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Abstract. In the present study, the effects of microRNA‑29a 
(miRNA‑29a) on colon cancer cell viability and the molecular 
mechanisms underlying the effects were investigated. The 
expression of miRNA‑29a in colon cancer serum samples was 
notably downregulated, compared with in the normal group. 
First, miRNA‑29a mimic was used to increase the expression 
of miRNA‑29a in HCT‑116 cells. Furthermore, upregulation 
of miRNA‑29a suppressed cell viability, increased lactate 
dehydrogenase levels and apoptosis, and promoted caspase‑3/9 
activities and B‑cell lymphoma 2‑associated X protein and 
phosphatase and tensin homolog (PTEN) protein expression in 
colon cancer cells. Furthermore, upregulation of miRNA‑29a 
decreased phosphoinositide 3‑kinase, phosphorylated 
(p)‑protein kinase B (Akt) and p‑glycogen synthase kinase 3β 
(GSK3β) protein expression and suppressed the Wnt/β‑catenin 
signaling pathway in colon cancer cells. The results of the 
present study verified that the protective effects of miRNA‑29a 
suppress the PTEN/Akt/GSK3β and Wnt/β‑catenin signaling 
pathways in colon cancer.

Introduction

Colon cancer is one of the primary malignant tumor types in the 
digestive system, with the highest incidence rate in developed 
countries, of which the total number of mortality (650,000) 
ranked second in China in 2012 (1). With the improvement in 
living standards, changes in diet, aging of the population and 
the census of colon cancer, colon cancer has been identified 
to exhibit an increasing trend in incidence in China in 2010, 
and is a serious threat to the health of the population (1). The 
survival and prognosis of patients with colon cancer depends 
on the time at which the tumor is detected (2). However, for 

>57% patients, the cancer has already metastasized upon 
diagnosis (1). In the last 20 years, a large number of studies 
regarding colon cancer have demonstrated favorable progress 
in the diagnosis and treatment, and the 5‑year survival rate 
for the patients with an early stage of colon cancer is ~90%; 
however, the overall survival rate of the patients with advanced 
and metastatic colon cancer has not been increased signifi-
cantly, at only 15% (1).

microRNAs (miRNAs) are a class of short (typically 
between 17 and 25 nucleotides) non‑coding single‑stranded 
RNAs, which are evolutionarily conservative (3). miRNAs 
serve an important regulatory function in cell metabolism, 
proliferation, differentiation, apoptosis and other biological 
processes involved in viral infections, as well as the occur-
rence, diagnosis and treatment of cardiovascular disease, nerve 
and muscle disorders and numerous other aspects (4). miRNAs 
also serve an important function in tumor biology, including 
tumor evolution, invasion, metastasis and angiogenesis (5).

Studies on the function of miRNA in diagnosis of cancer 
are based on the miRNA expression marks, i.e. miRNA expres-
sion profile studies (6). miRNA expression profiles consist of 
determining different miRNA expression levels in multiple 
tumor samples (7). Previous studies have demonstrated that 
miRNA expression profiles are able to identify the tumor type, 
the staging and the other clinical characteristics, in addition to 
distinguishing between tumor and normal tissues, by which a 
variety of tumor and normal tissue samples may be analyzed 
systematically (8,9). The diagnostic accuracy rate of a tumor 
based on specific miRNA expression profiles is ≤70% (8).

With an improved understanding of the cancer patho-
genesis at the molecular level, an increasing number of 
tumor‑associated signaling pathways have been identified, and 
the phosphatase and tensin homolog (PTEN)/phosphoinositide 
3‑kinase (PI3K)/protein kinase B (Akt) signaling pathway is 
important (10). Gene expression of members of this pathway 
has been proved to be one of the most important prognostic 
markers for lung, breast and kidney cancer (11). To the best 
of our knowledge, there have been relatively few studies in 
this area regarding colon cancer, therefore research on the 
PTEN/PI3K/Akt signaling pathway is expected to lead to an 
improved understanding of the occurrence, individualized 
treatment and prognosis of colon cancer (10).

