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Abstract. Tumor recurrence and metastasis of nasopharyn-
geal cancer (NPC) often result in the failure of treatment due 
to chemoradioresistance. Cancer stem cells (CSCs) have been 
observed to drive tumor initiation and tumor chemoradiore-
sistance. Therefore, the poor prognosis of advanced NPC is 
likely to result from the failure to kill CSCs. Sphere formation 
may be used as an experimental method to enrich potential 
CSC subpopulations. At present, there are few reports on NPC 
tumorspheres. The present study focused on examining the 
cancer stem-like properties of NPC tumorspheres from NPC 
cell lines. Western blot analysis revealed that NPC tumor-
spheres had a higher expression of stem cell markers Nanog 
homeobox and SRY-box 2, compared with parental cells. It 
was additionally verified that NPC tumorspheres contained 
a high aldehyde dehydrogenase (ALDH) enzymatic activity 
compared with parental cells. ALDH+ cells were amplified by 
9- to 10-fold in tumorspheres, compared with parental cells 
(1.8 vs. 16.9%). The tumorsphere cells exhibited an increased 
half maximal inhibitory concentration value of >10-fold with 
cisplatin compared with the control parental cells. Compared 
with the parental cells, the percentage of side population cells 
in the tumorsphere cell population increased significantly 
(10.3 vs. 2.3%; P<0.05). NPC tumorsphere cells demonstrated 
enhanced resistance to radiation. Further investigation verified 
that salinomycin inhibited NPC CSCs by selectively targeting 
its stem cells. Altogether, the data revealed that NPC tumor-
spheres contain cancer stem-like populations with increased 
chemoradioresistance. It was suggested that the serum-free 
culture of NPC cells may provide an appropriate model for 
researching the sensitivity of CSCs to therapeutic agents. It 

was additionally revealed that salinomycin is an efficient 
inhibitor of NPC CSCs, supporting the hypothesis that sali-
nomycin may eliminate CSCs and imply a need for further 
clinical evaluation.

Introduction

Nasopharyngeal cancer (NPC) is a rare cancer globally, but 
is prevalent in Southeast Asia (1). Due to its radiosensitivity, 
radiotherapy is the primary treatment of NPC. In locally 
advanced stages, combined radiotherapy and chemotherapy 
have been considered to be an effective treatment in order to 
improve survival, preferred to radiotherapy alone (2). Local 
control rate of NPC has improved markedly in the past 
decade (3). However, local recurrence and metastasis remain 
the primary causes of mortality from this cancer, particularly 
in advanced stages (4), and management of local treatment 
failure remains a challenge in NPC treatment.

Emerging evidence supports the notion that cancer stem 
cells (CSCs) contribute to NPCs resistance to chemoradiation, 
which results in a poor prognosis for numerous different types 
of human cancer (5). CSCs possess the ability to recreate the 
complete phenotypic heterogeneity of the parental tumor cells. 
These cells possess distinct surface markers allowing for 
self-renewal (6). Multiple stem cell markers, including nanog 
homeobox (Nanog), SRY-box 2 (Sox-2) and aldehyde dehydro-
genase (ALDH) have been used successfully to identify CSCs 
in normal and tumor tissue (7,8). Furthermore, side population 
(SP) cells exhibit CSC characteristics in NPC (9).

The anchorage-independent serum-free culture of stem 
cells was instrumental in the research of CSCs (10,11). Sphere 
formation may be specifically used to enrich the potential CSC 
subpopulation as a functional method (12,13). Therefore, the 
suspension culture system may maintain CSCs in their undif-
ferentiated condition, facilitating their enrichment. However, 
few reports exist at present regarding tumorspheres in NPC. 
Therefore, the present study evaluated NPC cell subsets with 
CSC properties.

