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Abstract. MicroRNA (miRNA) is a class of non‑coding 
single‑stranded RNA, able to regulate tumor‑associated genes 
via binding the 3'‑UTR of the target gene mRNA. Previous 
publications have demonstrated that miRNA‑218 (miR‑218) 
acts as a tumor‑suppressive miRNA in various types of 
human cancer, including prostate cancer (PCa). However, 
the role of miR‑218 in regulating PCa cell stemness and 
epithelial‑mesenchymal transition remains unknown and 
requires further research. In the present study, it is demonstrated 
that miR‑218 was downregulated in 2 PCa cell lines and could 
suppress cell migration, EMT and the exhibition of cancer stem 
cell‑like properties. The expression of GLI family zinc finger 1 
(Gli1) was inhibited by miR‑218 overexpression, suggesting 
miR‑218‑suppression of Gli1 as a potential mechanism for 
the tumor‑suppressive effect of miR‑218. Overall, the results 
indicate that miR‑218 served a critical role in the inhibition of 
PCa development. This may provide new insight for elucidating 
the mechanisms of PCa oncogenesis and suggests that miR‑218 
may be a novel therapeutic target for PCa.

Introduction

Prostate cancer (PCa) is the most common form of cancer 
among males in developed countries, with an estimated 648,400 
new cases and 136,500 mortalities in 2008  (1). Currently, 
androgen‑deprivation therapy is a key treatment for metastatic 
PCa. However, many patients develop castration‑resistant 
PCa, which is a major cause of male mortality in developed 
countries (2). Further research is urgently required to develop 
more effective therapies for this disease.

MicroRNA (miRNA) is a class of non‑coding single‑stranded 
RNA that regulates tumor‑associated genes via binding the 
3'‑UTR of target gene mRNA (3‑5). Previous research has 
reported that miRNAs (miRs) serve important roles in human 
cancer biological processes, including initiation, development, 
migration and metastasis (6‑8). In terms of the development of 
PCa, miR‑34a inhibits prostate cancer stem cell (CSC) features 
and metastasis by directly repressing CD44 (9). Upregulation 
of miR‑132/212 expression inhibits TGF‑β‑mediated epithe-
lial‑mesenchymal transition (EMT) of PCa cells by targeting 
SOX4  (10). Tumor‑suppressive miR‑29 inhibits cancer cell 
migration and invasion via targeting LAMC1 in PCa  (11). 
Previous studies have also reported that miR‑218 serves a 
tumor‑suppressive role in PCa. However, the role of miR‑218 
in regulating PCa stemness and EMT remains uncharacterized.

In the present study, the expression of miR‑218 in PCa 
cell lines was investigated, and the impact of miR‑218 on 
tumor migration, EMT and CSC properties in PCa was 
investigated in vitro. The results demonstrate that miR‑218 
was downregulated in PCa cell lines and was able to suppress 
PCa cell migration, EMT and cancer stem cell properties. 
The expression of Gli1 was inhibited by miR‑218 overexpres-
sion, suggesting a role for this protein in the mechanism 
of tumor‑suppression of miR‑218 in PCa. Altogether, the 
present study indicates that miR‑218 served a critical role 
in inhibiting PCa development, providing new insights into 
clarifying the potential mechanisms of PCa oncogenesis and 
revealing that miR‑218 may be a novel therapeutic target for 
PCa.

Materials and methods

Cell lines and cell culture. PCa cell lines LNCaP and C4‑2 
were obtained from the American Type Culture Collection 
(Manassas, VA, USA). BPH‑1 cells were provided by 
Dr Jer‑Tsong Hsieh (University of Texas Southwestern Medical 
Center, Dallas, TX, USA). These three cell lines were cultured 
in RPMI‑1640 medium (Gibco; Thermo Fisher Scientific, 
Inc., Waltham, MA, USA) with 10% fetal bovine serum (FBS; 
Hyclone; GE Healthcare Life Sciences, Logan, UT, USA) in a 
humidified chamber at 37˚C in 5% CO2.

