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Abstract. Period circadian regulator (Per)1 and Per2 genes are 
involved in the molecular mechanism of the circadian clock, 
and exhibit tumor suppressor properties. Several studies have 
reported a decreased expression of Per1, Per2 and Per3 genes 
in different types of cancer and cancer cell lines. Promoter 
methylation downregulates Per1, Per2 or Per3 expression in 
myeloid leukemia, breast, lung, and other cancer cells; whereas 
histone deacetylase inhibitors (HDACi) upregulate Per1 or 
Per3 expression in certain cancer cell lines. However, the 
transcriptional regulation of Per1 and Per2 in cancer cells by 
chromatin modifications is not fully understood. The present 
study aimed to determine whether HDACi regulate Per1 and 
Per2 expression in gastric cancer cell lines, and to investigate 
changes in chromatin modifications in response to HDACi. 
Treatment of KATO III and NCI-N87 human gastric cancer 
cells with sodium butyrate (NaB) or Trichostatin A (TSA) 
induced Per1 and Per2 mRNA expression in a dose-dependent 
manner. Chromatin immunoprecipitaion assays revealed that 
NaB and TSA decreased lysine 9 trimethylation on histone H3 
(H3K9me3) at the Per1 promoter. TSA, but not NaB increased 
H3K9 acetylation at the Per2 promoter. It was also observed 
that binding of Sp1 and Sp3 to the Per1 promoter decreased 
following NaB treatment, whereas Sp1 binding increased at 
the Per2 promoter of NaB- and TSA-treated cells. In addition, 
Per1 promoter is not methylated in KATO III cells, while 
Per2 promoter was methylated, although NaB, TSA, and 
5-Azacytidine do not change the methylated CpGs analyzed. 
In conclusion, HDACi induce Per1 and Per2 expression, in 

part, through mechanisms involving chromatin remodeling at 
the proximal promoter of these genes; however, other indirect 
mechanisms triggered by these HDACi cannot be ruled out. 
These findings reveal a previously unappreciated regulatory 
pathway between silencing of Per1 gene by H3K9me3 and 
upregulation of Per2 by HDACi in cancer cells. 

Introduction

Circadian rhythms are biological rhythms with a periodicity 
close to 24 h. In mammals, these rhythms are generated by 
a master biological clock, located in the hypothalamus and 
by clocks localized in peripheral cells (1). At the molecular 
level, circadian clocks are operated by transcriptional/trans-
lational feedback loops involving a set of genes called ‘clock 
genes’ (2,3). Clock genes operate like oscillators, modulating 
rhythmic transcription of a large number of genes in all cells 
by a mechanism that relies on coordinated chromatin remod-
eling events (4,5). Situations that alter the normal expression 
pattern of the clock genes have important repercussions at the 
systemic, cellular and molecular levels (6).

The maintenance of the molecular mechanism of the 
circadian clockwork has a profound influence on human 
health, and its alteration has frequently been associated with 
multiple diseases, including cancer (7-12). Several in vivo 
and in vitro studies suggest that, in addition to their main 
role within the molecular mechanism of the circadian clock, 
Period circadian regulator (Per)1 and Per2 genes can also 
function as tumor suppressors due to their involvement in cell 
proliferation, apoptosis, cell cycle control, and DNA damage 
response (13-22). Targeted ablation of Per2 leads to the devel-
opment of malignant lymphomas (13), whereas its ectopic 
expression in cancer cell lines results in growth inhibition, cell 
cycle arrest, apoptosis, and loss of clonogenic ability (15,18).

Accumulating evidence suggests that deregulation or 
significantly decreased expression of Per1 and Per2 genes in 
humans is associated with increased risk of breast, prostate, 
ovarian, endometrial, pancreatic, colorectal, gastric, liver, skin, 
lung, and head and neck cancers, leukemia, lymphomas, and 
glioma (23-41). Decreased expression of Per1 or Per2 genes 
has been associated with promoter hypermethylation in breast, 
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endometrial, and non-small lung cancer cells (23,27,35). On 
the other hand, treatment of non-small cell lung cancer cells 
and other cancer cell lines with SAHA, an HDACi, induce 
the expression of Per1 gene (35), whereas TSA induced the 
expression of Per3 in myeloid leukemia cells (41); however, the 
role of HDACi on Per2 expression has not been tested, neither 
their role on Per1 and Per2 expression in gastric cancer cells. 
Studies in rodents have shown that histone H3 acetylation is 
of great relevance to maintain the activation and rhythmic 
expression of clock genes in liver cells (42).

