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Abstract. Magnetic resonance imaging exhibits high sensi-
tivity but low specificity for breast cancer. The present study 
aimed to investigate whether combining morphology, texture 
features and kinetic features with diffusion‑weighted imaging 
using quantitative analysis improves the accuracy of discrimi-
nating malignant from benign breast masses. In total, 104 and 
171 malignant lesions in 205 women were included. Additionally, 
13 texture and 11 morphology features were computed from 
each lesion using a semi‑automated segmentation method. To 
increase prediction accuracy, a newly designed classification 
model, difference‑weighted local hyperplane, was used for 
statistical analysis of the combined effects of the features for 
predicting lesion type. The mean apparent diffusion coefficient 
(ADC) value for each lesion was calculated. Diagnostic perfor-
mances of morphology and texture features, kinetic features 
and ADC alone and the combination of them were evaluated 
using receiver operating characteristics analysis. Malignant 

lesions had lower mean ADCs than benign lesions. By using 
10‑fold cross validation scheme, combined morphological and 
kinetic features achieved a diagnostic average accuracy of 0.87. 
Adding an ADC threshold of 1.37x10‑3 mm2/sec increased 
the overall averaged accuracy to 0.90. A multivariate model 
combining ADC values with 6 morphological and kinetic 
parameters best discriminated malignant from benign lesions. 
Incorporating morphology and texture features, kinetic features 
and ADC into a multivariable diagnostic model improves the 
discriminatory power of breast lesions.

Introduction

Dynamic contrast‑enhanced magnetic resonance imaging 
(DCE‑MRI) is increasingly used for breast cancer diagnosis 
as an adjunct to conventional imaging techniques (1). It is used 
for all stages of management, including detection, diagnosis, 
pre‑operative staging, therapy response monitoring and surveil-
lance (2‑6). Breast MRI has demonstrated a high sensitivity, 
but with the shortcoming of varying specificity, reported from 
0.37 to 0.97 (3,7), which may lead to unnecessary biopsies. 
Studies have demonstrated that using morphological features 
in routine clinical practice as additional diagnostic criteria 
in breast MRI can improve specificity without significantly 
reducing sensitivity (8,9).

Currently, computer‑assisted diagnosis (CAD) systems 
for breast MRI are increasingly used in clinical practice in 
order to reduce inter‑observer variations in interpretations 
by facilitating a quantitative and objective evaluation of the 
images (10), thus shortening the time to diagnosis.

Diffusion weighted MRI (DWI) reflects the movement 
of water within tissues by measuring the degree of random 
molecular motion, which is quantified by the apparent diffu-
sion coefficient (ADC) value. Previous studies (11,12) used 
DWI as an additional tool for diagnosing breast cancer and 
found that the ADC is significantly lower in malignant tumors 
than in benign breast lesions or normal tissue. The observed 
low ADC values associated with malignancy are mainly due 
to high cell density, which causes increased restriction of the 
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extracellular matrix and increased fraction of signal from 
intracellular water (11). Through combined ADC and dynamic 
contrast‑enhanced kinetics, the diagnostic accuracy of breast 
MRI has improved (13). Yabuuchi et al (14) reported a high 
accuracy for enhancing breast masses through a combination 
of DWI and DCE‑MRI features. However, the interpretation 
of breast DCE‑MRI imaging is mainly based on judgments 
from radiologists; it will be beneficiary to derive discrimina-
tion rules provided by CAD. To the best of our knowledge, 
no published studies have conducted a robust assessment by 
incorporating morphology and texture features, and kinetic 
features provided by CAD and ADC into a multivariable diag-
nostic model for the discrimination of breast masses.

The purpose of this study was to retrospectively investigate 
whether combining morphology, texture features and kinetic 
features with ADC using quantitative analysis improves the 
accuracy for differentiating between benign and malignant 
breast lesions in MRI.

