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Abstract. Chimeric antigen receptor (CAR) T‑cell therapies 
have been demonstrated to have durable and potentially 
curative therapeutic efficacies in patients with hematological 
malignancies. Currently, multiple clinical trials in CAR‑T 
cell therapy have been evaluated for the treatment of patients 
with solid malignancies, but have had less marked therapeutic 
effects when the agents are used as monotherapies. When 
summarizing relevant studies, the present study found that 
combination therapy strategies for solid tumors based on 
CAR‑T cell therapies might be more effective. This review 
will focus on various aspects of treating solid tumors with 
CAR‑T cell therapy: i) The therapeutic efficacy of CAR‑T cell 
monotherapy, ii) the feasibility of the CAR‑T cell therapy in 
conjunction with chemotherapy, iii) the feasibility of CAR‑T 
cell therapy with radiotherapy, iv) the feasibility of CAR‑T cell 
therapy with chemoradiotherapy, and v) the feasibility of the 
combination of CAR‑T cell therapy with other strategies.
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1. Introduction

Chimeric antigen receptor (CAR) T‑cell therapy has emerged as 
a potentially curative therapy in the treatment of a broad range 
of malignancies (1). CARs generally consist of an extracellular 
single‑chain variable fragment (scFv) of an antibody for target 
recognition, a transmembrane domain fused with co‑stimulation 
signaling domains, such as CD28 or 4‑1BB, and a CD3ζ signaling 
domain to provide T‑cell activation signals (2‑4). Additionally, 
antigen recognition by CAR‑T cells occurs in a major histocom-
patibility complex (MHC)‑independent manner, which helps 
to overcome tumor immune evasion by the down‑regulation of 
MHC molecules on the cell surface (5,6).

To date, even though CAR‑T cells have demonstrated 
dramatic efficacy in patients with hematological malignan-
cies, particularly in treating B‑cell hematologic malignancies 
with CD19‑specific CAR T‑cells (7,8), the clinical application 
of CAR‑T cells in the treatment of solid tumors has not yet 
been successful, which raises questions about the feasibility 
of CAR‑T cell therapy for the treatment of solid tumors (9‑11). 
Nevertheless, the present authors wanted to determine whether 
CAR‑T cell therapy has a curative effect on solid tumors and 
which is the best way to correctly establish the role of CAR‑T cell 
therapy in the treatment of solid tumors. In the present review, 
the feasibility of combining CAR‑T cell therapy with other treat-
ments, such as chemotherapy, radiotherapy, chemoradiotherapy 
and other immunotherapy strategies is illustrated (Fig. 1).

2. Therapeutic efficacy of CAR‑T cell monotherapy in the 
treatment of solid tumors

Most clinical studies have shown that CAR‑T cell monotherapy 
had insufficient efficacy to treat solid tumors. For example, in a 
clinical study from Lamers et al (12) on renal carcinoma patients 
with first‑generation CAIX‑specific CAR‑T cells, they observed 
low clinical response rates  (9,12). Similar effects have been 
observed in neuroblastoma patients treated with first‑generation 
CD171‑specific CAR‑T cells (13), patients with ovarian cancer 
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treated with epidermal growth factor receptor (EGFR)‑specific 
CAR‑T cells  (14) or α‑folate receptor (FR)‑specific CAR‑T 
cells (15), and colon cancer patients treated with third‑generation 
Her‑2‑specific CAR‑T cells (16). A study from Louis et al (17) 
reported that of neuroblastoma patients who received 
GD2‑specific CAR‑T cells, some did not respond at all, and some 
exhibited disease progression during or following treatment.