Enhanced chemoradioresistance to therapy is another 
characteristic of CSCs and has been identified in numerous 
different types of cancer cells (14,15). The NPC tumorsphere 
may be a valuable model for the further research of CSCs and 
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chemoradioresistance. In the present study, it was therefore 
evaluated as to whether NPC tumorsphere cells acquired the 
chemoradiation-resistant characteristics of CSCs.

Although NPC CSCs may be experimentally identified, 
drugs or compounds that selectively target NPC CSCs have 
not yet emerged. Salinomycin is a carboxylic polyether iono-
phore extracted from Streptomyces albus (16). Salinomycin 
has been identified as a selective inhibitor of breast and lung 
CSCs (17,18), however its function in the inhibition of NPC 
CSCs remains to be revealed. In the present study, a tumor-
sphere was successfully used to enrich NPC CSCs, and the 
results demonstrated that salinomycin was able to kill NPC 
CSCs.

Materials and methods

Cells and culture conditions. SUNE-1 and 5-8F human 
nasopharyngeal cancer cell lines were purchased from the 
Type Culture Collection of the Chinese Academy of Sciences 
(Shanghai, China). SUNE-1 and 5-8F cells were cultured in 
DMEM medium (Hyclone; GE Healthcare Life Sciences, 
Logan, UT, USA) supplemented with 10% fetal bovine serum 
(FBS; Hyclone; GE Healthcare Life Sciences) and 100 U/ml 
penicillin/streptomycin (Gibco; Thermo Fisher Scientific, Inc., 
Waltham, MA, USA). Cells were cultured in a humidified air 
with 5% CO2 at 37˚C.

Tumorsphere culture and selection. SUNE-1 and 5-8F cells 
(1,000 cells/ml) were cultivated in serum-free Ham's F-12 
medium (Gibco; Thermo Fisher Scientific, Inc.), supple-
mented with B27 (1:50; Gibco; Thermo Fisher Scientific, 
Inc.), 20 ng/ml epidermal growth factor (Invitrogen; Thermo 
Fisher Scientific, Inc.) and 20 ng/ml fibroblast growth factor 
(Invitrogen; Thermo Fisher Scientific, Inc.) at 37˚C. To expand 
spheres in vitro, spheres were harvested by centrifugation 
at 125 x g for 5 min at 24˚C, separated to single cells and 
then cultured for 72 h at 37˚C to produce tumorspheres of the 
next generation. The tumorspheres were filtered using a cell 
strainer (BD Biosciences, San Jose, CA, USA). Spheroids with 
a diameter >40 µm were selected to perform the experiment.

Western blot analysis. The tumorspheres and parental cells 
were washed three times with 5 ml phosphate-buffered 
saline. Total protein was extracted from cells using a 
cell lysis buffer (20 mmol/l Tris-HCl, 150 mmol/l NaCl, 
1% NP40, 5 mmol/l EDTA, 1 mmol/l Na3VO4; pH 7.5) 
supplemented with a protease inhibitor cocktail and a phos-
phatase inhibitor (Sigma-Aldrich; Merck KGaA, Darmstadt, 
Germany), and was incubated on ice for 30 min. Protein 
concentration was determined using a bicinchoninic acid 
protein assay kit (Pierce; Thermo Fisher Scientific, Inc.). 
Protein (50 µg/lane) were loaded and separated on a 10% 
gel using SDS-PAGE and then transferred to polyvinylidene 
membranes. Following blocking in 50 g/l non-fat milk in 
tris-buffered saline with Tween 20 (20 mmol/l Tris-HCl, 
137 mmol/l NaCl and 1 g/l Tween 20; pH 7.6) for 2 h at 
room temperature, the membranes were incubated at 4˚C 
overnight with the following primary antibodies: Mouse 
anti-Nanog (dilution, 1:1,000; cat. no. sc-374001; Santa 
Cruz Biotechnology, Inc., Dallas, TX, USA), Sox-2 (dilution, 