Reverse transcription‑quantitative polymerase chain reaction 
(RT‑qPCR) analysis. Total RNA was extracted from harvested 
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cells using TRIzol (Thermo Fisher Scientific, Inc.) and reverse 
transcribed to cDNA using the miScript II RT kit (Qiagen 
GmbH, Hilden, Germany), according to the manufacturers' 
protocols. The CFX96 PCR system (Bio‑Rad Laboratories, 
Inc., Hercules, CA, USA) with SYBR‑Green PCR Master 
Mix (Takara Bio, Inc., Otsu, Japan) was used to detect the 
transcriptional expression of miR‑218. The thermocycling 
conditions were as follows: 95˚C for 30  sec, followed by 
40 cycles at 95˚C for 5 sec, and then 60˚C for 30 sec. U6 was 
used as an internal control, and relative gene expression was 
calculated using the 2‑ΔΔCq method (12). The primer sequences 
used were as follows: miR‑218 forward, 5'‑CGA​GTG​CAT​TTG​
TGC​TTG​ATC​TA‑3' and reverse, 5'‑TAA​TGG​TCG​AAC​GCC​
TAA​CGT​C‑3'; U6 forward, 5'‑CTC​GCT​TCG​GCA​GCA​CA‑3' 
and reverse, 5'‑TGG​TGT​CGT​GGA​GTC​G‑3'.

Lentivirus transfection. LNCaP and C4‑2 cells were seeded 
and cultured for 24 h and to 40‑50% confluence. The lentiviral 
vector 3 (LV3)‑miR‑218, constructed by GenePharma Co., 
Ltd. (Shanghai, China), was used to transfect cells in an over-
night incubation. LV3 scrambled lentiviral vector (LV3‑NC; 
GenePharma Co., Ltd.) was used as a negative control. At 48 h 
after infection, the stable clones were maintained by puro-
mycin (2‑3 µg/ml; Sigma‑Aldrich; Merck KGaA, Darmstadt, 
Germany)‑resistant culturing.

Transwell migration assay. Complete growth medium 
(RPMI‑1640 with 10% FBS, 1 ml) was added to each lower 
chamber as a chemoattractant. Transwell inserts with a pore 
diameter of 8‑µm were used (Millipore; Merck KGaA). 
Cells, suspended in serum‑free medium at 5‑8x104 cells/ml, 
were seeded into the upper chamber at 400 µl/well. After an 
incubation of 20 h, the upper surface of the insert was wiped 
and cells that had migrated to the lower surface were fixed 
using 4% paraformaldehyde for 30  min and stained with 
0.1%  crystal violet for 20  min at room temperature. Cell 
number was counted in 6 random fields per well (magnifica-
tion, x200).

Western blot assay. Cells were washed 3 times in PBS before 
the protein was extracted using radioimmunoprecipitation 
assay buffer [50 mM Tris (pH 8.0), 150 mM NaCl, 0.1% SDS, 
1%  NP‑40 and 0.5%  sodium deoxycholate] with protease 
inhibitors. The concentration of protein was detected by 
Bradford assay protein quantitation kit (Abcam, Cambridge, 
UK). Proteins (30 µg) were separated by 12% SDS‑PAGE and 
transferred into nitrocellulose membranes. Following blocking 
in 5% skim milk at room temperature for 1 h, the membranes 
were incubated with primary antibodies at 4˚C overnight. 
Primary antibodies used were as follows: GAPDH (1:10,000; 
cat. no. KC‑5G4; Kangchen Bio‑tech Co., Ltd., Shanghai, 
China); E‑cadherin (1:1,000; cat. no.  sc‑8426; Santa Cruz 
Biotechnology, Inc., Dallas, TX, USA); Vimentin (1:200; cat. 
no. sc‑6260; Santa Cruz Biotechnology, Inc.); CD44 (1:800; 
cat. no. 3570; Cell Signaling Technology, Inc., Danvers, MA, 
USA); Oct4 (1:500; cat. no. ab18976; Abcam); Nanog (1:200; 
cat. no. ab21624; Abcam); and Gli1 (1:1,000; cat. no. 2643; 
Cell Signaling Technology, Inc.). The membranes were then 
washed in Tris‑buffered saline with 0.1% Tween and incubated 
with horseradish peroxidase‑conjugated secondary antibodies 

[goat anti‑rabbit IgG (1:2,000; cat. no. ZB‑2301); and goat 
anti‑mouse IgG (1:2,000; cat. no. ZB‑2305) (all from OriGene 
Technologies, Inc., Beijing, China) for 1 h at room tempera-
ture. Protein bands were visualized using a Molecular Imager 
ChemiDoc XRS System (Bio‑Rad Laboratories).

Colony‑forming and tumor sphere formation assays. For 
the colony‑forming assay, 2x103 cells were seeded into each 
well of a 6‑well plate and incubated for 10‑14 days. Following 
3 washes in PBS, cells were fixed using 4% paraformaldehyde 
for 30 min at room temperature and stained with 0.1% crystal 
violet for 20 min at room temperature. The tumor sphere 
formation assay was performed by seeding 1x104 cells to each 
well of low‑adhesion 6‑well plate in serum‑free Dulbecco's 
modified Eagle/F12 medium supplemented with 20 ng/ml 
epidermal growth factor, 10 ng/ml basic fibroblast growth 
factor and 2% B27 (all Invitrogen; Thermo Fisher Scientific, 
Inc.). After 2 weeks, plates were analyzed for tumor sphere 
formation using an inverted microscope (magnification, x200).