Despite this evidence, the transcriptional regulation of Per1 
and Per2 genes by epigenetic modifications is not fully under-
stood, and the role of HDACi on Per1 and Per2 expression in 
gastric cancer cells has not been explored. Therefore, the aim 
of this study was to investigate whether HDACi regulate the 
expression of Per1 and Per2 genes in two human gastric cancer 
cell lines, and to determine histone‑specific modifications in 
response to the HDACi treatment.

Materials and methods

Cell culture and treatments with HDACi. KATO III and 
NCI-N87 human gastric carcinoma cells were acquired from 
ATCC (Manassas, VA, USA). KATO III cells were grown in 
Iscove’s modified Dulbecco’s medium (IMDM) supplemented 
with 20% fetal bovine serum, 0.5% penicillin-streptomycin, 
and 70 mg/l kanamycin. NCI-N87 cells were grown in 
RPMI-1640 supplemented with 10% fetal bovine serum, 
0.5% penicillin-streptomycin and 70 mg/l kanamycin. Both 
cell lines were grown at 37˚C in a humidified 5% CO2/95% 
air atmosphere. Exponentially growing cells were tryp-
sinized and seeded in 6-well plates; when cells reached 
70‑80% confluence by microscopic examination (day 2 or 3 
post-plating), the medium was changed, and sodium butyrate 
(NaB) (1, 2 or 3 mM) or trichostatin A (TSA) (50, 100 or 
150 nM) were added. Cells were treated during 48 or 96 h 
with these reagents, replacing the medium with inhibitors 
every 24 h.

RNA isolation and reverse transcription‑quantitative poly‑
merase chain reaction (RT‑qPCR). KATO III and NCI-N87 
cells treated during 48 or 96 h as described above, were 
washed twice with 1x PBS, then 1 ml of Trizol reagent was 
added to isolate total cellular RNA, according to the manu-
facturer's recommendations (Invitrogen; Thermo Fisher 
Scientific, Inc., Waltham, MA, USA). RNA concentration 
was determined with a NanoDrop 1000 (Thermo Fisher 
Scientific, Inc.), and the RNA integrity by agarose gel elec-
trophoresis.

Total RNA (1 µg) was reverse-transcribed using 200 U 
of M-MLV reverse transcriptase and 50 pmoles of random 
hexamers in a final volume of 20 µl, according to the instruc-
tions provided by the manufacturer (Invitrogen; Thermo 
Fisher Scientific, Inc.).

RT-qPCR reactions were performed in triplicate, 
containing 6 µl of 2x SYBR Green qPCR reaction mix 
(Invitrogen; Thermo Fisher Scientific, Inc.), 1 µl of cDNA 
from each sample, and 5 pmol of each primer (forward 
and reverse) for Per1 or Per2 (Table I), in a final volume 
of 12 µl. RT-qPCR reactions were run as follow: 2 min at 

50˚C, 8.5 min at 95˚C, 40 cycles of 95˚C for 15 sec, 60˚C for 
1 min, followed by a dissociation analysis, in a 7500 thermal 
cycler (Applied Biosystems; Thermo Fisher Scientific, Inc.). 
Reactions with primers for GAPDH and ACTB were used as 
internal control (Table I). The efficiencies of RT‑qPCR reac-
tions were determined with the LinReg program (43), and the 
relative mRNA expression levels were calculated according 
to the method described by Pfaffl (44). The expression of 
Per1 and Per2 genes in control cells, without treatment, was 
considered as one.