1:1,000; cat. no. sc-365823, Santa Cruz Biotechnology) and 
GAPDH (dilution, 1:1,000; cat. no. sc-51907; Santa Cruz 
Biotechnology). The membranes were then incubated for 1 h 
at 24˚C with horseradish peroxidase‑conjugated anti‑mouse 
immunoglobulin secondary antibodies (dilution, 1:1,000; 
cat. no. A32729, Invitrogen; Thermo Fisher Scientific, Inc.). 
Finally, the membranes were visualized using the Image lab 
3.0.1 software (Bio-Rad Laboratories, Inc., Hercules, CA, 
USA) following analysis using an enhanced chemilumines-
cence-Plus detection system (Bio-Rad Laboratories, Inc.).

ALDEFLUOR assay by f luorescence‑activated cell 
sorting (FACS). The identification of ALDH activity using 
the ALDEFLUOR assay (Stem Cell Technologies, Inc., 
Vancouver, BC, Canada) was followed by FACS analysis. 
Cells were suspended in ALDEFLUOR assay buffer, which 
contains ALDH substrate, and were incubated for 40 min at 
37˚C. As a negative control, for each sample of cells an aliquot 
was treated with 50 mM diethylaminobenzaldehyde (DEAB), 
a specific ALDH inhibitor. FACS analysis was performed 
using a FACSAria flow cytometer (BD Biosciences). The 
results were analyzed using FlowJo 7.6.3 software (FlowJo 
LLC, Ashland, OR, USA).

Hoechst staining and SP cell assay. The parental or spheroid 
cells were suspended in DMEM/2% FBS at a density of 
1x106 cells/ml. The cells were then dispersed into single 
cells and incubated with Hoechst 33342 dye (5 µg/ml; 
Sigma-Aldrich; Merck KGaA) either alone or in combina-
tion with verapamil (50 mmol/ml; Sigma-Aldrich; Merck 
KGaA) for 90 min at 37˚C. Following incubation, cells were 
washed with PBS and stained with propidium iodide (1 µg/ml; 
Sigma‑Aldrich; Merck KGaA) for 30 min at 4˚C. Finally, the 
cells were maintained at 4˚C for the flow cytometric analysis 
and for the sorting of the SP fraction using a FACSAria flow 
cytometer. The results were analyzed using the FlowJo 7.6.3 
software.

Drug sensitivity assay. Parental or spheroid cells were collected 
in 96-well microplates at a density of 3,000 cells per well. The 
cells were then treated with increasing concentrations of cispl-
atin (10-7, 10-6, 10-5 and 10-4 M; Sigma-Aldrich, St. Louis, MO, 
USA). Subsequent to incubation for 72 h at 37˚C, an MTT assay 
was used to evaluate the cell viability. The number of living 
cells was calculated according to the absorbance at 490 nm. 
Each experiment was repeated three times.

Clone formation assay. Parental or spheroid cells were irradi-
ated at indicated doses (0, 2, 4, 6, 8 and 10 Gy). Irradiation 
of cells was performed using 250 kV orthovoltage X-rays 
by a linear accelerator (Elekta Instrument AB, Stockholm, 
Sweden). Following irradiation, the cells were collected and 
subsequently replated in a 30-mm culture dish at a density of 
200-5,000 cells per dish. Subsequent to culturing for 14 days 
at 37˚C, cells were fixed with 10% formalin and stained with 
0.1% crystal violet for 15 min at 24˚C; clones consisting of 
>50 cells were selected. The survival fraction was calculated 
by dividing the number of colonies formed by the number of 
cells plated. The data were entered into single hit multi-target 
formula, as follows: S=1-(1-e-D/D°)N (where D, quasi-threshold 
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dose; D0, mean lethal dose; N, extrapolation number; and S, 
survival fraction). Graphpad Prism 5.0 (Graphpad Software, 
Inc., La Jolla, CA, USA) was used to draw the survival fraction 
curve. Experiments were repeated three times.