It has been indicated in previous research that glycogen 
synthase kinase 3β (GSK3β) is the major regulatory enzyme for 
numerous intracellular signal transduction pathways, including 
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Wnt/β‑catenin and nuclear factor‑κB (12). It is able to partici-
pate in regulating cell proliferation and apoptosis by affecting 
the downstream nuclear transcription factor (13). However, the 
effect of GSK3β and GSK3β inhibitor on the biological char-
acteristics of tumor cell remains controversial (13). GSK3β is 
the major regulatory enzyme of numerous intracellular signal 
transduction pathways (14). Regulating GSK3β activity is able 
to affect the growth and apoptosis of different tumor types, 
including colon, lung and breast cancer (15); however, experi-
ments on the effect of regulating GSK3β activity on tumor cell 
proliferation have led to contrasting results (12‑15).

The Wnt/β‑catenin signaling pathway is associated with 
tumor development (15). In breast, liver, stomach, thyroid, lung 
and prostate cancer, as well as melanoma and other malignant 
tumor types, the abnormal activation of the Wnt/β‑catenin 
signaling pathway and the downregulation of expression or 
the inactivation of the pathway inhibitory proteins, such as 
Dickkopf Wnt signaling pathway inhibitor 1 (DKKI) or Wnt 
inhibitory factor 1 (WIF), have been determined  (15,16). 
The abnormal activation of the pathway is an early event in 
colorectal cancer, and also indicates its importance in develop-
ment. The effects of miRNA‑29a on colon cancer cell viability 
and the molecular mechanisms underlying the effects were 
investigated.

Materials and methods

Ethics statement. Serum samples from 12 patients (mean 
age 63.5±5.5 years, age range 58‑69 years old, all male) 
and 6 normal healthy volunteers (mean age 60±7 years, age 
range 53‑67 years old, all male) were obtained from General 
Surgery at June 2016 to July 2016, Beijing Chao‑Yang 
Hospital, Capital Medical University (Beijing, China) and 
were stored at ‑70˚C. The present study was approved by 
the Ethical Board of Beijing Chao‑Yang Hospital, Capital 
Medical University. Written informed consent was provided 
by all patients and healthy volunteers for the use of their 
samples.

RNA isolation and quantification of mRNA expression. 
Total RNA was isolated from serum samples and HCT‑116 
(purchased from the Type Culture Collection of the Chinese 
Academy of Sciences, Shanghai, China) using TRIzol® 
(Invitrogen; Thermo Fisher Scientific, Inc., Waltham, MA, 
USA). RNA (1 µg) was used for cDNA synthesis using a 
PrimeScript First Strand cDNA Synthesis kit (Takara Bio, 
Inc., Otsu, Japan). The reverse transcription‑quantitative 
polymerase chain reaction (RT‑qPCR) was performed 
using Power SYBR® Green PCR Master Mix (Invitrogen; 
Thermo Fisher Scientific, Inc.) using an ABI7700 system. 
PCR amplification was performed at 95˚C for 3 min prior 
to 40 cycles of 95˚C for 30 sec, 58˚C for 30 sec and 72˚C for 
60 sec, followed by a final incubation at 72˚C for 5 min. The 
primers for miRNA‑29a were: 5'‑GAG​GAT​CCC​C​TCA​AGG​
ATA​CCA​AGG​GAT​GAA​T‑3' (forward) and 5'‑CTT​CTA​
GAA​GGA​GTG​TTT​CTA​GGT​TCC​GTCA‑3' (reverse). The 
primers for U6 were: 5'‑CTC​GCT​TCG​GCA​GCA​CAT​ATA​
C‑3' (forward) and 5'‑GGA​ACG​CTT​CAC​GAA​TTT​GC‑3' 
(reverse). Relative miRNA‑29a expression was calculated 
using the 2‑∆∆Cq method (17).

Cell culture and transfection. The HCT‑116 cells were 
cultured in RPMI‑1640 medium (Gibco; Thermo Fisher 
Scientific, Inc.) supplemented with 10% fetal bovine serum 
(HyClone; GE Healthcare Life Sciences, Logan, UT, USA) at 
37˚C in a humidified atmosphere containing 5% CO2. A total 
of 100 ng Negative control (5'‑CCC​CCC​CCC​C‑3') and 100 ng 
miRNA‑29a mimic (5'‑ATG​ACT​GAT​TTC​TTT​TGG​TG‑3') 
were transfected into cells using Lipofectamine® RNAiMax 
reagent (Invitrogen; Thermo Fisher Scientific, Inc.).