Materials and methods

Patients and lesions. In total, 320 patients came to Sun 
Yat‑sen University Cancer Center for clinically indicated 
bilateral breast MRI between September 2008 and December 
2011. The patients' breast MRI examinations were retro-
spectively reviewed. The MRI studies of 205 women with 
275 breast lesions met the following inclusion criteria in the 
present study: i) MRI was performed using a 1.5‑T magnet; 
ii) both DCE‑MRI imaging and DWI imaging sequences were 
performed; iii) diagnosis was confirmed following patho-
logical analysis subsequent to core‑needle biopsy or surgical 
excision (248 lesions), or lesion stability was confirmed at 
a minimum follow‑up of 2  years (27 lesions); iv)  lesions 
presented as a mass according to the breast imaging reporting 
and data system MRI lexicon; and v) patients had not received 
a biopsy or received therapy prior to MRI examination. Of 
the 320 patients, 23 were excluded for not having a suspi-
cious abnormality on dynamic images, 40 were excluded for 
non‑mass‑like enhancement, 16 were excluded because their 
pathological results were not determined, 20 were excluded 
for having lesions without a sufficient follow‑up period, and 16 
were excluded for inadequate fat suppression on DWI images.

MRI image acquisition. Imaging was performed with a GE 
Signa HDx 1.5‑T superconductive magnetic system, using a 
bilateral, dedicated four‑channel phased‑array breast coil in the 
prone position. Standard imaging was performed, including an 
axial fast spin echo (FSE) T1WI and an axial and sagittal FSE 
T2WI. Subsequently, DWI images were acquired in the axial 
planes, prior to gadolinium‑based contrast material injection, 
using: A spin‑echo single‑shot echo planar imaging sequence; 
array spatial sensitivity encoding technique (acceleration 
factor of two); b values of 0 and 800 sec/mm2; fat suppression; 
5,000/75 (repetition time msec/echo time msec); 5 mm section 
thickness; a 30x30 cm field of view; a 128x128 matrix; 0 mm 
section gap; and 130 sec acquisition time.

Subsequently, after one set of unenhanced baseline images, 
dynamic contrast‑enhanced MRI data were acquired using 
an MRI‑specific automatic power injector (Medrad Inc., 
Pittsburgh, PA, USA) to inject 0.1  mmol/kg body weight 

contrast medium gadolinium diethylenetriamine penta‑acetic 
acid (Gd‑DTPA), with a hand venipuncture technique at a rate 
of 3 ml/sec. Saline (10 ml at 3 ml/sec) was then injected to wash 
the tube. Dynamic scanning was initiated by simultaneously 
pushing the high‑pressure syringe button and the dynamic scan 
button. Nine post‑contrast sets were acquired. Each sequence 
was performed in the sagittal plane at 20 sec intervals with fat 
suppression using: Three‑dimensional spoiled gradient recall 
echo sequence; 5.5/2.6 repetition time msec/echo time msec; 
3.4 mm slice thickness; 15˚ flip angle; a 22x22 cm field of view; 
a 288x192 matrix; and a 59 sec acquisition time. Subsequently, 
axial MRI was employed using fat‑suppressed enhanced T1WI 
sequence.

Data analyses. All images were analyzed independently by 
two radiologists with ten years experience in interpreting 
breast MRI. They were blinded to the histological results of 
current patients. The images were assessed independently and 
any disagreements were resolved by achieving consensus. All 
lesions were assessed using The Breast Imaging Reporting and 
Data System (BI‑RADS) (15). BI‑RADS category 1 (negative) 
and category 2 (benign) denote an essentially 0% likelihood 
of cancer. BI‑RADS category 3 (probably benign) assessment 
is more intuitive and can be recommended in the case of a 
unique focal finding for which the likelihood of malignancy is 
≥0% but ≤2%. BI‑RADS category 4 (suspicious) and category 
5 (highly suggestive of malignancy) describe MRI findings that 
are suspicious enough to warrant tissue diagnosis. BI‑RADS 
category 6 (known biopsy‑ proven malignancy) describes MRI 
findings of biopsy‑proven breast cancer for which surgical exci-
sion is recommended when clinically appropriate. All images 
were analyzed on a workstation (Centricity Radiology RA 
600 V 7.0; GE Healthcare, Chicago, IL, USA). All quantita-
tive analysis software was written in MATLAB (MathWorks, 
Natick, MA, USA; http//www.mathworks.com).