Chromatin immunoprecipitation (ChIP) assays. Chromatin 
immunoprecipitation (ChIP) assays were performed as previ-
ously described (45). After cross-linking, cell lysates were 
sonicated on ice, soluble chromatin (equivalent to 50 µg 
of DNA) was pre-cleared with protein A/G plus-agarose 
beads (Santa Cruz Biotechnology, Inc., Dallas, TX, USA) 
and then incubated overnight at 4˚C on a Nutator platform 
with 2 µg of antibodies to H3 modifications (Abcam, 
Cambridge, MA, USA), or with antibodies to Sp1 and Sp1 
(Santa Cruz Biotechnology, Inc.). The immunoprecipitates 
were recovered by incubation with protein A/G agarose 
beads and washed sequentially for 5 min with low-salt buffer, 
high-salt buffer, LiCl wash buffer; and twice with TE buffer. 
Immunoprecipitated DNA was eluted, then incubated for 
30 min at 37˚C with RNase A, followed by overnight incuba-
tion at 55˚C with proteinase K. DNA was reverse cross‑linked 
and extracted with phenol, phenol-chloroform, and chlo-
roform-isoamyl alcohol, then precipitated with ethanol and 
resuspended in 20 µl of H2O. Input samples (equivalent to 
5 µg of DNA) were resuspended in 20 µl of H2O after reversal 
cross-linking and ethanol precipitation. PCR was conducted 
with 1 µl of immunoprecipitates or input samples, 10 µl of 
2x PCR reaction mix (Promega Corporation, Madison, WI, 
USA), 5 pmoles of each primer for the Per1 or Per2 promoter 
(Table I), 1 µl of DMSO, and water up to 20 µl; with the 
following program: 3 min at 95˚C, 30 cycles of 30 sec at 95˚C, 
30 sec at 60˚C, 1 min at 72˚C, and a final extension of 7 min 
at 72˚C. PCR products were separated on 2% agarose gels and 
visualized by ethidium bromide staining with a XR 170-8170 
photo documentation station (Bio-Rad Laboratories, Inc., 
Hercules, CA, USA).

Methylation specific PCR (MS‑PCR). KATO III cells were 
treated with 3 mM NaB or 100 nM TSA for 48 or 96 h with 
5 µM of 5-Aza-2'-deoxycitydine (Aza). Cells were then lysed 
and treated with sodium bisulfite, followed by the DNA 
purification with the kit EZ‑DNA Methylation‑Direct (Zymo 
Research Corp., Irvine, CA, USA), following the directions 
from the manufacturer. Bisulfite‑modified DNA was used to 
perform methylation‑specific PCR (MS‑PCR) using specific 
primers to distinguish methylated and unmethylated forms 
of Per1 and Per2 promoters, as reported (41). PCR reactions 
were conducted with 1 µl of modified DNA, 10 µl of 2x PCR 
mix (Promega Corporation), 5 pmoles of sense and antisense 
primers in a final volume of 20 µl. Cycling parameters were 
as described above, except that the annealing temperature was 
56‑62˚C, according to the Tm of each primer set (41). PCR 
products were separated on 2% agarose gels, visualized and 
documented as described above.
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In silico analysis. In silico analysis to search for potential Sp1 
and Sp3 binding sites at the Per1 and Per2 promoters was done 
using the JASPAR database (46).

Statistical analysis. RT-qPCR data were analyzed by the 
Kruskal‑Wallis test, except those obtained with Aza treatment 
that were analyzed with a U‑Mann Whitney test, as they did 
not fit a normal distribution, whereas data from ChIP assays 
were analyzed with one-way analysis of variance followed by 
a Tukey post-hoc test, using the Statistica 7 software (StatSoft, 
Inc., Tulsa, OK, USA). A P‑value <0.05 was considered signifi-
cant. Plots were done with Sigmaplot 10.0 software (Systat 
Software, San Jose, CA USA).

Results

Treatment of KATO III cells with NaB or TSA induce Per1 
and Per2 mRNA expression. KATO III cells treated with 
2 or 3 mM NaB during 48 h showed a significant increase in 
Per1 mRNA expression, compared to control cells (1.77±0.11, 
and 2.11±0.16 fold higher, respectively; P<0.01; Fig. 1A), and 
with 1, 2 and 3 mM NaB during 96 h (2.89±0.60; 3.79±0.73, 
and 4.84±0.40 fold higher, respectively; P<0.01; Fig. 1B). 
Similarly, a significant induction in Per2 mRNA expression 
was found in KATO III cells treated with 2 or 3 mM NaB 
for 48 h compared to control cells (2.90±0.32 and 3.64±0.49 
fold higher, respectively; P<0.01; Fig. 1C), as well as with 1, 2 

Table I. Primers for reverse transcription-quantitative polymerase chain reaction and promoter analysis of Per1 and Per2 genes.