Although clinical data have revealed that the efficacy of CAR‑T 
cell monotherapy in the treatment of solid tumors is limited, the 
present authors still consider CAR‑T cell therapy as a potential 
therapy to treat solid tumors. The full potential of CAR‑T cell 
therapy is not understood due to the main reasons for the failure 
of CAR‑T cell monotherapy to treat solid tumors, which are as 
follows. Firstly, current patients in CAR‑T cell therapy clinical 
trials are patients who have received many other treatments that 
have not worked. The patients' physical conditions are already 
poor. Secondly, it is not possible for heavy‑burden solid tumors 
to be eradicated by CAR‑T cell monotherapy. Therefore, greater 
value and better results might be seen with CAR‑T cell therapy 
in treating solid tumors if patients with early‑stage‑cancer were 
selected and CAR‑T cell therapy was combined with other 
therapies, such as chemotherapy, radiotherapy, surgery and other 
immunotherapy strategies.

3. Feasibility of using CAR‑T cell therapy with 
chemotherapy for treatment of solid tumors

Preclinical and clinical studies have demonstrated that 
CAR‑T cell therapy and chemotherapy alone are not sufficient 
to eradicate large solid tumors or metastasis, resulting in 
recurrence or refractory disease  (9,18). A large amount of 
data has suggested that the combination of chemotherapy 
with CAR‑T cell therapy should be attempted, and novel 
combination strategies should show potential synergistic 
effects in practice in the future (19,20).

Chemotherapy is able to improve the efficacy of CAR‑T cell 
therapy. Recent studies have indicated that a number of chemo-
therapeutic agents, including cyclophosphamide, doxorubicin, 
oxaliplatin, fluorouracil and gemcitabine, are not only able to 
reduce tumor burden but also have considerable immunomodu-
latory effects (21‑23). It has been reported that the combination of 
immunotherapy with chemotherapy may achieve a more promi-
nent curative effect than monotherapy (20). In the following 
section, the pathways by which chemotherapeutic agents induce 
the immune response, which should promote the curative effect 
of T‑cells, are reviewed and then the feasibility of the combina-
tion of CAR‑T cells with chemotherapy is analyzed (Fig. 2).

Chemotherapeutic agents are able to sensitize tumor 
cells to immunotherapy. Studies have indicated that 
mannose‑6‑phosphate receptors on tumor cell surfaces are 
upregulated following treatment with certain chemotherapeutic 
agents, which makes it easier for granzyme B released by cyto-
toxic T lymphocytes (CTL) to permeate tumor cells, sensitizing 
tumor cells to immunotherapy in an autophagy‑dependent 
manner  (24‑26). Apart from this, one preclinical case of 
ErbB‑retargeted T‑cells combined with carboplatin demonstrated 
that treatment with low doses of the chemotherapeutic agent 
carboplatin was able to sensitize tumor cells to specific‑ErbB 

CAR T‑cell‑mediated cytotoxicity and enhance the efficacy 
of the antitumor immunotherapy (27,28). The mechanisms of 
increasing sensitivity to immunotherapy following treatment 
with certain chemotherapeutic agents are not fully understood, 
but in other studies, the enhanced therapeutic efficacy was also 
observed following combination therapy (29).

Chemotherapeutic agents are able to improve tumor antigen 
recognition and presentation. Research has indicated that 
certain chemotherapeutic agents, such as taxanes (docetaxel 
and paclitaxel) and vinca alkaloids (vinorelbine and vinblas-
tine), were able to facilitate tumor cell recognition by 
increasing exposure to calreticulin and killing tumor cells, 
thereby releasing large quantities of tumor antigens (30). In 
addition, studies have indicated that a number of chemothera-
peutic agents were able to improve tumor antigen presentation. 
The main pathways are as follows. Firstly, autophagy induced 
by some chemotherapeutic agents stimulates tumor cells to 
release ATP, which increase the recruitment of dendritic cells 
(DCs) and T lymphocytes to infiltrate the tumor bed for tumor 
antigen presentation (21,31‑33). Secondly, it has been reported 
that the dying tumor cells induced by chemotherapeutic agents 
release damage‑associated molecular patterns (DAMPs), such 
as high‑mobility group box 1 (HMGB1), which could be recog-
nized by Toll‑like receptor 4 to promote DC maturation and 
activation, enhancing the antitumor T‑cell response (34‑37). 
Thirdly, chemotherapeutic agents induce tumor cells or 
stromal cells to generate endogenous type  I interferons 
(IFNs) and increases the exogenous type I IFNs, which can 
activate DC and induce T cell cross‑priming, leading to tumor 
control (20,22,38).