Analysis of lesion kinetics. For kinetic analysis, time‑signal 
intensity curves were obtained from manually drawn regions 
of interest (ROIs), the size of which varied with the size of the 
enhancing lesion and were chosen to selectively include the 
area with the strongest enhancement, as identified on the first 
post contrast subtracted image. The early‑phase enhancement 
rate and the signal enhancement ratio (SER) (16) were quanti-
fied by means of an ROI‑based determination of lesion signal 
intensity prior and subsequent to the injection of Gd‑DTPA. 
The early‑phase enhancement was calculated according to 
the enhancement formula (SI1‑SI0)/SI0 x100 (17) and SER was 
defined as (SI1‑SI0)/(SIlast‑SI0), where SI0, SI1, and SIlast represent 
the signal intensity in the pre‑contrast, the first post‑contrast 
and the last images, respectively.

Analysis of morphological and texture features. Following 
manual lesion identification, automatic segmentation was 
undertaken for lesion contours. The segmentation used a 
novel two‑step approach that incorporated fuzzy c‑means 
(FCM) clustering (18) and gradient vector flow snake algo-
rithm (19). The FCM clustering based method was used to 
obtain initialization for commencement of segmentation 
while the gradient vector flow snake model was further 
applied to obtain the exact segmentation (Fig. 1). A total 
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of 13 texture features were estimated from the gray level 
co‑occurrence matrix (GLCM)  (20). The parameters 
included: Angular second moment; contrast; correlation; 
inverse difference moment; sum average; sum variance; sum 
entropy; entropy; difference average; difference variance; 
difference entropy; information measure of correlation 1; 
and information measure of correlation 2 (21). In total, 11 
morphological features, including compactness, spiculation, 
extent, elongation, solidity, circularity, entropy of radial 
length distribution, fractal, heterogeneity, area and eccen-
tricity, were also computed (22).

Breast masses in the study were all verified histopatho-
logically (Table I), or the diagnosis was confirmed following 
at ≥2 years of follow‑up. Lesion status was used as baseline for 
statistical evaluation of the performance of the features. The 
whole patients set was randomly divided into two sets, one for 
classifier training and the other for testing the performance of 
the classifier. The ten‑fold cross validation scheme was used 
to evaluate and find the classifier with the best performance.

Analysis of ADC. The ROIs were manually drawn on the diffu-
sion‑weighted images (b=800 s/mm2; Figs. 2 and 3) and were 
placed in regions with high signal intensity on the images. The 
contrast and morphological characteristics at the early phase 
of contrast‑enhanced T1‑weighted imaging and T2‑weighted 
imaging were used to guide ROI placement to prevent areas 
of T2 shine‑through, which was usually found in necrotic or 
cystic parts. The ROIs were defined as the area slightly smaller 
than the actual lesions to reduce partial volume effects. In the 
current study, all ROIs were >20 mm2 (23). The DWI intensity 
for each lesion was classified as high or low compared to that 
of the corresponding background breast tissue. The mean 
ADC of the voxels in ROIs were then obtained.

Statistical analysis. Morphological features were shown to 
perform well in terms of discriminating lesion types  (8). 
Meanwhile, using the textural or kinetic measurements alone 
can also shade light in the characteristics of lesions, shown in 
Table II. Therefore, the combination of the merits of the char-
acterization parameters, including morphological, textural 
and kinetic measurements, was expected to achieve a better, 
or at least comparable performance compared with individual 
measurements. The combination of the parameters as whole 
reflected different aspects of lesion properties and was a 

Table I. Histopathology of benign and malignant breast lesions.