Cell viability assay and lactate dehydrogenase (LDH) 
activity. Cells were plated at [(1‑2)x103 cells/well] in 96‑well 
plates, incubated overnight and transfected with negative 
control and miRNA‑29a mimic at 37˚C. After 24, 48 and 
72 h, cell viability were determined using an MTT assay 
(Sigma‑Aldrich; Merck KGaA, Darmstadt, Germany) at 37˚C 
for 4 h. Dimethylsulfoxide was added to dissolve the resultant 
formazan crystals. Absorbance at 492 nm was determined 
using a NanoDrop ND‑1000 spectrophotometer (NanoDrop 
Technologies; Thermo Fisher Scientific, Inc., Pittsburg, PA, 
USA).

Cells were plated at [(1‑20x103  cells/well] in 96‑well 
plates, incubated overnight at 37˚C and transfected with 
negative control and miRNA‑29a mimic. After 48  h, the 
LDH activity of cells was determined using LDH activity kits 
(C0016; Beyotime Institute of Biotechnology, Haimen, China). 
Absorbance at 450 nm was determined using a NanoDrop 
ND‑1000 spectrophotometer.

Apoptosis assay and caspase 3/9 activity assay. Cells were 
plated at [(1‑2)x106 cells/well] in 6‑well plates, incubated over-
night and transfected with negative control and miRNA‑29a 
mimic at 37˚C. After 48  h, cells were stained with 5  µl 
annexin V‑FITC and 10 µl propidium iodide (BD Biosciences, 
Franklin Lakes, NJ, USA) for 30 min at 37˚C. Apoptotic cells 
were measured using a Flow Cytometer (c6; BD Biosciences, 
Franklin Lakes, NJ, USA) and analyzed using Flowjo 7.6.1 
software (FlowJo LLC, Ashland, OR, USA). Cells were 
plated at [(1‑2)x106 cells/well] in 6‑well plates, incubated 
overnight at 37˚C and transfected with negative control and 
miRNA‑29a mimic. After 48 h, total protein extracts were 
prepared by lysing cells in Cell Lysis buffer (Cell Signaling 
Technology, Inc., Danvers, MA, USA). Protein concentrations 
in the lysates were determined using a bicinchoninic acid 
(BCA) protein assay kit (Pierce; Thermo Fisher Scientific, 
Inc.). Protein extracts (50 µg) were incubated with caspase‑3 
(C1116) and caspase‑9 activity kits (C1158; Beyotime Institute 
of Biotechnology) for 1 h at 37˚C. Absorbance at 405 nm was 
determined using a NanoDrop ND‑1000 spectrophotometer.

Western blot analysis. Total protein extracts were prepared 
by lysing cells in Cell Lysis buffer. Protein concentrations 
in the lysates were determined using a BCA protein assay 
kit (Pierce; Thermo Fisher Scientific, Inc.). Protein extracts 
(50 µg) were separated by SDS‑PAGE (8‑12% gel) and trans-
ferred onto nitrocellulose membranes. The membranes were 
incubated with primary antibodies against B‑cell lymphoma 
2‑associated X protein (Bax; 1:500; cat. no. sc‑6236), PTEN 
(1:500; cat. no. sc‑6817‑R), phosphorylated (p)‑Akt (1:300; 
cat. no. sc‑7985‑R), p‑GSK3β (1:300; cat. no. sc‑81496), Wnt 
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(1:500; cat. no. sc‑13962), β‑catenin (1:500; cat. no. sc‑515105) 
and GAPDH (1:500; cat.  no.  sc‑25778) (all Santa Cruz 
Biotechnology, Inc., Dallas, TX, USA) at 4˚C overnight. 
Following washing with Tris‑buffered saline containing 
Tween‑20, membranes were probed with goat anti‑rabbit or 
anti‑mouse immunoglobulin G horseradish peroxidase‑conju-
gated secondary antibodies (cat. nos. 7074 and 7076; 1:5,000; 
Cell Signaling Technology, Inc.) at 37˚C for 1 h. The proteins 
designated were visualized using an enhanced chemilumi-
nescence detection kit (GE Healthcare Life Sciences, Little 
Chalfont, UK) and quantified using Image_Lab_3.0 software 
(Bio‑Rad Laboratories, Inc., Hercules, CA, USA).