Gene Genbank accession no. Forward (5'-3') Reverse (5'-3') Position

PER1 NM_002616.2 GGACATGACCTCTGTGCTGA  CATCAGGGTGACCAGGATCT  3,688-3,887
PER2  NM_022817.2 ACAGCTTTGGCTTCTGGTGT TATTGGCCATCATGGTCTGA  4,574-4,774
GAPDH NM_002046.5 GTCAGTGGTGGACCTGACCT TGAGGAGGGGAGATTCAGTG 908-1,307
ACTB NM_001101.3 TCCCTGGAGAAGAGCTACGA AGCACTGTGTTGGCGTACAG 787-980
PER1p - TGTCTCTCCCCTCCTCTCAAa AGATACGCTGCGCCTCTTTAa -437 to -241
PER2p - AGGAACCGACGAGGTGAAC CCGCTGTCACATAGTGGAAA -410 to -217

Primers were designed with Primer3 software, and acorrespond to those reported by Gery et al (35). Per, Period circadian regulator; ACTB, 
β-actin; PER1/2p, Per1 and 2 gene promoter.

Figure 1. NaB induces the mRNA expression of Per1 and Per2 in human KATO III gastric cancer cells. KATO III cells were treated with the indicated concen-
trations of NaB for (A and C) 48 or 96 h (B and D), then Per1 and Per2 mRNA expression was determined by reverse transcription-quantitative polymerase 
chain reaction. Data are reported as mean ± standard deviation of three independent experiments, each performed in triplicate. **P<0.01, as indicated. NaB, 
sodium butyrate; Per, period circadian regulator.
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or 3 mM NaB for 96 h (2.84±0.74; 4.36±1.25 and 8.85±1.03 fold 
higher, respectively; P<0.01; Fig. 1D). Significant differences 
were also found between cells treated with 1 and 3 mM NaB 
for 48- and 96-h (P<0.01).

Experiments performed with 50, 100 or 150 nM TSA, a 
potent and specific class I and IIa HDACi, show increased 
Per1 mRNA expression at 48 h (1.90±0.35; 3.03±0.65 and 
4.12±0.54 fold higher than control untreated cells, respectively; 
P<0.01; Fig. 2A), as well as with 50 or 100 nM TSA for 96 h 
(2.5±0.38 and 4.87±0.58 fold higher than control untreated 
cells, respectively; P<0.01; Fig. 2B). Similarly, significant 
increases in Per2 mRNA expression were found in KATO III 
cells treated with 50, 100 or 150 nM TSA for 48 h compared 
to control untreated cells (2.1±0.32±0.49 and 3±2.3±0.25, 
respectively; P<0.01; Fig. 2C), as well as with 50 or 100 nM 
TSA for 96 h compared to control untreated cells (2.7±0.28; 
3.4±0.33, respectively; Fig. 2D).

Treatment of NCI‑N87 cells with NaB or TSA induce the 
expression of Per1 and Per2 mRNA. With the intention to 
show that the effect observed in KATO III cells was not 
cell line-specific, Per1 and Per2 mRNA expression was 
also analyzed in NCI-N87 cells treated with NaB or TSA 
during 48 or 96 h. The results show a significant increase 
in Per1 mRNA expression in cells treated with 3 mM NaB 
for 48 h (4.46±0.35 fold higher than control untreated cells; 
P<0.01; Fig. 3A). Extending the exposure time to 96 h 
with 2 and 3 mM NaB induced Per1 expression (4.83±0.22 
and 5.54±0.18 fold higher than control untreated cells, 

respectively; P<0.01; Fig. 3B). Significant differences were 
also found in Per2 mRNA expression with 3 mM NaB at 
48 h (2.26±0.17 fold higher than control untreated cells; 
P<0.01; Fig. 3C), and with 2 and 3 mM at 96 h (4.00±0.38 
and 4.89±0.36 fold higher than control untreated cells, 
respectively; P<0.01; Fig. 3D).

On the other hand, treatment of NCI-N87 cells with 50, 
100 or 150 nM TSA for 48 h increases Per1 mRNA expression 
(1.71±0.27; 2.26±0.62, and 3.45±0.41 fold higher than control 
untreated cells, respectively; P<0.01; Fig. 4A); whereas treat-
ment for 96 h show significant increases at 50 and 100 nM TSA 
(5.98±0.27 and 6.19±0.47 fold higher than control untreated 
cells, respectively; P<0.01; Fig. 4B). Similar to the results 
found for Per1, treatment of NCI-N87 cells with 150 nM 
TSA during 48 h induced Per2 mRNA expression (1.89±0.41 
fold higher than control untreated cells, respectively; P<0.01; 
Fig. 4C). This effect was more evident after 96 h of treatment 
with 50 or 100 nM of TSA (2.61±0.19 and 3.4±0.38 fold higher 
than control untreated cells, respectively; P<0.01; Fig. 4D).