Tumor group	 Number	 Percentage

Malignant lesions	 171	 62.2
  Invasive ductal carcinoma	 136	 79.5
  Intra‑ductal carcinoma	 23	 13.4
  Lobular carcinoma	 2	 1.2
  Mucinous carcinoma	 3	 1.8
  Medullary carcinoma	 1	 0.6
  Others	 6	 3.5
Benign lesions	 104	 37.8
  Fibroadenosis	 64	 61.6
  Intraductal papilloma	 4	 3.8
  Hyperplasia	 4	 3.8
  Phyllodes tumor	 2	 1.9
  Adenomyosis epithelioma	 1	 1
  Inflammation	 2	 1.9
Follow‑up	 27	 26

Figure 1. A sample breast lesion detected by magnetic resonance imaging. (A) A post‑contrast breast lesion is highlighted in the blue rectangle. (B) Initial 
segmentation result using the fuzzy c‑means‑based method. (C) Final segmentation by deformation of gradient vector flow snake with initialization of (B).
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potentially comprehensive approach to the characterization of 
lesion status.

In total, 24 features were initially estimated from 
the segmented lesion image. Since the features may be 
self‑dependent or irrelevant to the lesion type, an exhaustive 
feature selection method was used to find an optimal feature 
subset in which the classification accuracy is highest (24). 
The differentiation of malignant from benign lesions was 
treated as a two‑class pattern classification problem. A newly 
reported classification model, the difference‑weighted local 
hyperplane classification model (DWLH), was used to select 
the feature subset and to evaluate the performance of the 
combined feature subsets (25). In the classification model, 
a local hyperplane is constructed from its nearest neighbor 
for each observed sample. The label of the sample is decided 
by the minimized distance to its class‑dependent hyper-
plane. The performance of the model is superior to that of 
the classical k‑nearest neighbors algorithm in that the local 
hyperplane is robust to noises and outliers (26). The present 
study selected DWLH, not only because of its superior 
performance over classical models, including the support 
vector machine, but also as a result of the rationale behind its 
mathematical formulation (27). Since lesions usually share 
certain pictorial similarities among patients with the same 
type lesions, the status of lesion could be deducted from 
its nearest neighbors, other than particular one as k‑nearest 
neighbors does. This follows the same rationale with the 
classifier of DWLH.

To test the discrimination power of different characteriza-
tion of breast masses, the whole dataset where categorized into 
six subgroups including morphology, kinetics, texture features 
and their combinations. To further evaluate the discrimina-
tion power of ADC, various characteristics of breast masses 
were combined with/without ADC, resulting another three 
data subgroups. On each subgroup, the classifier of DWLH 
was evaluated via ten‑fold cross validation scheme. For each 
experiment, the averaged accuracy and AUC were calculated 
to serve as criteria of the feature performance. To eliminate 
the statistical variations during the training phase, the present 
study conducted 10 classification experiments independently 
on each dataset. The averaged classification error was 
recorded and is presented in Table III. Receiver operating 
characteristic (ROC) analysis was also used to evaluate the 
diagnostic performance of the model under various features. 
The area under the ROC curve (AUC) served as the criterion 
for selecting the best combination.

Results

In total, 205 women with 275 lesions met the inclusion criteria. 
The mean age of these patients was 46.2±10.9 years (age range, 
18‑78 years). A total of 48 lesions were assessed as probably 
benign finding (BI‑RADS category 3), 147 were assessed 
as suspicious (BI‑RADS category 4), and 80 were assessed 
as highly suggestive of malignancy (BI‑RADS category 5). 
Table I exhibits the distribution of histopathological findings 

Table II. Group mean, P‑values and diagnostic accuracy of selected parameters.