Statistical analysis. Results are expressed as the 
mean  ±  standard deviation using SPSS 17.0 (SPSS Inc., 
Chicago, IL, USA). Comparison among groups was performed 
by one‑way analysis of variance followed by Dunnett's t‑test. 
P<0.01 was considered to indicate a statistically significant 
difference.

Results 

Expression of miRNA‑29a in colon cancer serum samples. 
First, miRNA‑29a expression was analyzed in serum samples 
from patients with colon cancer. As presented in Fig.  1, 
miRNA‑29a in colon cancer serum samples was significantly 
downregulated, compared with the normal group (P<0.01).

Upregulation of miRNA‑29a suppresses viability of HCT‑116 
cells. To further assess the effects of transfecting miRNA‑29a 
into HCT‑116 cells, cell viability and LDH activity were deter-
mined. miRNA‑29a mimic led to increase of miRNA‑29a 
expression, suppression of cell viability and an increase in 
LDH activity in HCT‑116 cells, compared with the control 
group (Fig. 2).

Upregulation of miRNA‑29a increases apoptosis of HCT‑116 
cells. Furthermore, flow cytometry demonstrated that upregu-
lation of miRNA‑29a significantly increased apoptosis of 
HCT‑116 cells, compared with the control group (P<0.01; 
Fig. 3).

Upregulation of miRNA‑29a promotes caspase‑3/9 activities 
of HCT‑116 cells. Caspase‑3/9 activities in HCT‑116 cells by 
miRNA‑29a were examined. As presented in Fig. 4, upregu-
lation of miRNA‑29a significantly promoted the caspase‑3/9 
activities of HCT‑116 cells, compared with the control group 
(P<0.01).

Upregulation of miRNA‑29a promotes Bax and PTEN protein 
expression in HCT‑116 cells. Next, Bax and PTEN protein 
expression in HCT‑116 cells were determined following 
miRNA‑29a transfection for 48 h. Bax and PTEN protein 
expression following miRNA‑29a upregulation were signifi-
cantly increased, compared with the control group (P<0.01; 
Fig. 5).

Upregulation of miRNA‑29a decreases PI3K, p‑Akt and 
p‑GSK3β expression in HCT‑116 cells. Western blot analysis 
indicated that upregulation of miRNA‑29a significantly 
suppressed PI3K, p‑Akt and p‑GSK3β expression levels in 
HCT‑116 cells, compared with the control group (P<0.01; 
Fig. 6).

Upregulation of miRNA‑29a suppresses the Wnt/β‑catenin 
signaling pathway of HCT‑116 cells. As presented in Fig. 7, 
upregulation of miRNA‑29a significantly suppressed Wnt and 
β‑catenin protein expression in HCT‑116 cells, compared with 
the control group (P<0.01).

Discussion 

As a common malignant, colon cancer is a common malig-
nancy, which ranks third in total morbidity and mortalities 
(2814,000) in the USA in 2015 (18). In China, colon cancer is 
the third most common cancer and ranks fifth for its mortality 
rate (19). The average age for a patient with colon cancer is 
~40 years, with being between 50 and 60 years, 10 years less 
compared with the average age of Western countries (19). It 
was demonstrated that miRNA‑29a in colon cancer serum 
samples was significantly downregulated, compared with the 
normal group. These results revealed that miRNA‑29a may be 
an important element in colon cancer. The effect of miRNAs 
on cancer makes them an important target for therapeutic 
intervention. Gene therapy is able to prevent colon cancer cell 
growth by modulating the expression of tumor suppressor 
miRNA or miRNA promoters (20). This adjustment is able 
to control the tumor growth rate, which has the potential for 
the treatment of early‑ and late‑stage cancer. This indicates 
that a number of the factors may reverse miRNA expression, 
and it may be possible to transform cancerous tissue into 
normal tissue (21). miRNA may serve a function in cancer 
chemoprevention, which may have the ability to decrease 
tumor size and metastasis, to lead to the discovery of novel 
therapeutic drugs (21). Although the experimental efficacy 
of miRNA appears to be promising, it must also be validated 
with different patients in future clinical practice (22). These 
results indicated that upregulation of miRNA‑29a suppressed 
cell viability, increased apoptosis, and promoted caspase‑3/9 
activities and Bax protein expression of colon cancer cells. 
Therefore, miRNA‑29a may have induced colon cancer cell 
death through Bax/caspase‑3/9.