Certain chemotherapeutic agents are able to inhibit 
suppressive immune cells. It has been confirmed that 
certain chemotherapeutic agents (doxorubicin, fluorouracil, 
gemcitabine, cyclophosphamide and docetaxel) are able 
to selectively inhibit immunosuppressive cells (regulatory 
T  cells and myeloid‑derived suppressor cells) to enhance 
the efficacy of antitumor immunotherapy (39). Studies have 
revealed that certain immunosuppressive cells are more 
sensitive than T‑cells to some chemotherapeutic agents, and 

Figure 1. Combination strategies based on CAR‑T. The effects of chemo-
therapy, surgery, radiotherapy and other strategies are expected to be 
complementary or synergistic, and may remarkably improve the efficacy of 
antitumor therapy in the future. CAR‑T, chimeric antigen receptor T‑cell.
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low‑dose chemotherapeutics were not detrimental to adoptive 
T cells (40‑42).

Chemotherapy is able to inhibit autoimmunity and prolong the 
persistence of CAR‑T cells in vivo. Accumulating preclinical 
and clinical studies have demonstrated that after repeated 
cycles of intensive treatment with chemotherapy, autoimmunity 
is inhibited, which is a lethal side effect (43‑45). Nevertheless, 
inhibited autoimmunity may increase the efficacy of adoptive 
T‑cell transfer in cancer patients (19). Early CAR‑T cell therapy 
trials without conditioning chemotherapy demonstrated a short 
persistence of CAR‑T cells and poor results in the treatment 
of solid tumors (15,16,46). Recent studies have confirmed that 
conditioning chemotherapy is able to inhibit autoimmunity 
and remove suppressive cells to prolong the persistence 
of CAR‑T cells in  vivo, thereby boosting their curative 
effects  (47,48). In addition, the studies demonstrated that 
conditioning chemotherapy is able to counteract the potential 
immunogenicity of CAR‑T cells and provide homeostatic 
cytokines to CAR‑T cells to reduce the toxicity (47,48).

T‑cells can amplify the efficacy of chemotherapy. It has been 
demonstrated that the innate and adaptive immune systems are 
able to contribute considerably to the efficacy of chemotherapy 
in the treatment of cancer (49). A recent study by Wang et al (50) 
in Cell indicated that effector T‑cells abrogate stroma‑mediated 
chemoresistance in ovarian cancer. Wang et al (50) demonstrated 
that fibroblasts release glutathione and cysteine, which contribute 
to chemoresistance. T‑cells were able to change the metabolism 
of glutathione and cysteine by releasing IFN‑γ in fibroblasts via 
the Janus kinase 1/signal transducer and activator of transcrip-
tion 1 signaling pathway, thereby abolishing chemoresistance. 
In addition, accumulating preclinical and clinical studies have 
demonstrated that following repeated cycles of intensive treat-
ment with chemotherapy, autoimmunity was inhibited, which 
is a lethal side effect (43‑45). Therefore, it is urgent to evaluate 
the application of adoptive T cells to restore the human immune 
system and to maintain the stability of the internal environment. 
Therefore, as one example of adoptive T‑cells, CAR‑T cells can 
amplify the efficacy of chemotherapy.

In conclusion, the combination of chemotherapy with 
CAR‑T cell therapy may have synergistic effects, and further 
research on novel combination strategies may provide an 
opportunity to use the full potential of CAR‑T cells in the 
treatment of solid tumors.

4. Feasibility of using CAR‑T cells with radiotherapy for 
treatment of solid tumors

Currently, accumulating evidence supports the concept that 
antitumor effects can be additive or even synergistic when 
radiotherapy is combined with immunotherapy  (51,52). 
There are a number of rationales for employing 
CAR‑T cells in conjunction with radiotherapy when treating 
solid tumors.