Parameters	 Benigna	 Malignanta	 P‑valueb	 Diagnostic accuracyc	 Threshold value

Heterogeneity	 ‑0.054±1.061	 0.033±0.964	 0.486	 0.633	 0.17
Area	 ‑0.403±0.751	 0.245±1.053	 <0.001	 0.742	 440.00
Sum variance	 0.373±1.094	 ‑0.227±0.866	 <0.001	 0.684	 11582.00
Sum entropy	 ‑0.508±1.057	 0.309±0.825	 <0.001	 0.709	 7.88
Difference entropy 	 ‑0.171±1.112	 0.104±0.914	 0.003	 0.647	 5.06
SER	 ‑0.826±0.756	 0.502±0.771	 0	 0.876	 0.34

aData presented as the mean ± standard deviation. bComputed with paired‑sample t‑test. cComputed with univariate logistic regression. SER, 
signal enhancement ratio.

Table III. Diagnostic performance differentiating between malignant and benign lesions.

Parameter selection	 Sensitivity	 Specificity	 Accuracy	 AUC

Morphology	 0.57	 0.78	 0.70	 0.68
Kinetics 	 0.79	 0.89	 0.85	 0.84
Texture	 0.53	 0.81	 0.71	 0.67
Morphology+texture+kinetics	 0.81	 0.91	 0.87	 0.86
ADC	 0.78	 0.90	 0.84	 0.83
ADC+kinetics	 0.84	 0.93	 0.89	 0.88
ADC+morphology+kinetics+texture	 0.85	 0.94	 0.90	 0.90

ADC, apparent diffusion coefficient; AUC, area under curve.
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of all analyzed lesions. The mean lesion size, defined as the 
longest dimension on DCE‑MRI images, was 1.3±2.1  cm 
(range, 0.5‑3.0 cm) for benign lesions and 2.8±1.5 cm (range, 
1.5‑5.0 cm) for malignant lesions.

Diagnostic performance of morphological and kinetic 
features. Segmentation results of randomly selected sample 
breast lesion can be seen in Fig. 1. In total, 6 features performed 
optimally in terms of prediction. The features included two 
shape (heterogeneity, area) and three texture (sum variance, 
sum entropy, difference entropy) parameters and one kinetic 
parameter (SER).

The diagnostic performance of each feature used in the 
experiment classifier was also evaluated individually. The mean 
and standard deviation and the diagnostic performance of the 
6 selected parameters are summarized in Table II. Among the 
6 parameters, the diagnostic accuracy of SER was the highest.

Utilization of 5 anatomical features, including texture and 
shape parameters, resulted in an AUC of 0.68. The kinetic 
parameter SER reached a comparable AUC of 0.84. When 
combining these 6 parameters into a unified diagnostic model, 
the AUC was further improved to 0.86. This combined classi-
fier achieved a sensitivity of 0.81 and a specificity of 0.91 with 
a diagnostic accuracy of 0.87 (Table III).

Diagnostic performance of ADC value. A malignant lesion 
and a benign lesion can be seen in Fig.  2 and in Fig.  3, 
respectively. The box plot of the ADC for all patients is shown 
in Fig. 4. An overlap of ADC was observed between malignant 
and benign breast lesions. The mean ADC of malignant 
lesions (mean, 1.16x10‑3 mm2/sec; 95% CI, 1.13x10‑3 mm2/sec; 
1.20x10‑3 mm2/sec) was significantly lower than that observed 
for benign lesions (P<0.05; mean, 1.68x10‑3 mm2/sec; 95% 
CI, 1.62x10‑3 mm2/sec; 1.75x10‑3 mm2/sec). The predictive 
accuracy (sensitivity, specificity) of mean ADC was 0.84 (0.78 
and 0.90, respectively; Table III). Thus, a threshold value of 
1.37x10‑3 mm2/sec can achieve a specificity of 0.90, with a 
sensitivity of 0.78, to discriminate between malignant and 
benign lesions.