The PTEN/PI3K/Akt signaling pathway is composed of 
PTEN, PI3K, Akt and its downstream effector molecules (11). 
PTEN is another important tumor suppressor gene following 
p53, which has a phosphatase activity, and serves an important 
role in regulating the cell cycle and inducing the apoptosis of 
tumor cells (11). PI3K is an important intracellular kinase, and 
excessive activation of which serves an important function 

Figure 1. Expression of miRNA‑29a in colon cancer serum samples. **P<0.01 
vs. normal. miRNA‑29a; microRNA‑29a.
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in the activation of tumor occurrence (11). Akt is markedly 
homologous with the viral oncogene v‑Akt, which induces 
leukemia in mice, and the major effector molecules of PI3K, 
and overactivation may inhibit or activate the downstream 
target proteins, leading to the infinite proliferation of cells 
though numerous mechanisms (20). PI3K is activated by a 
variety of mechanisms, resulting in the production of important 
molecules, including phosphatidylinositiol 3,4,5‑trisphosphate 
(PIP3); binding Akt; phosphorylating Akt, and changing the 
conformation as an intracellular second messenger, which 
furthermore leads to the translocation of Akt from the 
cytoplasm to the plasma membrane, thereby activating the 
downstream target proteins and mediating growth factors, such 
as insulin, promoting cell survival (20). Suppressor gene PTEN 
generates phosphatidylinositol 4,5‑bisphosphate through the 
dephosphorylation by the catalysis of PIP3, to inhibit the Akt 
translocation and conformational change so as to decrease the 
activity of Akt, thereby antagonizing the signaling pathway 
to serve a tumor‑suppressing function (20). When PTEN is 
mutated or inactivated, the suppressive effect on PIP3 ceases, 
leading to intracellular accumulation of a large amount of 
PIP3, Akt overactivation, cell immortalization (23,24). In this 
report, upregulation of miRNA‑29a decreased PTEN, PI3K, 

p‑Akt and p‑GSK3β protein expression in colon cancer cells. 
Li et al (25) indicated that miRNA‑29a induced apoptosis of 
papillary thyroid carcinoma cells through Akt expression.

GSK3β is a multifunctional serine/threonine kinase. It 
is involved in numerous important physiological processes, 
including intracellular glycometabolism, cell proliferation, 

Figure 3. Upregulation of miRNA‑29a increases apoptosis of HCT‑116 cells. Upregulation of microRNA‑29a increased apoptosis rate (A) determined by flow 
cytometry and (B) quantified. **P<0.01 vs. control. miRNA‑29a, microRNA‑29a.

Figure 4. Upregulation of miRNA‑29a promotes caspase‑3/9 activities of 
HCT‑116 cells. **P<0.01 vs. control. miRNA‑29a, microRNA‑29a.

Figure 5. Upregulation of miRNA‑29a promotes Bax and PTEN protein 
expression in HCT‑116 cells. Upregulation of miRNA‑29a promoted (A) Bax 
and (B)  PTEN protein expression in HCT‑116 cells, as determined by 
(C) western blot analysis. **P<0.01 vs. control. miRNA‑29a, microRNA‑29a; 
Bax, B‑cell lymphoma 2‑associated X protein; PTEN, phosphatase and 
tensin homolog.

Figure 2. Upregulation of miRNA‑29a suppresses the viability of HCT‑116 cells. (A) miRNA‑29a expression, (B) cell viability and (C) LDH activity. **P<0.01 
vs. control. miRNA‑29a, microRNA‑29a; LDH, lactate dehydrogenase.
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differentiation and apoptosis (26). Abnormal GSK3β expression 
and dysfunction may induce a series of insuperable diseases, 
including cancer, diabetes and Alzheimer's disease  (27). 
Therefore, GSK3β has become a focus of research. The 
present study determined that upregulation of miRNA‑29a 
suppressed p‑GSK3β protein expression in colon cancer cells. 
Shen et al  (28) demonstrated that miRNA‑29a contributes 
to drug resistance of breast cancer cells to Adriamycin via 
the GSK3β signaling pathway. There results indicated that 
miRNA‑29a regulates the PTEN/PI3K/Akt/GSK3β signaling 
pathway to induce the apoptosis of colon cancer cells.

