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Abstract. Overstimulation of pro‑proliferative pathways and 
high level expression of pro‑proliferative transcription factors 
(TFs) can lead to apoptosis. This is likely due to TF binding 
sites for pro‑proliferative TFs common to pro‑proliferative 
and pro‑apoptosis‑effector genes. Certain clinical datasets 
have indicated that molecular markers associated with higher 
proliferation rates lead to improved outcomes for patients with 
cancer. These observations have been extensively assessed on 
a general basis, however there has been little work dissecting 
feed‑forward apoptosis signaling pathways that may represent 
specific distinctions between a pro‑proliferative mechanism 
and a pro‑apoptotic mechanism in samples from patients 
with cancer. Using The Cancer Genome Atlas datasets and 
bioinformatic approaches, the present study reports that higher 
FOS expression levels, along with higher FOS target apop-
tosis‑effector gene expression, is associated with an increased 
survival, while higher POU2F1 expression is associated with a 
reduced survival (average difference of 25.9 months survival). 
In summary, in the datasets examined FOS represents an 
apoptosis‑driver and high POU2F1 represents a driver mecha-
nism for cancer development.

Introduction

There are several, distinct pathways that can drive cells into 
apoptosis. For example, cross‑linking of major histocompat-
ibility class II molecules apparently represents an S‑phase 
independent mechanism of apoptosis  (1). Another, basic 
pathway involves the over‑accumulation of what would 
normally be pro‑proliferative transcription factors (TFs), for 
example, E2F1 (2). This over‑accumulation presumably occurs 

in situations where S‑phase is impeded due to a defect in the 
cell or due to lack of metabolites or proteins needed for a 
complete progression through S‑phase. The over‑accumulation 
then leads to occupancy of pro‑apoptosis‑effector genes, by 
the pro‑proliferative TFs. This feed forward process of apop-
tosis is exemplified by over‑activation of the T‑cell receptor 
signaling pathway in deletion of self‑reactive T‑cells in the 
thymus (3) and by treatment of cells with interferon‑γ (4), 
which is pro‑proliferative at lower concentrations and 
pro‑apoptotic at higher concentrations. The importance of 
a specific pro‑proliferative TF in apoptosis was elegantly 
demonstrated many years ago by unexpected tumor develop-
ment in mice lacking E2F1 (5‑7), a classic pro‑proliferative TF 
that stimulates histone gene and dihydrofolate reductase gene 
expression (8,9), in preparation for S‑phase. POU2F1 and RB1 
have been shown to regulate the interferon‑γ transition from 
stimulation of proliferation to stimulation of apoptosis (4,10).

There are several possible and not necessarily mutu-
ally exclusive mechanisms to explain the basis of feed 
forward apoptosis (FFA). One possibility is based on the 
fact that apoptosis‑effector genes are generally smaller than 
proliferation‑effector genes (11,12), leading to the proposal 
that the occupancy of the apoptosis‑effector genes is simply 
due to stochastic processes that favor initial occupancy of 
proliferation‑effector genes, and then upon reaching a high 
enough intra‑cellular concentration, lead to occupancy of 
the apoptosis‑effector genes  (12,13). A second possibility, 
established via an E2F1 model system (14,15), indicates that 
E2F1 binding partners will change in the transition from E2F1 
occupancy of proliferation‑effector genes to E2F1 occupancy 
of apoptosis‑effector genes.

In the cancer patient setting, evidence of feed forward 
apoptosis has been detected in several ways. First, MYC 
amplification in neuroblastoma represents a better outcome, 
with conventional therapy, unless CASP8 is absent (16). And, 
using The Cancer Genome Atlas (TCGA) data, we have 
recently reported that an increased number of oncoprotein or 
tumor suppressor protein mutations in stomach adenocarci-
noma represents a better outcome (17). It is clear that cancer 
progression represents a balance of proliferation‑effector and 
apoptosis‑effector gene expression, such that proliferation 
overcomes apoptosis in case of terminal cancer (18,19). This has 
led to the question of whether individual pro‑proliferative TFs 
can be classified as supporting apoptosis, presumably despite 
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an overwhelming impact of other, specific TFs supporting 
proliferation. The results presented below represent one of the 
first such identifications of a specific feed‑forward apoptosis 
pathway, that is balanced by a specific but distinct pro‑prolif-
erative TF, in a cancer patient setting.