Sphere formation efficiency assay. Parental or spheroid 
cells were collected in 96-well microplates at a density of 
3,000 cells per well. The cells were pretreated with dimethyl 
sulfoxide (DMSO; Sigma-Aldrich; Merck KGaA), 2 µM cispl-
atin (Sigma-Aldrich; Merck KGaA) and 2 µM salinomycin 
(Sigma‑Aldrich; Merck KGaA) for 72 h at 37˚C. Subsequently, 
the cells were transferred into serum-free Ham's F-12 medium 
in 24-well microplates at a density of 100 cells/well. After 
48 h, the tumorspheres were counted under a light microscope 
(magnification, x200; Nikon Corporation, Tokyo, Japan). Each 
experiments was repeated for three times.

Statistical analyses. P<0.05 was considered to indicate a statis-
tically significant difference. Data were analyzed using the 
SPSS 19.0 statistical software package (IBM Corp., Armonk, 
NY, USA) and were presented as the mean ± the standard 
deviation. Differences between the groups were determined 
using a one-way analysis of variance and least significant 
difference method for multiple comparisons.

Results

NPC tumorspheres contain cells with cancer stem‑like 
properties. It has been reported that breast CSC populations 
may be generated in vitro as mammospheres under serum-free 
culture conditions (19). In the present study, the NPC CSC 
population was enriched from the SUNE-1 cell line. Parental 
cells were cultivated in serum-free culture. After culturing for 
72 h, floating tumorspheres were formed (Fig. 1A). SUNE-1 
spheroids with a diameter of >40 µm, which were filtered out 
using a cell strainer, were selected. Two typical CSC markers, 
Nanog and Sox2, were detected using immunoblotting. As 
revealed in Fig. 1B, a marked increase in the expression of 
Nanog and Sox2 were observed in the SUNE-1 spheroids, 
compared with the parental cells. ALDH has been identified as 
a potential marker for NPC CSCs (20). ALDH is a detoxifying 
enzyme responsible for the oxidation of intracellular aldehydes. 
To further confirm this finding, an ALDEFLUOR assay was 
used to assess ALDH enzymatic activity in the SUNE-1 spher-
oids. ALDEFLUOR-positive cells were increased 9-10-fold in 
tumorsphere cells, compared with the parental cells (1.8 vs. 
16.9%; Fig. 1C). The results indicated that NPC tumorspheres 
possessed increased stem-like cancer cells.

NPC tumorspheres exhibit increased chemoresistance. 
Tumor cells resistant to chemotherapy occur partly due to the 
overexpression of the ATP-binding cassette sub-family (21). 
This characteristic is associated with the ability to expel dyes, 
identified by flow cytometry to be a SP (22). SP cells have been 
reported to possess NPC CSC properties (23). In the present 
study, NPC tumorsphere cells cultured in serum-free cultures 
were detected to possess a 4.5-fold increase in the proportion 
of SP cells compared with the parental cells (10.3 vs. 2.3%; 
Fig. 2A). Furthermore, the sensitivity of NPC tumorsphere 
cells and parental cells to cisplatin, which is usually used for 

chemotherapy against NPC, was examined. The tumorsphere 
cells from the spheroids demonstrated an increased half 
maximal inhibitory concentration value of >10-fold with cispl-
atin compared with the control parental cells (Fig. 2B). These 

Figure 1. NPC tumorsphere formation and detection of CSC markers. (A) A 
light microscopic-derived image of SUNE-1 NPC spheroid cultivated 
in serum‑free culture for 72 h. Scale bars, 100 µm (magnification, x200). 
(B) Western blot analysis of Nanog and Sox-2 expression between the 
parental and spheroid SUNE-1 cells. (C) ALDEFLUOR assay of Aldehyde 
dehydrogenase-positive cells of parental (upper, 1.8%) and spheroid (lower, 
16.9%) SUNE-1 cells. NPC, nasopharyngeal cancer; CSC, cancer stem cell; 
Nanog, nanog homeobox; Sox-2, SRY-box 2.
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results indicate that NPC tumorspheres possess increased 
chemoresistant properties of CSCs.