The Wnt/β‑catenin signaling pathway is markedly 
conserved during evolution, serving an important function 
during embryonic development from fruitflies to humans (26). 
The Wnt/β‑catenin pathway has multiple sites of action, which is 
subject to the regulation of multiple signaling pathways (27). The 
change in any component in this pathway may cause an abnor-
mality in the signal transduction, resulting in body dysplasia or 
neoplasia (27). In a variety of tumor types, including breast cancer, 
prostate cancer, melanoma, colorectal cancer and lung cancer, 

abnormalities have been determined in this pathway (29). The 
downregulation in expression of signaling pathway antagonist 

Figure 6. Upregulation of miRNA‑29a decreases PI3K, p‑Akt and p‑GSK3β expression levels in HCT‑116 cells. Upregulation of miRNA‑29a decreased 
(A) PI3K, (B) p‑Akt and (C) p‑GSK3β protein expression in HCT‑116 cells, as determined by (D) western blot analysis. **P<0.01 vs. control. miRNA‑29a, 
microRNA‑29a; p‑, phosphorylated; GSK3β, glycogen synthase kinase 3β; PI3K, phosphoinositide 3‑kinase.

Figure 7. Upregulation of miRNA‑29a suppresses the Wnt/β‑catenin signaling pathway in HCT‑116 cells. Upregulation of miRNA‑29a promoted (A) Wnt and 
β‑catenin protein expression in HCT‑116 cells, as determined by (B) western blot analysis. **P<0.01 vs. control. miRNA‑29a, microRNA‑29a.

Figure 8. MicroRNA‑29a inhibits colon cancer growth by regulation of the 
PTEN/Akt/GSK3β and Wnt/β‑catenin signaling pathways. PTEN, phospha-
tase and tensin homolog; PI3K, phosphoinositide 3‑kinase; GSK3, glycogen 
synthase kinase; Bax, B‑cell lymphoma 2‑associated X protein; p, phos-
phorylated; Akt, protein kinase B.
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proteins, such as DKKI or WIF, may be determined in a variety 
of human tumor types, indirectly causing abnormal regulation 
of Wnt/β‑catenin, which serves an important function in the 
occurrence and the development of colorectal cancer (30). The 
abnormal regulation of Wnt/β‑catenin and its upstream signals 
result in intracellular accumulation of β‑catenin and transloca-
tion, and, following translocation into the nucleus, it activates 
T‑cell factor/lymphoid enhancer factor transcriptional activity, 
causing the abnormal expression of downstream genes (31). 
For >90% patients with colorectal cancer, the activation of the 
Wnt/β‑catenin signaling pathway can be determined, ~80% 
exhibited increased expression of β‑catenin and abnormal 
expression in the cytoplasm and nucleus, and the key protein 
β‑catenin that inhibits the Wnt/β‑catenin pathway in colorectal 
cells is able to inhibit tumor growth and progression (32). The 
results of the present study also indicated that upregulation of 
miRNA‑29a suppressed the Wnt/β‑catenin signaling pathway in 
colon cancer cells. Nagano et al (33) indicated that miRNA‑29a 
induces resistance to gemcitabine of pancreatic cancer cells 
through the Wnt/β‑catenin signaling pathway, therefore it was 
considered that miRNA‑29a induced apoptosis of colon cancer 
through the suppression of the Wnt/β‑catenin signaling pathway.

In conclusion, the results of the present study demon-
strated a significant association between miRNA‑29a 
expression and the response to apoptosis in colon cancer 
cell. The results demonstrated that the miRNA‑29a‑induced 
apoptosis of colon cancer is mediated by activation of the 
PTEN/PI3K/Akt/GSK3β signaling pathway and suppression 
of the Wnt/β‑catenin signaling pathway (Fig. 8).
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