Radiotherapy is able to improve the efficacy of CAR‑T cells. 
It has been increasingly observed that apart from eradication 
of tumor cells, radiotherapy can also stimulate tumor‑specific 
immunity to enhance tumor control both locally and 
distantly (34,53). This observation may serve as a rationale 
to demonstrate that radiotherapy can improve the efficacy of 
CAR‑T cells in the treatment of solid tumors (Fig. 3).

Radiotherapy is able to sensitize tumor cells to tumor‑specific 
cytotoxic lymphocytes. Reports have demonstrated that the 
local radiation of tumors can enhance the expression of MHC 
class I molecules and tumor‑specific antigens on irradiated 
tumor cells, rendering them more susceptible to tumor‑specific 
cytotoxic lymphocytes, which boosts the efficacy of adoptive 
CTL immunotherapy (51,53,54).

Radiotherapy is able to create a tumor microenvironment 
conducive to CAR‑T cell traff icking and infiltration. 
It has been generally accepted that the trafficking and 
infiltration of effector T cells into solid tumors is required 
for successful antitumor immune responses  (55). Studies 
have indicated that following radiation, the release of IFN‑γ 
and DAMPs increases, which attracts immune effector cells 
to the tumor microenvironment, boosting the trafficking 
capability of immune effector cells and creating a tumor 
microenvironment conducive to T‑cell infiltration (56‑58). 
Consistent with this finding, it has been proposed that local 
radiation may induce the expression of certain chemokines, 
including C‑X‑C motif chemokine ligand (CXCL)9, 10 
and 16, to promote the recruitment of T‑cells into the tumor 
microenvironment and to increase the infiltration of immune 
effector cells (56,59,60). Additionally, local radiation also 
contributed to a greater infiltration of lymphocytes into the 
tumor as it reverses the non‑adhesive phenotype of the tumor 
endothelium (57).

Figure 2. Mechanisms for how chemotherapy improves the efficacy of CAR‑T. CAR‑T, chimeric antigen receptor T‑cell; DC, dendritic cells.
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Radiotherapy is able to improve tumor antigen presentation. 
It has been increasingly observed that radiotherapy is able to 
increase tumor antigen presentation (61). Radiotherapy is able 
to induce apoptosis and necrosis of tumor cells, causing them 
to release danger signals, including HMGB1 (34). Subsequently, 
the danger signals and tumor antigens may potentially trigger 
type I IFN in the tumor microenvironment, serving as a link 
between innate responses and adaptive immunity (62,63). This 
interaction between the innate responses and adaptive immunity 
has critical roles in promoting the maturation and activation of 
DCs to improve tumor antigen presentation (64‑66).

Rationale behind T‑cells amplifying the efficacy of radiotherapy. 
It has been proposed that radiotherapy is often associated with 
local or distal tumor relapse, and the response to radiotherapy 
is partially dependent on the tumor microenvironment and the 
local immune system, particularly the T‑cells (56). Studies have 
indicated that CD8+ T‑cells and their cytokines have an essen-
tial role in maintaining control over irradiated solid tumors to 
reduce recurrence and metastasis (55,67,68).

Furthermore, following local radiation therapy, CTL may not 
only be attracted to irradiated tissue to induce local responses but 
may also be able to inhibit distant tumors, which is a phenomenon 
known as the abscopal effect (69). This changes radiotherapy 
from a regional antitumor therapeutic modality to a therapy that 
can target distant metastasis. Furthermore, CAR‑T cell therapy 
can enhance the functions of T‑cells, so the antitumor effects 
should be further amplified by combining radiotherapy with 
CAR‑T cell therapy (70). Clinical trials evaluating the feasibility 
of this approach are starting. For instance, a phase 1 study at Duke 
University (ClinicalTrials.gov identifier, NCT02664363) aims 
to evaluate the safety and efficacy of EGFRvIII CAR‑T cells in 
combination with the standard of care radiation therapy. Based 
on the rationale above, the present authors hypothesize that a 
combination of CAR‑T cell therapy and radiotherapy for treat-
ment of solid tumors should be additive or synergistic and may 
add a new perspective to existing treatments.