Statistical analysis. All statistical analysis was performed 
using GraphPad Prism version  6.0 (GraphPad Software, 
Inc., La Jolla, CA, USA). Differences between 2 groups 
were compared using the Student's t‑test. For comparisons of 
≥3 groups, one‑way analysis of variance followed by Tukey's 
post hoc test was used. P<0.05 was considered to indicate a 
statistically significant difference.

Results

miR‑218 expression is downregulated in PCa cells. RT‑qPCR 
was performed to compare the expression of miR‑218 in PCa 
cells with that in healthy prostate epithelial cells. This revealed 
that the expression of miR‑218 was notably downregulated in 
PCa cell lines, LNCaP and C4‑2, compared with the normal 
prostate epithelial cells (BPH‑1; Fig. 1A).

Construction of miR‑218‑overexpressing PCa cells. In order 
to reveal the effects of miR‑218 on PCa migration, EMT and 
CSC properties, miR‑218‑overexpressing LNCaP/C4‑2 cells 
were constructed by transfecting the cells with LV3‑miR‑218 
lentiviral vectors. Subsequently, cells were analyzed by 
RT‑qPCR to confirm miR‑218‑overexpression (Fig. 1B).

Overexpression of miR‑218 inhibits PCa cell migration and 
EMT. The Transwell migration assays demonstrated that the 
migration of LNCaP/C4‑2 cells was suppressed by miR‑218 
overexpression (Fig. 2). Western blotting of EMT markers 
demonstrated that miR‑218 overexpression caused a slight 
increase in the expression of E‑cadherin and a significant 
decrease in the expression of vimentin (Fig. 3A). These results 
suggest that overexpression of miR‑218 inhibits PCa cell 
migration and EMT.

Overexpression of miR‑218 diminishes PCa cell stemness 
properties. Protein expression profiling of cancer stemness 
markers was performed by western blotting. The results indicate 
that overexpression of miR‑218 downregulated the expression 
of CD44, Oct4 and Nanog (Fig. 3B). Colony forming assays 
were performed to assess the self‑renewal capacity of PCa 
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cells. It was demonstrated that the miR‑218‑overexpressing 
LNCaP cells formed fewer and smaller colonies than the 
control cells (Fig. 4A). Similar results were obtained from 
the clonogenic assay performed in C4‑2 cells (Fig.  4B), 
indicating that miR‑218 may serve a critical role in tumor 
growth inhibition. The tumor sphere formation assay is well 
established for measuring the self‑renewing capability of 
stem cells. In these experiments, the control cells generated 
more tumor‑spheres than the miR‑218‑overexpressing cells 
in both cell lines (Fig. 4C and D). Therefore, these results 
suggest that overexpression of miR‑218 diminished PCa cell 
stemness properties.

Gli1 expression is downregulated by miR‑218 overexpression. 
Numerous studies have indicated that the Hedehog‑Gli 

signaling pathway serves a critical role in cancer cell EMT 
occurrence and CSC generation (13‑15). In the preset study, 
western blot analysis indicated that the expression of Gli1 
was inhibited by miR‑218 overexpression (Fig. 5), indicating 
that miR‑218 suppression of Gli1 may be a mechanism for the 
anticancer effect of miR‑218 in PCa.

Discussion

Advances have been made in PCa diagnosis and treatment 
in recent years (16). However, management of PCa remains a 
challenge. It has been widely reported that EMT and CSCs are 
critical for cancer initiation and development (17‑21). However, 
the molecular mechanisms by which EMT and CSCs execute 
their effects require further investigation.

Figure 2. The effects of miR‑218 on the migratory capability of prostate cancer cells. (A) The migration of LNCaP cells was suppressed by miR‑218 overexpres-
sion. (B) A similar result was observed of C4‑2 cells. These data are representative of 3 independent experiments (magnification, x200). *P<0.05 vs. LV3‑NC. 
miR‑218, microRNA‑218; LV3, lentivirus vector 3; NC, negative control.