Materials and methods

Basic approaches. RNA microarray values from the metabric 
breast cancer dataset representing pro‑proliferative TFs (FOS, 
E2F1, JUN, POU2F1, MYC, YY1, STAT3, NFATC1) (20) were 
obtained from www.cbioportal.org. The microarray values 
and their associated barcodes were organized in descending 
order for each TF. The barcodes representing the top 20% 
and bottom 20% values were obtained and used as selected 
samples for the Kaplan‑Meier (KM) survival curve analysis 
tool of cbioportal.org; or for the IBM Statistical Package for 
the Social Sciences (SPSS; IBM Corp., Armonk, NY, USA) 
software, exactly as described  (21) to verify results using 
cbioportal.org web tool. The apoptosis‑effector genes used 
in this study were obtained from a previous study (12). As 
previously shown (12), all apparent human apoptosis‑effector 
genes were first obtained on the bases of keyword searches 
of the human genome browser database. Then, a set of 34 
apoptosis‑effector genes was established by inspection. From 
this set of 34 apoptosis‑effector genes, we identified the apop-
tosis‑effector genes with AP1 (FOS) and POU2F1‑binding 
sites within 5,000 base pairs on either side of the gene, 
inclusive, using the hg19 genome browser database, with a 
z‑score cutoff of 2.33. The microarray values for each of the 
apoptosis‑effector genes, with either AP1 (FOS) or POU2F1 
binding sites, were obtained from cbioportal.org.

Distinct breast cancer dataset. The RNASeq values of GZMA 
were obtained for the TCGA‑BRCA 1105 dataset, from www.
cbioportal.org. The microarray data were then sorted into 
descending order to identify top 20% and bottom 20% GZMA 
RNASeq values. The averages for top 20% and bottom 20% 
were calculated, and associated barcodes were analyzed via 
KM approaches as detailed above.

GZMA methylation. The beta‑score, methylation values of the 
TCGA‑BRCA GZMA dataset were obtained from cbioportal.
org and processed as previously described (22). The barcodes 
were sorted and organized into their respective top 20% and 
bottom 20% levels for statistical analyses.

GZMA RNASeq read counts. The RNASeq read counts were 
generated by downloading raw RNAseq files from the genome 
data commons, via approved NIH dbGaP project no. 6300, and 
summing up the reads representing the GZMA section of the 
genome.

Statistical analysis. The statistical data in this report are 
presented as correlation plots, KM analyses and differences 
in the means. For correlation plots, a correlation coefficient 
and P‑value were obtained; for the KM analyses, a log‑rank 
P‑value was obtained and used to establish significance; and 
for the differences in the means, as presented in the Tables, 
a Student's t‑test was used to establish significance. Excel 

(version 16.12; Microsoft Corporation, Redmond, WA, USA) 
was used to obtain correlation coefficients and MedCalc 
(version 2017; MedCalc Software, Ostend, Belgium) was used 
to obtain the P‑values for the linear correlations. The KM 
analyses log-rank P‑values were obtained with the SPSS. For 
the majority of the analyses, there were 381 tumor samples 
representing the upper and lower quintiles in the analyses.