Effect of NaB and TSA on histone modifications and Sp1 and 
Sp3 binding to the Per1 and Per2 promoters. We conducted 
ChIP assays with KATO III cells to explore changes in histone 
modifications, in order to understand the mechanism for the 
upregulation of Per1 and Per2 mRNA by NaB and TSA. We 
found that treatment with NaB and TSA decreases H3K9me3 
(P<0.05) at the Per1 promoter, whereas H3K9Ac and H3K4me1 
show no significant changes (Fig. 5A and B). In contrast, 
Per2 promoter shows an increase of H3K9Ac in response to 

Figure 2. TSA induces the mRNA expression of Per1 and Per2 in human KATO III gastric cancer cells. KATO III cells were treated with the indicated concen-
trations of TSA for (A and C) 48 or (B and D) 96 h, then Per1 and Per2 mRNA expression was determined by reverse transcription-quantitative polymerase 
chain reaction. Data are reported as mean ± standard deviation of three independent experiments, each performed in triplicate. **P<0.01, as indicated. Per, 
period circadian regulator; TSA, Trichostatin A.
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Figure 3. NaB induces the mRNA expression of Per1 and Per2 in human NCI-N87 gastric cancer cells. NCI-N87 cells were treated with the indicated concen-
trations of NaB for (A and C) 48 or (B and D) 96 h, then Per1 and Per2 mRNA expression was determined by reverse transcription-quantitative polymerase 
chain reaction. Data are reported as mean ± standard deviation of three independent experiments, each performed in triplicate. **P<0.01, as indicated. NaB, 
sodium butyrate; Per, period circadian regulator.

Figure 4. TSA induces the mRNA expression of Per1 and Per2 in human NCI-N87 gastric cancer cells. NCI-N87 cells were treated with the indicated concen-
trations of TSA for (A and C) 48 or (B and D) 96 h, then Per1 and Per2 mRNA expression was determined by reverse transcription-quantitative polymerase 
chain reaction. Data are reported as mean ± standard deviation of three independent experiments, each performed in triplicate. **P<0.01, as indicated. Per, 
period circadian regulator; TSA, Trichostatin A.
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TSA (P<0.05), while H3K9m3 and H3K4me1 did not change 
compared to untreated cells (Fig. 5C and D). Treatment with 
NaB does not modify the analyzed chromatin marks at the 
Per2 promoter (Fig. 5C and D).

It is known that NaB not only inhibits HDACs, it also acts on 
non-histone targets, such as transcription factors, in particular, 
those of the Sp family. Sp1 and Sp3 have been implicated in 
the mechanism of action of NaB on several promoters (47-51). 
We then conducted an in silico analysis to search for potential 
Sp1 and Sp3 binding sites at the Per1 and Per2 promoters. 
We found four Sp1 and two Sp3 putative binding sites at the 
-437 to -241 region of the Per1 promoter (Fig. 6A), as well 
as two Sp1 and one Sp3 putative binding sites at the -410 to 
-217 region of the Per2 promoter (Fig. 6B). Then we tested for 
changes of Sp1 and Sp3 binding to these promoters in response 
to NaB and TSA treatment. ChIP analysis shows that binding 
of Sp1 and Sp3 decrease at the Per1 promoter in NaB treated 
cells, whereas TSA has no effect. NaB and TSA treatment 
increases Sp1 binding to the Per2 promoter, without affecting 
Sp3 binding (Fig. 6C).

Effect of NaB, TSA, and Aza on the CpG methylation of Per1 
and Per2 promoters. To further understand the transcriptional 
activation of Per1 and Per2 by NaB and TSA we conducted 
MS-PCR to explore changes on CpG methylation at the 
promoters of these genes, as HDACi treatment may decrease 
DNA methylation (52,53). We found that Per1 promoter was not 
methylated at the CpGs detected by the primers, whereas Per2 
promoter was methylated (Fig. 7A). Treatment of KATO III cells 
with NaB, TSA and even Aza does not change the methylation 

status of the CpGs analyzed by the primers at the Per2 promoter 
(Fig. 7B). Interestingly, KATO III cells treated with Aza show a 
modest but significant increase in Per2 mRNA (1.65±0.22 fold 
above untreated cells; P<0.001; Fig. 7C).

