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Abstract. Prostate cancer (PCa) is one of the most prevalent 
cancer types in men. Biochemical recurrence continues to 
occur in a large proportion of patients after radical pros-
tatectomy. Thus, prognostic biomarkers are required to 
determine which treatment is suitable. In the present study, 
RNA‑sequencing gene expression data from The Cancer 
Genome Atlas was used in order to develop a risk‑score 
staging system based on the expression of eight genes. Cox 
multivariate regression was used to predict the outcome of 
patients with PCa. The biomedical recurrence‑free survival 
of patients with low‑risk scores was significantly longer 
compared with patients with high‑risk scores (P=5x10‑7). This 
result was further validated using another dataset, GSE70769, 
from the National Center for Biotechnology Information. The 
prognostic values of other clinical information and risk scores 
were evaluated for 5‑year biochemical recurrence. The prog-
nostic value of the risk score was determined using an area 
under curve value of 0.819, predicting the 5‑year biochemical 
recurrence of patients with PCa. The risk score was identi-
fied to be significantly associated with primary tumor stage 
(P<0.01), Gleason score (P<0.01), and lymph node invasion 
(P<0.05), but was independent of age. Cox multivariate 
regression revealed that the risk score was an indicator for 
prediction of biochemical recurrence. Thus, the risk score is 
a valuable and robust indicator for predicting the biochemical 
recurrence of patients with PCa.

Introduction

Prostate cancer (PCa) is one of the most prevalent cancer types 
in men; in 2015, there were 60,300 newly diagnosed cases of 
PCa in China, resulting in 26,000 mortalities  (1). Disease 

recurrence has been reported in a large proportion of patients 
following radical prostatectomy (2), and castration‑resistant 
disease typically develops as a result (3,4). Although prognostic 
and clinical indicators were implemented, the prognostic 
effect was not fully understood (5). Thus, clinical biomarkers 
for PCa biochemical recurrence are required. Huang et al (6) 
used long non‑coding RNAs to develop a prediction model for 
biochemical recurrence; however, the analysis lacked valida-
tion datasets.

Over the previous decade, single biomarkers have been 
identified for the prognosis of PCa (7‑9); however, the utili-
zation of these biomarkers requires further investigation 
owing to the heterogeneity of PCa (10). Multiple gene‑based 
studies of prognostic biomarkers are currently prevalent 
owing to their robustness in multiple different cancer 
types (11‑17).

By associating gene expression and survival information 
from The Cancer Genome Atlas (TCGA), survival‑associated 
genes were identified. Using a random forest‑based 
variable hunting approach, eight genes were selected and 
a risk score staging system was developed. Patients with 
high‑risk scores had significantly poorer survival rates 
compared with patients with low‑risk scores. This result 
was further validated using an independent dataset from 
the National Center for Biotechnology Information (NCBI), 
GSE70769  (18). Analysis of clinicopathological factors 
revealed that the risk score was independent of age but 
was significantly associated with Tumor Node Metastasis 
(TNM) stage (19), lymph node invasion and Gleason score. 
Cox multivariate regression and the 5‑year biochemical 
recurrence area under the receiver operating curve (ROC) 
reveal that the risk score was an important indicator for 
prediction of biochemical recurrence.

Materials and methods

Data pre‑processing. Raw microarray data of the NCBI dataset 
GSE70769 was downloaded from Gene Expression Omnibus 
(https://www.ncbi.nlm.nih.gov/geo)  (20). Subsequent to 
background correction and normalization using the Robust 
Multi‑Array Averaging (RMA) approach (21), the data was 
used for further analysis. The probe names were annotated 
according to the manufacturer's annotation file. For genes 
matching multiple probes, the average values were calculated 
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and used as the expression values for the corresponding 
genes. TCGA gene expression (https://cancergenome.nih.
gov/) data was downloaded from University of California 
Santa Cruz Xena and converted to fragments per kilobase 
of transcript sequence per million base pairs sequenced 
(FPKM) values. The log 2‑transformed RNA‑Sequence by 
expectation‑maximization values were retained for model 
development.

Prediction gene selection, Cox multivariate regression model 
and validation. Cox univariate regression was performed on 
TCGA dataset. Genes with relative expression levels associated 
with biochemical recurrence‑free survival (BFS) were retained 
for a further forest‑based variable hunting approach, performed 
as previously described (22,23). Following 100 repeats and 
100 iterations, genes from the top of the list were selected 
for further analysis. Finally, eight genes were identified 
as the most frequently present in the repeats and iterations, 
thus these eight genes were selected for model development. 
Next, multivariate Cox regression was performed using the 
aforementioned genes to construct a linear risk‑score model. 
In the validation datasets, coefficients were locked and the 
risk score for each sample was calculated. The risk score was 
calculated using the following formula; where βi indicates the 
coefficients evaluated with gene expression and xi refers to the 
relative gene expression level.

For the training dataset, the samples were divided into low‑ 
and high‑risk groups according to the median risk score using 
R software (v3.0.1; https://cran.r‑project.org/doc/FAQ/R‑FAQ.
html) and packages (24,25).