Results

Association of higher FOS expression with better 
survival and relatively high expression of FOS responsive 
apoptosis‑effector genes. To determine whether there were 
expression levels of pro‑proliferative TFs, that correlated 
or inversely correlated with overall breast cancer survival, 
we first obtained the microarray values for eight candidate, 
pro‑proliferative TFs as tabulated and shown in a previous 
study. (12). The purpose of this determination was to identify 
candidate TFs, whereby one TF with a high expression level 
could be indicative of driving FFA, and thereby be associated 
with better survival; and a second TF could, with a high expres-
sion level, be associated with a worse survival. Presumably the 
latter TF would be driving proliferation in the absence of a 
functional FFA process for that TF. The microarray data were 
organized into groups of barcodes (samples) that represented 
the top 20% and bottom 20% of expression levels for each of 
the eight pro‑proliferative TFs (12). The barcodes for those two 
groups, for each TF, were compared in terms of the survival 
rates, with the remaining barcodes in the dataset, respectively, 
using a KM curve, available via a cbioportal.org web tool. 
Results indicated that high levels of FOS were associated with 
a better survival and that high levels of POU2F1 were associ-
ated with a worse survival. The other six TFs did not show a 
statistically significant association with either survival status 
and were not further considered in this study (Table I).

To confirm the above indication, that high levels of FOS 
and POU2F1 represented opposite survival rates, the top 20% 
expressers and bottom 20% expressers for each of these TFs 
were compared in KM analyses, with results consistent with 
the conclusions in the previous paragraph, namely that high 
FOS is associated with better survival and high POU2F1 asso-
ciated with poorer survival (Fig. 1).

To determine whether a higher level of FOS expression 
correlated with higher apoptosis‑effector gene expression, 
we obtained the RNA microarray values for all of the apop-
tosis‑effector genes characterized as previously described (12) 
that contain an AP1 (FOS/JUN) site within 5,000 base pairs, 
inclusive, specifically, UQCRC2, BAD, BAX, and CRADD. 
We next sorted the FOS expression levels and obtained the 
microarray value averages for each of the AP1 site‑containing 
apoptosis‑effector genes listed above for the barcodes that 
represented the top 20% and bottom 20% of FOS expression. 
We then determined whether the top 20% and bottom 20% 
microarray value averages represented significant differences, 
in the case of each of these apoptosis‑effector genes. Only 
UQCRC2 and CRADD represented statistically significant 
differences (Table II). The microarray values for UQCRC2 
(in relation to FOS) represented an average of 8.212 for 
the top 20% FOS expressers and 7.585 for the bottom 20% 
FOS expressers. The results of the CRADD analysis, for the 
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categories of top 20% and bottom 20% FOS expressers, repre-
sented an average of 7.385 in the top 20% FOS expressers and 
an average of 7.039 for the bottom 20% FOS expressers.

To confirm the correlation of expression levels between 
FOS and UQCRC2 or CRADD, we determined the Pearson 
correlation coefficient for the FOS microarray values and the 
apoptosis‑effector gene RNA microarray values. Both the 
UQCRC2 (Fig. 2A) and CRADD (Fig. 2B) apoptosis‑effector 
genes showed a linear correlation with the (entire) set of FOS 
microarray values. Thus, the correlation data were consistent 
with the above described indication that the barcodes repre-
senting the top 20% FOS expressers and bottom 20% of FOS 
expressers also represented statistically significant differences 
in the expression of UQCRC2 and CRADD.