Analysis of the model combining morphology and kinetic 
features with ADC values. When the ADC value was incor-
porated into the feature sets, the sensitivity, specificity and 
accuracy of the classification model increased to 0.85, 0.94 
and 0.90, respectively (Table  III). The value of AUC was 
dramatically increased from 0.86 to 0.90 by incorporating 
without/with using ADC (Fig. 5). It implies that the ADC 
possesses the potential power in discriminating benign masses 
from malignant ones. It also suggests that addition of ADC 

Figure 2. Invasive ductal carcinoma (arrows) in a 30‑year‑old woman. (A) Dynamic contrast‑enhanced MRI image in the early phase. Areas of mass‑like 
enhancement are labeled by arrows and the lesion exhibits high signal intensity. (B) Diffusion‑weighted MRI image (b=800 sec/mm2). (C) ADC map. Lesion 
exhibits areas with dark blue contours (arrows), which are indicative of a low ADC. ADC measured in this lesion is 0.89x10‑3 sec/mm2. MRI, magnetic 
resonance imaging; ADC, apparent diffusion coefficient.

Figure 3. Fibroadenoma detected in an 18‑year‑old woman. (A) Dynamic contrast‑enhanced MR image in the early phase. Areas of mass‑like enhancement 
are labeled by arrows and the lesion exhibits high signal intensity. (B) Diffusion‑weighted MRI image (b=800 sec/mm2). (C) ADC map. Lesion exhibits areas 
with light green contours (arrows), which are indicative of a high ADC. ADC measured in this lesion is 1.91x10‑3 sec/mm2. MRI, magnetic resonance imaging; 
ADC, apparent diffusion coefficient.
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values enhances the discriminatory power of the combined 
feature set.

Discussion

The results of the present study demonstrate that incorporating 
morphology and texture features, kinetic features and ADC into 
a multivariable diagnostic model in breast MRI increases diag-
nostic accuracy. Although previous studies have demonstrated 
that the combination of DWI and DCE‑MRI can result in high 
diagnostic accuracy (28), and the addition of DWI to DCE‑MRI 
improves the positive predictive value (PPV) of breast MRI (23), 
the assessments were mainly based on the subjective expertise 
of individual radiologists. In the current study, the undertaken 
contrast‑enhanced breast images were analyzed by professional 
CAD software, which ensured less human interference and 
produced definitive parameters. A series of quantitative analysis 
was then followed to study the discrimination potentials of the 
images. El Khouli et al  (29) demonstrated that quantitative 
assessment of the type of contrast enhancement kinetic curve 
on breast DCE‑MRI for establishing or excluding malignancy is 
superior to standard qualitative assessment.

The present study applied quantitative analysis to charac-
terize the morphology, texture and kinetic features of breast 
lesions and used advanced machine learning techniques to 
obtain a classifier for differential diagnosis. A total of 11 
morphology, 13 GLCM texture and 2 kinetic features were 
extracted in order to characterize each lesion. Furthermore, 
2 shape (heterogeneity, area) and 3 texture (sum variance, 
sum entropy, difference entropy) parameters and 1 kinetic 
parameter (SER) were selected by DWLH using ten‑fold 
cross validation. The diagnostic performance based on 2 
shape features (heterogeneity, area) and 3 texture features 
(sum variance, sum entropy, difference entropy) reached 
an AUC value of 0.68. Using the kinetic parameter SER it 
reached a comparable AUC of 0.84. When all 6 parameters 
were combined, the resulting AUC improved further to 

0.86. This finding demonstrates that the combination of the 
kinetic enhancement data and morphology information in a 
systematic model is the most effective and comprehensive 
approach to the diagnosis of breast masses. These results are 
consistent with those of Newell et al (28). The performance 
of the shape and textural features (AUC=0.68) in the present 
study is evidently lower than that of kinetic parameter 
SER (AUC=0.84), which is different from the results of 
Newell et al (28) who received an AUC of 0.87 when using 
morphological features to separate between benign and 
malignant breast masses and a comparable value of 0.88 when 
using the kinetic parameters.

