B) A=10 mm; (C) A=15 mm, and (D) A=20 mm. T, period; A, respiratory 
amplitude. 
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and blurred the isodose margin. The respiratory motion 
caused dose perturbation and resulted in a blurred isodose 
margin (25).

Increased A value reduced the passing rate (Figs. 6‑8). 
The A value deviation was statistically significant at 
10 mm (P=0.001). When the A value was <5 mm, the passing 

Figure 5. Measured dose fluxgraphs in group A at T=6 sec, and at (A) A=5 mm; (B) A=10 mm; (C) A=15 mm; (D) A=20 mm, and (E) A=25 mm. T, period; 
A, respiratory amplitude.

Figure 4. Measured dose fluxgraphs in group A at T=5 sec, and at (A) A=5 mm; (B) A=10 mm; (C) A=15 mm; (D) A=20 mm, and (E) A=25 mm. T, period; 
A, respiratory amplitude.
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rate of the irradiation field was >90%. Schaefer et al  (26) 
investigated the dose distribution at an A value of 8 mm. The 

results demonstrated that the deviation was usually <5%. This 
is likely due to the respiratory motion caused by movement 

Figure 9. Association between the respiratory amplitude and tumor volume 
(T=4 sec). T, period.

Figure 8. Association between the passing rate and respiratory amplitude in 
group C.

Figure 7. Association between the passing rate and respiratory amplitude in 
group B.

Figure 6. Association between the passing rate and respiratory amplitude in 
group A.

Figure 10. Association between the respiratory amplitude and the tumor 
volume (T=5 sec). T, period.

Figure 11. Association between the respiratory amplitude and the tumor 
volume (T=6 sec). T, period.
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of the target area, suggesting that the irradiation field and 
target area moved in association with each other. When the 
A value decreased, the ratio of the deviation area accounting 
for the target diminished. This effect resulted in the ascending 
trend of the passing rate. When the size of the irradiation 
field was increased, the ratio of the deviation area accounting 
for the target area also increased. This effect resulted in the 
descending trend of the passing rate.

Figs. 6‑8 demonstrate the lack of statistical significance 
of the association between the passing rate and T value 
(P>0.05). This result was likely because the respiratory 
period was relatively short compared with the overall treat-
ment time.

When the tumor volume was decreased from 635 cm3 

(group A) to 402 cm3 (group B), the passing rate decreased 
to 5.6%, and when the tumor volume was decreased from 
402 cm3 (group B) to 213 cm3 (group C), the passing rate 
significantly decreased (P=0.004). These results indicate that 
the passing rate was closely associated with tumor volume. 
This result supports that of decreased passing rate with 
increased A value, as the proportion of the tumor exceeding 
the irradiation field due to respiratory motion would increase. 
These results suggest that the effect of respiratory motion on 
the dose distribution should be considered more carefully for 
smaller tumors (26).

In lung tumor radiotherapy, the deviation in dose 
distribution caused by respiratory motion requires careful 
consideration. Respiratory gating and autonomous respira-
tion control methods are often used to reduce the tumor 
dose (12,27). An internal target volume treatment plan based 
on the 4D CT images should be designed for additional effec-
tiveness (28).

To conclude, at constant A and T values, lung tumor 
volume was demonstrated to be proportional to dose veri-
fication  γ analysis passing rate. Large tumors achieved 
high passing rates, and small tumors achieved low passing 
rates. At a constant tumor volume, a descending trend in 
passing rate with increasing A value was revealed. The 
respiratory period demonstrated no association with passing 
rate. Therefore, A values should be carefully controlled in 
clinical radiotherapy.
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