High levels of POU2F1 are generally not associated with 
high levels of POU2F1 responsive apoptosis‑effector genes. 
As noted above (Table I; Fig. 1B), higher levels of POU2F1 
microarray values are associated with statistically significant 
worse survival. To determine whether apoptosis‑effector genes 
with POU2F1 binding sites represented either more or less 
expression when POU2F1 levels were high, we obtained the 
microarray values for the following POU2F1‑site containing, 
apoptosis‑effector genes: UQCRC2, GZMA, CRADD, CHEK1, 
CASP5, CASP3, and COX7B2. We then sorted the barcodes 
based on top 20% and bottom 20% POU2F1 expressers. We 
next obtained the microarray values for the above indicated 
apoptosis‑effector genes (with the POU2F1‑binding sites), for 
the top 20% and bottom 20% POU2F1 expression categories, 
respectfully (Table III). All of the apoptosis‑effector genes indi-
cated statistically significant differences in expression levels 
for the upper and lower POU2F1 expression categories with 
the exception of COX7B2. In the case of COX7B2, the micro-
array values for top and bottom POU2F1 expressers showed 
no significant differences. In these POU2F1‑site containing 
genes, the barcodes at the highest level of POU2F1 expres-
sion had lower levels of apoptosis gene expression, and the 
barcodes at the lowest level of POU2F1 expression had higher 
levels of apoptosis‑effector gene expression. These results are 
consistent with POU2F1 as a cancer driver and a TF that is 
not activating what would otherwise be POU2F1‑responsive, 
pro‑apoptotic genes (Table III). The one exception to this trend 
was CASP3 (Table III). In addition, we determined the Pearson 
correlation coefficients for the entire set of microarray values 
for POU2F1 vs. UQCRC2, GZMA, and CRADD, respectfully 

Figure 2. Scatter plots of microarray values for FOS and the two 
pro‑apoptosis‑effector genes with FOS binding sites, UQCRC2 and CRADD. 
(A) The correlation coefficient plot of FOS vs. UQCRC2 are positively corre-
lated (0.32) with a linear correlation of r2=0.10. (B) Correlation coefficient plot 
of FOS vs. CRADD is positively correlated (0.25) with a linear correlation 
of r2=0.06. P<0.0001 for each. FOS, Fos proto‑oncogene AP‑1 transcription 
factor subunit; UQCRC2, ubiquinol‑cytochrome C reductase core protein 2; 
CRADD, CASP2 and RIPK1 domain containing adaptor with death domain.

Figure 1. Kaplan‑Meier curves for barcodes with high and low expression 
of FOS and POU2F1. Top 20% expressers for each TF is represented by the 
darker black curve; bottom 20% expressers for each TF is represented by the 
lighter gray curve. The log‑rank P‑values for the differences in the survival 
rates for (A) FOS and for (B) POU2F1 were P=0.003514 and P=0.000134, 
respectively. For FOS, the mean survival difference is 15.3 months. For 
POU2F1, 25.9 months. TF, transcription factor; FOS, Fos proto‑oncogene 
AP‑1 transcription factor subunit; POU2F1, POU class 2 homeobox 1.

Table I. P‑values representing the overall survival differences 
for the breast cancer barcodes representing the top and bottom 
20% of expression levels (microarray values) for the indicated 
transcription factors.  

	 P‑value
Transcription	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
factor	 Top 20% 	 Bottom 20% 

FOS	 0.011 (better	 0.031 (worse
	 overall survival)	 overall survival)
E2F1	 0.69	 0.39
JUN	 0.10	 0.012
POU2F1	 0.0034 (worse	 0.0027 (better
	 overall survival)	 overall survival)
MYC	 0.82	 0.14
YY1	 0.13	 0.42
STAT3	 0.37	 NS
NFATC1	 0.64	 0.25

NS, not significant; FOS, Fos proto‑oncogene AP‑1 transcription factor 
subunit; E2F1, E2F transcription factor 1; JUN, Jun proto‑oncogene 
AP‑1 transcription factor subunit; POU2F1, POU class 2 homeobox 1; 
MYC, Myc proto‑oncogene BHLH transcription factor; YY1, YY1 
transcription factor; STAT3, signal transducer and activator of tran-
scription 3; NFATC1, nuclear factor of activated T cells 1.

Table II. Comparison of microarray value averages for 
apoptosis‑effector genes UQCRC2 and CRADD, for the FOS 
high and low expressers in the breast cancer dataset.

Effector	 Top 20% FOS	 Bottom 20%	 P‑value
gene	 expressers	 FOS expressers	 (top vs. bottom)

UQCRC2	 8.212	 7.585	 <0.0001
CRADD	 7.385	 7.039	 <0.0001

UQCRC2, ubiquinol‑cytochrome C reductase core protein 2; CRADD, 
CASP2 and RIPK1 domain containing adaptor with death domain; 
FOS, Fos proto‑oncogene AP‑1 transcription factor subunit.