In particular, it was found that SER was an effective kinetic 
feature for the diagnosis of breast masses. Its AUC value was 
the highest among all the parameters when measured indi-
vidually. SER has the advantage of being able to depict the 
heterogeneous microvascular network in breast cancers (30). 
High SER corresponded to early signal enhancement, with 
rapid washout of intravenous contrast reflecting high tumor 
vascularity. Similarly, low SER correlated with slow and 
sustained enhancement of contrast, reflecting low tumor 
vascularity (31). SER, based on changes in signal intensity 
between 3 time points, is an effective kinetic parameter in the 
present study. However, it may be affected by the selection of 
time points, by the magnet strength, the sequence parameters 
(repetition time, echo time, flip angle) and by the contrast 
agent concentration. Therefore, with a different selection of 
sequence parameters, or a different selection of time points, 
different SER values could be derived, and the diagnostic 
effectiveness of SER may be altered.

Contrast‑enhanced MRI imaging reflects the tumor 
vascular bed and ADC has been demonstrated to correlate 
with tumor cellularity density in breast cancer  (32). The 
present results reveal that diagnostic accuracy is increased 
when the morphological and kinetic features are combined 

Figure 5. Comparison of ROC curves from morphological and kinetic 
analysis, from ADC values, and from combined features. The graph reveals 
that a model incorporating ADC values with morphological and kinetic 
features provides the best discriminative ability (AUC=0.90), compared to 
individual features (AUC=0.68 for morphological features, AUC=0.84 for 
kinetic features, and AUC=0.83 for ADC values). ROC, receiver operating 
characteristic; ADC, apparent diffusion coefficient; AUC, area under curve.

Figure 4. Box plot of ADC values of benign and malignant breast lesions, 
where the data presented as the median ± interquartile range. Malignant 
breast lesions (mean ADC, 1.16x10‑3 mm2/sec) exhibit lower mean ADCs 
than benign lesions (mean, 1.68x10‑3 mm2/sec, P<0.05). ADC, apparent 
diffusion coefficient.
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with the ADC value. This finding suggests that DWI may 
yield information different from and complementary to that 
obtained with DCE‑MRI (33).

Additionally, the mean ADC of malignant lesions (mean, 
1.16x10‑3 mm2/sec; 95% CI, 1.13x10‑3 mm2/sec, 1.20x10‑3 mm2/sec) 
in the present study was significantly lower than that observed 
for benign lesions (P<0.05; mean, 1.68x10‑3 mm2/se; 95% CI, 
1.62x10‑3 mm2/sec; 1.75x10‑3 mm2/sec), which are similar 
results to other studies (11,23). The diagnostic accuracy of 
DW imaging performed in the present study was 0.87, which 
is slightly higher than previous studies (33,34). It may be that 
the current study only evaluates breast mass lesions, while 
the prior studies evaluate MRI‑detected mass and non‑mass 
lesions. Besides, the present DW imaging protocol is different.

There were several limitations to the current study. The 
lesion segmentation was conducted in two‑dimensions and 
high dimensional description is needed to provide rich spatial 
information. However, the segmentation algorithm was based 
on enhanced lesion images, and sequences of two‑dimensional 
images can reflect spatial variations accurately. The present 
study also had technical limitations. The DW examinations 
were acquired with relatively thick slices (5 mm) in order 
to achieve an adequate signal‑to‑noise ratio. Partial volume 
averaging within imaging slices may affect the visibility of a 
number of lesions on DWI. This limitation could be overcome 
by utilizing longer scanning times or by imaging at higher field 
strengths (35). Finally, the current study excluded the non‑mass 
lesions. This is as non‑mass‑like enhancement lesions exhibit 
poorly defined boundaries, which results in difficulty in the 
analysis of morphology. Diagnosis of non‑mass lesions is 
much more challenging. However, kinetics and ADC analysis 
may be applied to characterize non‑mass lesions. The evalua-
tion of non‑mass lesions may be an important next step.

To conclude, it was found that combining ADC with 
quantitative morphology, texture features and kinetic features 
improves the accuracy of characterization of breast lesions that 
present as a mass. These integrated characteristic parameters 
are promising in terms of generating an overall diagnostic 
marker for breast masses, which can achieve high levels of 
diagnostic accuracy.
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