5. Feasibility of employing CAR‑T cell therapy with 
chemoradiotherapy for treatment of solid tumors

Chemoradiation therapy (CRT) has an important role in the 
treatment of solid tumors. However, Yovino and Grossman (71) 

indicated that CRT is able to result in treatment‑associated 
toxicities, including effects on host immunity, such as lympho-
penia. In addition, a number of studies have demonstrated 
T cells would be exhausted when solid tumors are treated 
with CRT, which result in elimination of a subset of immune 
cells (72,73). This might reduce the antitumor functions of 
CRT and promote tumor metastasis and recurrence (74,75). In 
particular, T cells are critical in mediating cellular immunity 
against neoplastic cells (76‑78). Therefore, it might be feasible 
to infuse adoptive T cells in order to improve the antitumor 
effect of chemoradiotherapy and to prevent metastasis and 
recurrence. Unfortunately, given that the development of 
CAR‑T cell therapy in solid tumors is at early stages, studies 
that combine chemoradiotherapy and CAR‑T cell therapy have 
not yet been completed.

Several studies have demonstrated that the immune system 
has a critical role in promoting antitumor defense, and a 
low absolute lymphocyte count during therapy is associated 
with poorer clinical outcomes (79‑81). Although the role of 
CAR‑T cell therapy in combination with CRT in solid tumors 
is unknown, the approach remains promising. Buka et al (82) 
indicated that combining CRT with CAR‑T cell therapy may 
be particularly efficacious due to the increased density of 
T cells following CRT that is associated with a median survival 
rate 2.5 times longer than the CRT monotherapy. Meanwhile, 
Zitvogel et al (83) and Aranda et al (84) indicated that CRT 

Figure 3. Mechanisms for how radiotherapy improves the efficacy of CAR‑T. DC, dendritic cells; TSA, tumor specific antigen; CAR‑T, chimeric antigen receptor 
T‑cell; CXCL, chemokine C‑X‑C motif ligand; DAMP, damage‑associated molecular pattern, IFN, interferon; MHC‑1, major histocompatibility complex 1.

Figure 4. Mechanism of action of CAR‑T with PD‑1/PD‑L1 blockade. PD‑1, 
programmed death‑1; PD‑L1, programmed death‑1 ligand; TAA, tumor asso-
ciated antigen; CAR, chimeric antigen receptor.
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might promote the antitumor efficacy of CAR‑T cell therapy 
as a number of CRT regimens can stimulate T cells, which 
accounts for the clinical response induced by these therapies.

6. Feasibility of CAR‑T cell therapy with other 
immunotherapy strategies for treatment of solid tumors

Accumulating evidence has demonstrated that the immuno-
suppressive microenvironment induced by solid tumors can 
limit the efficacy of CAR‑T cell therapy  (85). Tumors can 
evade immune surveillance by stimulating immune inhibitory 
receptors on T cells, including T‑cell membrane protein‑3, 
cytotoxic T lymphocyte‑associated antigen (CTLA)‑4 and 
programmed death (PD)‑1  (86‑88). The majority of solid 
tumors upregulate immune checkpoint ligands, leading 
to the inhibition of CAR‑T cell therapies by stimulating 
immune inhibitory receptors (89,90). Antibodies that block 
CTLA‑4 (ipilimumab and tremelimumab), PD‑1 (nivolumab, 
pembrolizumab and pidilizumab) and PD‑L1 (MDX‑1105 and 
MPDL3280A) have recently been approved by the US Food 
and Drug Administration for use in certain solid tumors (91). 
Considering this issue, whether greater curative effects are 
obtained after combining CAR‑T cell therapy with immune 
checkpoint inhibitors were examined.