FISLER et al:  FEED FORWARD APOPTOSIS IN BREAST CANCER2760

(Fig. 3). These three apoptosis‑effector genes were chosen for 
the Pearson correlation coefficient analysis because they repre-
sented the largest separation of expressions values representing 
the top and bottom 20% POU2F1 expressers (Table III). (Also, 
these three apoptosis‑genes were studied in the next section 
as independent markers of survival.) Results from the Pearson 
correlation coefficient analyses (Fig. 3) were consistent with 
the above indicated distinctions based on the analyses of the 
top 20% and bottom 20% of POU2F1 expressers (Table III).

Apoptosis‑effector genes expression levels as independent 
indicators of survival rates. To determine whether the 
expression levels of the apoptosis‑effector genes could be 
independent indicators of survival distinctions, we sorted 
the barcodes based on the microarray values for each apop-
tosis‑effector gene, without regard for the expression of any 
of the TFs. Barcodes representing the top 20% of UQCRC2 
microarray expression levels displayed a greater overall 
survival rate (P=0.0037) when compared to all remaining 
samples (Table  IV). And, the barcodes representing the 
bottom 20% of UQCRC2 microarray values displayed a worse 
overall survival when compared to all remaining samples 
(P=0.05) (Table  IV). Likewise, barcodes representing the 
top 20% of GZMA microarray expression levels displayed a 
greater overall survival rate when compared to all remaining 
barcodes (P=0.012). And, barcodes representing the bottom 
20% of GZMA microarray expression levels displayed a worse 
overall survival rate when compared to all remaining samples 
(P=0.0032) (Table IV). The expression levels of the remaining 
apoptosis‑effector genes (Table III) did not indicate any inde-
pendent associations with distinct survival rates.

To confirm the above indication, that UQCRC2 and GZMA 
represented independent correlations with survival rates, KM 
survival curves were created representing in each case the top 

20% and bottom 20% expressers, using the SPSS software 
(Fig. 4). Results indicated that higher levels of both UQCRC2 
and GZMA were associated with better survival rates.

GZMA as an independent indicator for survival rate in a distinct 
breast cancer dataset. Overall KM survival curve of patients 
representing the top 20% of expressers of the apoptosis gene, 
GZMA, in a different breast cancer data set (TCGA‑BRCA, 
with 1105 samples), displayed a better survival, compared with 
all remaining barcodes (P=0.11). There was a worse survival 
rate for the bottom 20% GZMA expressers, compared with all 
remaining barcodes (P=0.032). An additional, independently 
constructed KM survival curve was created to further verify the 

Figure 3. Scatter plots of POU2F1 microarray values vs. associated apop-
tosis‑effector genes UQCRC2, GZMA, CRADD. The linear correlation 
coefficient plots of (A) POU2F1 vs. UQCRC2, (B) POU2F1 vs. GZMA and 
(C) POU2F1 vs. CRADD are negatively correlated, with r2=0.29, 0.028, 0.21, 
respectfully. In all three cases, P<0.00001. POU2F1, POU class 2 homeobox 1; 
UQCRC2, ubiquinol‑cytochrome C reductase core protein 2; GZMA, gran-
zyme A; CRADD, CASP2 and RIPK1 domain containing adaptor with death 
domain.

Table III. Breast cancer expression levels of POU2F1 transcription factor binding site‑containing, apoptosis‑effector genes.