NPC tumorsphere cells demonstrate enhanced resistance to 
radiation. Radiotherapy is the primary treatment of NPC due 
to its radiosensitivity (24). To assess whether self-renewing 
cells from spheroids possessed a radiotherapy resistant 
phenotype, the radiosensitivity of parental and tumorsphere 
cells was analyzed using a clone formation assay. Following 

radiotherapeutic treatment, the survival fraction (SF) of 
the cells cultured as spheroids was significantly decreased 
compared with that of the parental cells [spheroid cells, mean 
SF at 6 Gy (SF6 Gy)=0.383±0.064 vs. parental cells SF6 
Gy=0.171±0.113; P<0.05; Fig. 3]. These results supported 
radioresistance characteristics of NPC CSC-like cells.

Salinomycin selectively kills NPC CSCs. Salinomycin has been 
reported to possess potent anti-CSC activity (25). As a func-
tional measure of CSC frequency, the ability of SUNE-1 and 
5-8F cells to form tumorspheres following treatment for 72 h 
with salinomycin, cisplatin or a DMSO control when cultured 
in suspension cultures, was tested as an in vitro measure of CSC 
activity. Parental SUNE-1 and 5-8F cells were treated by DMSO, 
cisplatin (2 µM) or salinomycin (2 µM) for 72 h. Following treat-
ment, tumor cells were cultivated in suspension cultures. Sphere 
formation efficiency (SFE) of SUNE‑1 and 5‑8F cells with the 
salinomycin treatment demonstrated a significant 4.7‑fold and 
5.0-fold decrease relative to DMSO treatment (0.592 spheres vs. 
0.126 spheres per 100 SUNE-1 cells, P<0.01; 0.706 spheres vs. 
0.142 spheres per 100 5-8F cells, P<0.05; Fig. 4A). In contrast, 
cisplatin treatment demonstrated a significant increase in the 
SFE of SUNE-1 and 5-8F cells compared with DMSO treat-
ment (P<0.01; Fig. 4A). Nanog, a CSC marker, of SUNE-1 and 
5-8F tumorsphere cells treated for 72 h with DMSO, cisplatin 
(2 µM) and salinomycin (2 µM) was also directly assayed. 
SUNE-1 and 5-8F tumorsphere cells treated with salinomycin 
presented a decrease in Nanog expression, compared with the 
DMSO control. The expression of Nanog did not decrease in the 
cisplatin-treated SUNE-1 and 5-8F cells (Fig. 4B). These results 
suggested that salinomycin may inhibit NPC CSC properties.

Discussion

Radiotherapy is the initial treatment mode of NPC and using 
radiotherapy in combination with chemotherapy is recom-
mended for the treatment of locally advanced tumors (26). 

Figure 4. Effect of salinomycin on the SFE and Nanog expression of SUNE-1 
and 5-8F cells. (A) SFE of SUNE-1 (left panel) and 5-8F (right panel) cells 
in serum-free medium, which were pre-treated with DMSO, cisplatin and 
salinomycin for 72 h in serum-contained medium. Results were presented as 
box plots. **P<0.01 vs. DMSO. (B) Immunoblotting of Nanog in SUNE-1 (left 
panel) and 5-8F (right panel) spheroid cells treated with DMSO, cisplatin 
and salinomycin for 72 h. SFE, sphere formation efficiency; Nanog, nanog 
homeobox; DMSO, dimethyl sulfoxide.

Figure 3. Survival curves of parental and spheroid SUNE-1 cells that 
underwent radiotherapeutic treatment. Bars represent the mean ± standard 
deviation. *P<0.05 (6 and 8 Gy radiation in parental cells vs. spheroid cells), 
**P<0.01 (10 Gy radiation in parental cells vs. spheroid cells).