Statistical analysis. Background correction and RMA 
normalization of raw Affymetrix CEL data were performed 
using the ‘RMA’ function in the ‘affy’ package (v1.56.0) (26). 
The survival difference between the high‑risk and low‑risk 
groups, univariate regression in the training dataset, multi-
variate Cox proportional hazard model development and 
multivariate regression with risk score and other clinical 
indicators were performed using the ‘survival’ function in the 
R package (v1.4‑8). The ROCs were drawn and the area under 
curve (AUC) calculation was performed using the R package, 
‘pROC’ (v1.11.0) (27). All statistical analysis was performed 
using R software and packages. P<0.05 was considered to 
indicate a statistically significant difference.

Results

Identification of survival‑associated genes. Univariate 
Cox regression was performed on TCGA dataset, following 
filtering of the non‑primary PCa tissues, by associating BFS 
and gene expression. Detailed information of the samples 
enrolled in TCGA dataset are presented in Table  I. Genes 
significantly associated with BFS (P<0.01) were retained for 
further analysis. As the identified gene panel was relatively 
large, a random forest‑based variable hunting approach was 
implemented to retrieve the best combination of biomarkers. 

Eight genes were selected for further model development 
(Fig. 1A; Table II). Finally, the coefficients are presented in 
Fig. 1B. The positive coefficients suggest that the genes are 
oncogenes, while the negative coefficients indicate tumor 
suppressor genes.

Performance of risk score in the training dataset. To assess the 
prognostic value of the risk score model, the survival difference 
between high‑ and low‑risk scores (using the median value as the 
cut‑off) was compared to evaluate the performance of the risk 
score. According to the results, the BFS in the high‑risk‑score 
group was significantly shorter compared with the low‑risk 
score group (P=5x10‑7; Fig. 2A). As presented in Fig. 2A, 
samples with early biomedical recurrence were characterized 
with a high expression of asparaginase like 1 (ASRGL1), 
lipin 3 and carbohydrate sulfotransferase 1. However, patients 
without biochemical recurrence presented with a high 
expression of glucosamine‑phosphate N‑acetyltransferase 1 
(GNPNAT1), chitobiase, acyl‑CoA oxidase 1 (ACOX1), 
3‑hydroxy‑3‑methylglutaryl‑CoA synthase 2 (HMGCS2) and 
N‑acetyl‑α‑glucosaminidase (NAGLU), which was consistent 
with the coefficients (Figs. 1B and 2B). Disease‑free survival 
time was additionally compared between the high‑ and low‑risk 
groups and the result was similar to the BFS pattern as the 
survival of the high‑risk group was notably lower compared 
with that of the low‑risk group (Fig. 2C). The 5‑year BFS 
ROC was identified to be an effective method to compare the 
prognostic value of the risk score and other clinicopathological 
observations (Fig.  2D). The AUCs of age, Gleason index, 
primary tumor stage, lymph node invasion and risk score were 
0.597, 0.647, 0.628, 0.578 and 0.819, respectively. Specifically, 
it is indicated that the mortality risk of patients with the 
highest risk scores was very high. These results indicate that 
the risk score is better at predicting BFS than the other clinical 
observations.

Validation of risk score performance. The high performance 
of the risk score may have resulted from the over‑fit dataset. 

Table I. The Cancer Genome Atlas sample information.

Variables	 Samples, n

Age, years	
  <60	 138
  >60	 170
Tumor stage	
  T2	 131
  T3‑T4	 177
Gleason score	
  1	   21
  2	 115
  3	   72
  4	   38
  5	   62

T, tumor.
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To test if over‑fitness existed, the coefficients were locked in 
order to evaluate the robustness of this model, and the risk 
scores were calculated for an independent NCBI dataset 
(GSE70769). The samples from the independent dataset 
were additionally divvied into high‑ and low‑risk groups, 
as with the training dataset. The results were similar to the 
BFS profile of the training dataset. The BFS of patients in 
the high‑risk‑score group were significantly shorter than 
the low‑risk‑score group (P=0.04; Fig. 3A) and associated 
with early biomedical recurrence (Fig. 3B). The expression 
profile was additionally similar to that of the training dataset 
(Fig. 3C). These results indicate that the risk score is a robust 
indicator for PCa prognosis.

Association between risk score and other clinical information. 
Analyses of risk score and clinical information were performed. 
The results indicated that the risk score was significantly 
associated with primary tumor stage (P<0.05), Gleason 

score (P<0.01) and lymph invasion (P<0.01), but not with age 
(Fig. 4A). Cox multivariate regression was performed using 
the risk score and the aforementioned clinical observations. 
The risk score was the only prognostic indicator identified 
to be significantly associated with biochemical recurrence 
(P=3x10‑5; Fig. 4B). In summary, these results indicate that 
risk score is an important clinical indicator of PCa prognosis.