	 Top 20% POU2F1 expressers, 	 Bottom 20% POU2F1 expressers	
Transcription factor	 mean microarray value	 mean microarray value	 P‑value

POU2F1‑independent 			 
predictors of survival rates			 
  UQCRC2	 7.41	 8.38	 0.0001
  GZMA	 6.84	 7.27	 0.0001
Do not associate with	
differing survival rates			 
  CRADD	 6.90	 7.45	 0.0001
  CHEK1 	 6.50	 6.68	 0.0001
  CASP5 	 5.44	 5.46	 0.0558
  CASP3	 8.67	 8.57	 0.0004
  COX7B2	 5.41	 5.43	 NS

Comparison of POU2F1 transcription factor binding site genes (12). The top 20% and bottom 20% calculated averages of the seven apop-
tosis‑effector genes, respectively, with binding sites for POU2F1 are indicated. Of the seven, two apoptosis‑effector genes show a clear 
distinction in worse overall survival for the top 20% expressers (of the indicated apoptosis gene) compared with the bottom 20% expressers. 
These two apoptosis‑effector genes are TF‑independent markers of survival rates. NS, not significant; POU2F1, POU class 2 homeobox 1; 
UQCRC2, ubiquinol‑cytochrome C reductase core protein 2; GZMA, granzyme A; CRADD, CASP2 and RIPK1 domain containing adaptor 
with death domain; CHEK1, checkpoint kinase 1; CASP, caspase; COX7B2, cytochrome C oxidase subunit 7B2.
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above information that GZMA displayed significant survival 
differences in a second distinct breast cancer dataset (Fig. 5).

GZMA methylation. To consider a mechanistic explanation for 
GZMA differences in the expression levels among the TCGA 
barcodes, we hypothesized that GZMA methylation could lead 
to a repressive chromatin structure and thereby block access to 
POU2F1 in the cells representing the barcodes with high POU2F1 
levels and relatively low levels of GZMA. Thus, we downloaded 
the TCGA‑BRCA methylation data for GZMA and organized 
the barcodes into the top 20% and bottom 20% of GZMA 
expression levels. (The metabric study did not have methylation 
data.) We calculated the GZMA methylation (beta‑score) of the 
top 20% GZMA expressers to be 0.61; and calculated the GZMA 
methylation for the bottom 20% of the GZMA expressers to be 
0.85, representing a higher level of GZMA gene methylation and 
a statistically significant difference (Table V).

Raw RNAseq data verification. Because the above analysis was 
done with processed data, we sought to verify the final conclusion, 
that the apoptosis effector gene, GZMA, represented a robust 
biomarker for breast cancer survival. Thus, we downloaded the 
original RNASeq files from the genome data commons for the 
top and bottom 20% GZMA expressers and obtained read counts 
representing GZMA, i.e., hg38 reference genome position, 
chr5:55, 102, 648‑55, 110, 252. The average number of reads for 
the top 20% expressers was 2698; the average number of reads 
for the bottom 20% expressers was 107 (P<0.0001).

Discussion

As indicated by the above analyses, available data are consistent 
with the idea that feed‑forward pathways can represent specific 
distinctions, based on what have been traditionally considered 
pro‑proliferative TFs, between pro‑proliferative and pro‑apop-
totic pathways. This conclusion was also recently reached for 

lower grade glioma and squamous cell lung cancer (23), where 
MYC and YY1, respectively, were identified as apoptosis‑drivers. 
These distinctions may be useful in determining a more accurate 
overall survival rate among cancer patients, as well as possibly 
assist in development of therapies. In this study, low POU2F1 
barcodes represented a 25.9 month longer survival, on average.

In the case of the above breast cancer dataset, the analyses 
indicated that high levels of FOS were associated with better 
survival, and that high levels of POU2F1, as noted in the previous 
paragraph, were associated with worse survival outcomes. To 
understand the link between FOS and better survival, FOS was 

Figure 4. Kaplan‑Meier curves for (A) UQCRC2 and (B) GZMA survival 
differences. Top 20% of the microarray values for each gene is represented by 
the darker black curve. Bottom 20%, by the lighter gray curve. The log‑rank 
P‑values for UQCRC2 and GZMA were P=0.000285 and P=0.000971, 
respectively. The mean difference in survival times for UQCRC2 and GZMA 
were 21.1 and 29.9 months, respectively. UQCRC2, ubiquinol‑cytochrome C 
reductase core protein 2; GZMA, granzyme A.