Preclinical studies by John  et  al  (92), Liu  et  al  (93) 
and Cogdill et al  (94) have demonstrated that CAR‑T cell 
therapy and PD‑1 blockade was highly synergistic, leading 
to long‑term survival without causing any signs of pathology 
in vivo. Similar effects have been observed by Moon et al (95), 
Burga et al (96), Suarez et al (97) and Rosewall Shaw et al (98). 
The proposed mechanism of action of CAR‑T with 
PD‑1/PD‑L1 blockade is illustrated in Fig. 4. To overcome 
the immunosuppressive microenvironment, Li et al (99) engi-
neered T cells to secret checkpoint inhibitors that target PD‑1 
(CAR.αPD1‑T) and evaluated its efficacy in a human lung 
carcinoma xenograft mouse model. Li et al (99) demonstrated 
that the secretion of anti‑PD‑1 enhanced the antitumor activity 
of CAR‑T cells and prolonged overall survival. Furthermore, 
Serganova et al (100) showed that employing prostate‑specific 
membrane antigen‑specific CAR‑T cell therapy alone to treat 
prostate cancer was unsuccessful, whereas the combination of 
CAR‑T cell therapy and a PD‑1 blockade provided a partial, 
short‑duration and sub‑optimal response (100).

In clinical trials, the combination of CAR‑T cell therapy and 
PD‑1 blockade has been further evaluated. Gargett et al (101) 
revealed that combining a PD‑1 checkpoint inhibitor with 
CAR‑T cell therapy may be useful in augmenting the efficacy 
and persistence of CAR‑T cells in patients.

A primary reason for the limited application of CAR‑T cell 
therapy in solid tumors is that penetration by immune cells is 
difficult (102). It has been confirmed that CAR‑T cell therapy 
could be directed to the tumor tissues through the coexpres-
sion of chemokine receptors (CXCR2 or CCR4) or through 
combination with chemokines  (103,104). Xia  et  al  (105) 
suggested that combining an oncolytic virus with CAR‑T 
cell therapy may be particularly efficacious in stimulator of 
interferon genes protein‑inactivated and type I IFN‑disrupted 
tumors. By contrast, Ajina and Maher (106), Kim (107) and 
Scott et al (108) indicated that oncolytic virus infection might 
augment entry and mobilization of CAR‑T cells, and mitigate 

or reverse local immunosuppression and enhance the function 
and persistence of CAR‑T cell effectors.

With regards to efficient targeting of CAR T‑cells, 
Nishio et al (109) combined GD2‑specific CAR‑T cell therapy 
with an oncolytic virus expressing RANTES and IL‑15 in the 
treatment of neuroblastoma‑bearing mice. They demonstrated 
that RANTES and IL‑15 attracted CAR‑T cells and promoted 
their local survival. In addition, the survival of CAR‑T cells in 
solid tumors was improved by combining CAR‑T cells with 
the armed oncolytic virus (110).

7. Conclusion and discussion

CAR‑T cell therapy has an important role in controlling and 
eradicating malignant cells, particularly in the treatment of 
hematologic malignancies. However, expanding the use of 
CAR‑T cell therapy to solid cancers raises challenges (111). 
When summarizing the relevant studies, it was found that 
combination therapy based on CAR‑T cell therapy for solid 
tumors is feasible and may allow the full potential of CAR‑T 
cell therapy to be realized.

However, it is critical to determine which patients require 
combination strategies, what combinations are best in any 
given patient and how best to combine such agents. First, some 
patients that benefit from monotherapy do not require combi-
nation therapy and should not be administered combination 
therapy in order to avoid toxicities associated with combination 
therapy. Therefore, it is urgent for us to develop biomarkers to 
identify such patients to preselect them for monotherapy (112). 
Secondly, for patients who require combination therapy, the 
identification of such predictive biomarkers is also important 
to determine the optimal combination of therapies. Thirdly, 
to employ novel combination therapy strategies (a mixture of 
CAR‑T cell therapy and chemotherapy, radiotherapy, chemo-
radiotherapy or other regimens) in preclinical and clinical 
settings, the timing, dosage, frequency, fractionation, and 
treatment sequences need to be defined.

In conclusion, novel combination strategies for the treat-
ment of solid tumors deserve further study to minimize 
toxicity while maximizing antitumor efficacy.
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