Discussion

The circadian system may have an important role in the 
global epigenetic events occurring during carcinogenesis. 
Accumulating evidence indicates that a variety of chromatin 
remodelers contribute to various aspects of the circadian 
epigenome (4,54). This evidence is further supported by gene 
expression and DNA methylation studies at the promoter 
region of clock genes silenced in cancer cells (23,27,35,41).

In this study, we found that treatment of KATO III 
and NCI-N87 human gastric cancer cells with two HDACi 
(NaB or TSA) induce Per1 and Per2 mRNA expression, in a 
dose-dependent manner. Our results are consistent with those 
described by other authors, who used similar treatments to 
induce the expression of Per1 and Per3 genes in cancer cells. 
It has been shown that TSA and 5-Aza-2'-deoxycytidine 
increased Per3 mRNA expression in myeloid leukemia K562 
cells (41). Also, HDAC inhibition by SAHA increased Per1 
gene expression in lung cancer NSCLC cells and other cancer 
cell lines (35). However, the levels of induction obtained in 
our study were higher than those obtained for Per3 in TSA 
treated K562 cells (41), but were lower than those obtained 
with SAHA in H520, H522, Ishikawa, MDA-231, and HCT116 
cells, which were more than 10-fold higher than untreated 
cells (35). This approach has also been used to induce the 

Figure 5. Chromatin immunoprecipitation assays of Per1 and Per2 promoters of KATO III cells treated with NaB or TSA. Chromatin from KATO III gastric 
cancer cells treated with 3 mM NaB or 100 nM TSA for 48 h was immunoprecipitated with the indicated antibodies for H3 modifications. Representative 
agarose gels (2%) showing polymerase chain reaction products amplified with primers to the (A) proximal promoters of Per1 with (B) quantification, or with 
primers to the (C) proximal promoter of Per2 with (D) quantification. Gels from three independent ChIP experiments were analyzed with the program ImageJ 
software version 1.36, and densitometric data for chromatin marks at the Per1 and Per2 promoters are reported in (B) and (D) as mean ± standard deviation, 
respectively. *P<0.05 vs. C. Per, period circadian regulator; C, untreated control; TSA, Trichostatin A; NaB, sodium butyrate; IgG, immunoglobulin G.
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expression of epigenetically silenced tumor suppressor genes 
in cancer cell lines (55-57).

We also found higher effects of NaB and TSA in cells 
treated for 96 h than those treated for 48 h, and larger changes 
of Per1 and Per2 expression were found in KATO III than 
in NCI-N87 cells. It is well established that gene expression 
levels in response to HDACi is highly dependent on the cell 
type (35,45,58). This could explain the differences observed 
between KATO III and NCI-N87 cells.

Inhibition of HDAC activity may play a key role in the 
expression of Per1 and Per2 genes in gastric cancer cells by 
promoting and open chromatin conformation. We found 
that treatment with NaB and TSA decreases H3K9me3, a 
heterochromatin mark, at the Per1 promoter, whereas TSA 
increases H3K9Ac, a mark of euchromatin, at the Per2 
promoter, suggesting that these changes may contribute to 
their transcriptional activation. It is well established that 
H3K9 methylation correlates with transcriptional repression 
of multiple genes (59,60).

Enhanced acetylation of H3 and H4 at the Per1 promoter 
correlate with its transcriptional activation phase in mouse 
tissues (4,42,61), whereas di- and tri-methylation of H3K27 at 
the promoters of Per1 and Per2 correlate with transcriptional 
repression (62). A previous study has also shown that SAHA 
induced Per1 expression by increasing H3 acetylation at the 

Per1 promoter of NSLC cells (35). We did not find an increase 
of H3K9Ac at the Per1 promoter in NaB or TSA treated 
KATO III cells, but we found a decrease of H3K9 trimethyl-
ation. We cannot rule out the possibility that other residues in 
H3, such as K27, or in H4 could increase their acetylation in 
response to NaB or TSA.