Table IV.  Breast cancer expression levels apoptosis‑effector genes used for survival rate correlations independent of the 
pro‑proliferative transcription factors.  

	 Top 20% apoptosis‑gene	 Bottom 20% apoptosis‑gene	
Transcription factor	 expressers, mean microarray value	 expressers, mean microarray value	 P‑value

UQCRC2	 8.85	 6.96	 <0.0001
GZMA	 8.63	 5.83	 <0.0001

UQCRC2, ubiquinol‑cytochrome C reductase core protein 2; GZMA, granzyme A.

Figure 5. Kaplan‑Meier curves for GZMA survival differences for the 
TCGA‑BRCA dataset. Top 20% for the TCGA‑BRCA microarray values is 
represented by the darker black curve. Bottom 20% is represented by the 
lighter gray curve. The log‑rank P‑value was P=0.022. GZMA, granzyme A; 
TCGA, The Cancer Genome Atlas.

Table V. Granzyme A methylation levels for The Cancer 
Genome Atlas‑BRCA dataset.

	 Top 20%	 Bottom 20%	
Data set	 expressers	 expressers	 P‑value

TCGA‑BRCA	 0.609	 0.853	 <0.0001

TCGA, The Cancer Genome Atlas.
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connected to higher expression of apoptosis‑effector genes, 
thereby indicating a credible pathway for FFA, with FOS as the 
apoptosis‑driver. In particular, the higher level of FOS expression 
was correlated with higher expression of the apoptosis‑effector 
genes, CRADD and UQCRC2.

To better understand how lower levels of POU2F1 could 
be associated with a higher survival rate, we examined the 
POU2F1 relationship with its putatively responsive, apop-
tosis‑effector genes: UQCRC2, GZMA, CRADD, CHEK1, 
CASP5. In all of these cases, the highest level of gene expres-
sion was associated with the lowest levels of POU2F1. As noted 
in Results, in two cases, there was not an inverse correlation 
with POU2F1 expression for the POU2F1 putatively respon-
sive, apoptosis‑effector genes. In these latter two cases, there is 
no explanation for the lack of an inverse correlation of expres-
sion levels, other than the possibility that the expression of the 
two apoptosis‑effector genes does not interfere with POU2F1 
as a cancer‑driver due to a mechanism that is not related to 
transcriptional activation, for example, micro‑RNA mediated, 
negative regulation at the level of translation. Investigations of 
such a possibilities will be part of future work.

While the above connections between TFs and apop-
tosis‑effector genes indicates a mechanism whereby higher 
levels of what are traditionally consider pro‑proliferative 
TFs could lead to better survival, an additional, practical 
issue is, biomarkers for improved for survival rates. As 
such, we examined apoptosis‑effector gene expression for 
TF‑independent associations with distinct survival rates, 
with GZMA and UQCRC2 representing the most important 
such biomarker candidates, including the confirmation of 
higher GZMA expression levels representing better overall 
survival rates in a second breast cancer dataset, namely the 
TCGA BRCA dataset. GZMA is expressed at a high level in 
cytotoxic T‑cells (24), and none of the above data can indisput-
ably pinpoint the source of the gene expression studied, i.e., 
cancer cells or micro‑environment cells. Thus, it is possible 
that the higher level of GZMA represents a higher level of 
cytotoxic T‑cell infiltrate that is mediating an increased level 
of apoptosis and better survival rates. However, there is no 
such specific association of the FOS‑responsive UQCRC2 
with immune infiltrate cells, and what data is available indi-
cates mammary tissue and whole blood represent about the 
same levels of expression (genome.ucsc.edu), very different 
from GZMA.

In sum, the above analyses identified potential FFA signa-
tures in breast cancer with possible insights into therapy design 
and likely survival rate, biomarker identification.
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