Figure 2. Proportion of SP cells and resistance to cisplatin between nasopha-
ryngeal cancer tumorsphere cells and parental cells. (A) FACS analysis of 
the proportion of SP cells in parental (left panel, 2.3%) and spheroid (right 
panel, 10.3%) SUNE-1 cell groups. (B) Dose-response curves of parental and 
spheroid SUNE-1 cells following 72 h of treatment with cisplatin. Transverse 
line corresponds to the half maximal inhibitory concentration value. Bars 
represent the mean ± standard deviation. *P<0.05 (10-5 M cisplatin in parental 
cells vs. spheroid cells), **P<0.01 (10-6 M cisplatin in parental cells vs. spheroid 
cells). SP, side population; FACS, fluorescence‑activated cell sorting.
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Tumor recurrence and metastasis often result in the failure of 
treatment due to chemoradioresistance (27).

A previous study reported the application of serum-free 
culture to enrich and isolate potential CSC subpopulations 
in multiple different types of tumor (28). In general, as with 
all stem cells, the tumorsphere forming cells are capable of 
proliferation, self-renewal and exhibit increased tumorige-
nicity (29). In the present study, a comprehensive investigation 
of tumorsphere cells that are derived from the SUNE-1 cell 
line was provided. It was revealed that SUNE-1 tumorsphere 
cells acquire the characteristics of CSCs, with the increased 
expression of stem cell markers (Nanog and Sox-2), compared 
with the parental cells. It has been demonstrated that in 
SUNE-1 spheroids, a comparatively large subpopulation of 
cells had elevated the enzymatic activity of ALDH. These 
results suggest that NPC tumorsphere cells are associated with 
cancer stem-like populations.

Enhanced chemoresistance to therapy is another charac-
teristic of CSCs that has been identified in numerous different 
types of cancer cells (30). In the present study, the tumorsphere 
cells demonstrated increased resistance, compared with that in 
the parental cells, to cisplatin treatment. NPC tumorspheres 
also exhibited an increased prevalence of SP cells. Therefore, 
it was suggested that the non-adherent tumorspheres cultured 
in serum-free conditions possessed NPC CSC properties. 
Suspension culture may be used to enrich drug-resistant NPC 
cells.

Radioresistance has been implied to be associated with CSCs 
in multiple types of cancer (31,32). Radiotherapy is the most 
important method in the treatment of NPC. NPC cells are more 
sensitive to radiation than other cancer cells (33). In the present 
study, tumorsphere cells displayed enhanced resistance to radia-
tion compared with that displayed by its radiosensitive SUNE-1 
parental cells. Therefore, eradicating radiotherapy-resistant 
cells is critical for successful anti-NPC therapy.

Salinomycin is a polyether anticoccidial drug produced by 
an S. albus strain. Previously, salinomycin had been reported 
to possess potent anti-CSC activity (34). The present study 
revealed that a decrease of SFE was observed following sali-
nomycin treatment in vitro, implying that salinomycin may 
kill NPC CSCs selectively. NPC CSCs are more sensitive to 
salinomycin compared with the parental cells. In contrast, an 
increase in SFE was observed following cisplatin treatment 
in vitro; it was theorized that the increased SFE was due to the 
already increased proportion of CSCs present in the NPC cells 
treated with cisplatin. This may be due to the fact that cisplatin 
may only kill common tumor cells rather than CSCs (35).

To conclude, the present study demonstrated that chemo-
resistant NPC tumorsphere cells are rich in ‘stem-cell-like’ 
tumor cells and may be inhibited by salinomycin selectively. 
An effective method for the enrichment of CSCs was provided, 
which is beneficial for the research of the characteristics of 
NPC stem-like cells in terms of their biology and their unique 
cell surface markers. Finding novel therapies to overcome 
chemoresistance in NPC CSCs is key to improving long-term 
survival rates for patients with NPC.
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