Our data also demonstrate that NaB induced higher mRNA 
levels than TSA in both cell lines. NaB not only inhibits 
HDACs, it also acts on non-histone targets, such as Sp1 and 
Sp3 transcriptional factors, who have been implicated in the 
mechanism of action of NaB on several promoters (47-51). 
Our in silico analysis predicted Sp1 and Sp3 binding sites at 
the Per1 and Per2 promoters, thus we tested for changes in 
binding of these factors by ChIP assays. We found decreased 
Sp1 and Sp3 binding to the Per1 promoter in response to 
NaB, but not to TSA, whereas Sp1 binding increased at the 
Per2 promoter in response to NaB and TSA. This suggests 
that, Sp1 and Sp3 could negatively regulate Per1 expression, 
while Sp1 recruitment could contribute to the upregulation 
of Per2 in KATO III cells. Most studies have shown that 
NaB induce transcriptional activation by enhancing Sp1 and 
Sp3 binding to gene promoters (47-50); however, others have 
shown the opposite effect (51). NaB down-regulates neuro-
pilin 1 (NRP1) expression and was associated with decreased 
binding of Sp1 to the NRP1 promoter (51). On the other hand, 

Figure 6. Binding of Sp1 and Sp3 transcription factors to the Per1 and Per2 promoters of NaB and TSA treated KATO III cells. (A and B) In silico analysis, 
using the JASPAR database (70), of (A) Per1 and (B) Per2 promoters showing putative Sp1 and Sp3 binding sites. (C) Chromatin from KATO III cells treated 
with NaB and TSA, as described in Fig. 5, was immunoprecipitated with Sp1 or Sp3 antibodies then was subjected to polymerase chain reaction with primers 
for Per1 or Per2 promoters, and fragments were separated on 2% agarose gels. Per, period circadian regulator; TSA, Trichostatin A; NaB, sodium butyrate.
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Sp1 down-regulates STC1 gene expression in HT-29 cells 
treated with TSA, by forming a complex with the retinoblas-
toma protein (63). Sp1 and Sp3 also interact with c-Myc to 
repress p21 promoter (64). Additionally, Sp1 was able to acti-
vate and to repress the thymidine kinase promoter in mouse 
3T3 fibroblasts. This ambivalence of Sp1 as a transcriptional 
modulator lies on the interaction with other proteins, when 
it interacts with HDAC1 acts as a transcriptional suppressor, 
whereas when interacts with E2F1-3 promotes transcriptional 
activation (65). However, further experiments are needed to 
fully understand the possible role of Sp1 and Sp3 on Per1 
transcriptional regulation, mediated by NaB or TSA.

Some studies have shown that HDACi treatment may 
reverse CpG methylation at gene promoters, leading to 

transcriptional activation (52,53), thus we tested this possi-
bility. Our results show that Per2 promoter was methylated, 
whereas Per1 promoter was not methylated. The methylation 
of the CpGs recognized by the primers at the Per2 promoter 
did not change in response to NaB or TSA, neither in cells 
treated with 5-Aza. However, treatment with Aza induced 
a modest Per2 mRNA expression. It will be necessary to 
conduct DNA sequencing with bisulfite modified DNA, 
in order to determine if other CpGs are methylated at the 
promoter of these genes, and whether NaB, TSA or Aza may 
modify the pattern.

We cannot rule out the possibility that other mechanisms 
could indirectly mediate Per1 and Per2 upregulation in 
response to HDACi. Possibly by inducing transcription factors 
that bind to regulatory elements, which in turn could activate 
Per1 or Per2 promoters. Promoter analysis and promoter 
reporter constructs have shown important transcription factor 
binding sites that activate Per1 or Per2 expression, like E-boxes, 
CRE-elements, CAAT-boxes, C/EBP, and others (15,66-68). 
Acetylation of BMAL1, mediated by the intrinsic HAT activity 
of CLOCK could be involved in the induction of expression 
of Per1 and Per2 genes (69,70), by recruiting co-activating 
proteins such as P300 to the promoters of Per1 and Per2 genes, 
as previously described (42). However, further experiments are 
needed to fully understand the transcriptional regulation of 
these genes in gastric cancer cells.

In conclusion, the results presented in this work demon-
strate that inhibition of HDACs with NaB or TSA induce the 
expression of Per1 and Per2 genes in KATO III and NCI-N87 
gastric cancer cells, through changes in chromatin modifica-
tions at Per1 and Per2 proximal promoters, as well as changes 
of Sp3 and/or Sp1 binding to the Per1 and Per2 promoters. 
Changes in epigenetic modifications of Per1 and Per2 could 
disrupt other clock genes, as well as a web of genes and cellular 
pathways under circadian control. Further experiments will 
be necessary to address these issues. The understanding of 
changes in the epigenome of cancer cells could contribute to 
the development of new cancer therapies, and HDACi offer an 
excellent alternative.
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