Figure 1. The expression of miR‑218 in prostate cancer cells and construction of miR‑218 overexpressing prostate cancer cells. (A) reverse transcription‑quan-
titative polymerase chain reaction analysis (normalized using U6) demonstrates the significant downregulation of miR‑218 expression in prostate cancer cells 
compared with the ‘normal’ prostate epithelial cells. *P<0.05 vs. BPH‑1. (B) Validation of the miR‑218‑overexpressing prostate cancer cell lines. These data 
are representative of 3independent experiments. *P<0.05 vs. control. miR‑218, microRNA‑218.
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Previous studies have demonstrated that miRNAs serve 
important roles in human cancer biological processes, including 
initiation, development, migration and metastasis  (22‑26). 
miR‑218 can act as a tumor suppressor and is downregulated 

in various types of human cancer (27‑31). miR‑218 can inhibit 
cancer cell proliferation, invasion, migration, EMT, lymph 
node metastasis and self‑renewal in glioma, cervical cancer, 
gastric cancer and bladder cancer, among others  (32‑36). 
One study indicated that miR‑218 expression is decreased in 
PCa, and impedes IL‑6‑induced PCa cell proliferation and 
invasion via suppression of LGR4 expression (37). miR‑218 
has also been demonstrated to inhibit PCa cell growth and 
promote apoptosis by repressing TPD52 expression (38), as 
well as inhibit PCa cell migration and invasion via targeting 
LASP1 (39). We hypothesize that miR‑218 may also inhibit 
PCa cell migration, EMT and CSC properties. However, the 
underlying role of miR‑218 in regulating PCa stemness main-
tenance and EMT is poorly characterized at present.

In the present study, the expression of miR‑218 was notably 
downregulated in PCa cells and the LNCaP/C4‑2 cell constructs 
overexpressing miR‑218 indicated that miR‑218 inhibited PCa 
cell migration. Results of western blotting revealed that the 
overexpression of miR‑218 downregulated the expression of 
vimentin, CD44, Oct4 and Nanog. In colony‑forming assays, 
miR‑218‑overexpressing cells formed fewer and smaller 
colonies than the control cells. Consistently, the control cells 
generated more tumor‑spheres than miR‑218‑overexpressing 
cells, suggesting that overexpression of miR‑218 inhibited 
PCa stemness properties. Copious evidence has indicated 
that the Hedgehog‑Gli signaling pathway serves a critical role 
in cancer cell EMT and CSC generation (13‑15,40). In the 
present study, the expression of Gli1 was inhibited by miR‑218 

Figure 4. Overexpression of miR‑218 suppressed the growth and self‑renewal 
capacities of prostate cancer cells. (A)  In colony‑forming assays, 
LNCaP‑LV3‑miR‑218 cells formed fewer and smaller colonies compared 
with LV3‑NC control cells. (B) A similar observation was made of C4‑2 cells. 
(C) Tumor sphere formation assay was used to measure the self‑renewing 
ability of cells. The LV3‑NC control cells generated more tumor‑spheres than 
LV3‑miR‑218 cells in LNCaP cells and (D) C4‑2 cells (magnification, x200). 
These data are representative of 3 independent experiments. miR‑218, 
microRNA‑218; LV3, lentivirus vector 3; NC, negative control.

Figure 5. Western blot analysis demonstrated that overexpression of miR‑218 
reduced the protein expression of Gli1 in (A) LNCaP cells and (B) in C4‑2 
cells. These data are representative of 3 independent experiments. miR‑218, 
microRNA‑218; Gli1, Gli family zinc finger 1; LV3, lentivirus vector 3; 
NC, negative control.

Figure 3. Effects of miR‑218 on epithelial‑mesenchymal transition and cancer stem cell biomarker expression in prostate cancer cells. (A) Western blot analysis 
revealed that the overexpression of miR‑218 increased the expression of E‑cadherin and decreased the expression of Vimentin (EMT biomarkers markers). 
(B) Western blot analysis also revealed that the overexpression of miR‑218 downregulated the expression of cluster of differentiation 44, octamer‑binding 
protein 4 and Nanog (stemness biomarkers). These data are representative of 3 independent experiments and GADPH was used as a loading control. miR‑218, 
microRNA‑218; LV3, lentivirus vector 3; NC, negative control; CD44, cluster of differentiation 44; Oct 4, octamer‑binding protein 4.



ONCOLOGY LETTERS  16:  1821-1826,  2018 1825

overexpression. This indicates that miR‑218 suppression of 
Gli1 may serve in the mechanism by which miR‑218 inhibits 
EMT and stemness maintenance in PCa.

The regulatory mechanisms of human CSC maintenance 
and EMT are very complex. If miR‑218 targets Gli1 by binding 
its 3'‑UTR, or other molecular mediators between miR‑218 
and Gli1, the mechanism requires further investigation. In 
conclusion, the present study indicates that miR‑218 served a 
critical role in inhibiting the migration, EMT and CSC proper-
ties of PCa cells. This provides a new insight for clarifying the 
potential mechanisms of PCa oncogenesis, and indicates that 
miR‑218 may be a potential therapeutic target for PCa.
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