Discussion

Despite the low rate of progression, biomedical recurrence 
and metastasis continue to be observed in a large proportion 
of patients with PCa (28). Thus, prognostic biomarkers are 
urgently required. Over the previous decade, single biomarkers 
have been reported to predict the survival of patients with 
PCa (3,9,29). However, the single‑biomarker approach to cancer 
prognosis assessment is less robust compared with the more 
widely reported multiple‑biomarker‑based models (30‑32). 

Figure 1. Genes selected for model development. (A) Frequency of selected genes in random forest variable hunting. (B) Coefficients of genes in the risk score 
model. CHST1, carbohydrate sulfotransferase 1; ACOX1, acyl‑CoA oxidase 1; CTBS, chitobiase; GNPNAT1, glucosamine‑phosphate N‑acetyltransferase 1; 
NAGLU, N‑acetyl‑α‑glucosaminidase; LPIN3, lipin 3; ASRGL1, asparaginase like 1; HMGCS2, 3‑hydroxy‑3‑methylglutaryl‑CoA synthase 2.

Table II. Univariate and multivariate Cox regression analysis of candidate genes.

	 Cox univariate regression	 Cox multivariate regression
	 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
Variables	 HR	 95% CI	 P‑value	 HR	 95% CI	 P‑value

CHST1	 1.800	 1.300‑2.600	 0.001	 1.380	 0.940‑2.020	 0.100
ACOX1	 0.300	 0.130‑0.680	 0.004	 1.740	 0.630‑4.850	 0.286
CTBS	 0.400	 0.250‑0.640	 <0.001	 0.700	 0.370‑1.320	 0.270
GNPNAT1	 0.390	 0.220‑0.710	 0.002	 0.460	 0.220‑0.990	 0.047
NAGLU	 0.550	 0.360‑0.840	 0.006	 0.670	 0.440‑1.010	 0.058
LPIN3	 2.000	 1.300‑3.000	 0.001	 1.220	 0.760‑1.950	 0.419
ASRGL1	 1.600	 1.200‑2.200	 0.002	 1.810	 1.300‑2.520	 <0.001
HMGCS2	 0.740	 0.640‑0.860	 <0.001	 0.760	 0.630‑0.900	 0.002

HR, hazard ratio; CI, confidence interval; CHST1, carbohydrate sulfotransferase 1; acyl‑CoA oxidase 1; CTBS, chitobiase; GNPNAT1, 
glucosamine‑phosphate N‑acetyltransferase 1; NAGLU, N‑acetyl‑α‑glucosaminidase; LPIN3, lipin 3; ASRGL1, asparaginase like 1; HMGCS2, 
3‑hydroxy‑3‑methylglutaryl‑CoA synthase 2.
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Figure 3. Prognostic value of the risk score on survival in a validation dataset. (A) Biochemical recurrence‑free survival rate of the high‑ and low‑risk groups 
in the GSE70769 dataset. (B) Detailed biochemical recurrence survival information. (C) Candidate gene expression. CHST1, carbohydrate sulfotransferase 1; 
ACOX1, acyl‑CoA oxidase 1; CTBS, chitobiase; GNPNAT1, glucosamine‑phosphate N‑acetyltransferase 1; NAGLU, N‑acetyl‑α‑glucosaminidase; LPIN3, 
lipin 3; ASRGL1, asparaginase like 1; HMGCS2, 3‑hydroxy‑3‑methylglutaryl‑CoA synthase 2.

Figure 2. Risk score for prognosis in the training dataset. (A) Biochemical recurrence‑free survival rate of high‑ and low‑risk groups. (B) Heat maps of gene 
expression for each dataset. Blue/red dots in the first panel refer to the low and high‑risk groups, respectively. (C) Disease‑free survival rates of high‑ and 
low‑risk groups. (D) The 5‑year survival receiver operating curve of risk score and other clinical observations and their AUC. *P<0.001, risk score AUV vs. 
other clinical observations. AUC, area under the curve; T stage, tumor stage; CHST1, carbohydrate sulfotransferase 1; ACOX1, acyl‑CoA oxidase 1; CTBS, 
chitobiase; GNPNAT1, glucosamine‑phosphate N‑acetyltransferase 1; NAGLU, N‑acetyl‑α‑glucosaminidase; LPIN3, lipin 3; ASRGL1, asparaginase like 1; 
HMGCS2, 3‑hydroxy‑3‑methylglutaryl‑CoA synthase 2.
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Using machine learning and gene expression, the present study 
developed a Cox multivariate regression‑based risk score 
model. The model was then further evaluated for performance 
and robustness. The risk score staging system performed 
well in predicting survival in two datasets from different 
microarray platforms.

Among the candidate genes selected, serum NAGLU has 
been reported to be associated with the clinical indicators 
and survival of gastrointestinal adenocarcinoma (33); and the 
expression of another gene, GNPNAT1, had been demonstrated 
to be associated with the progression of castration‑resistant 
PCa (34) via the phosphatidylinositol3‑kinase/protein kinase B 
signaling pathway. Proteomics analysis revealed that HMGCS2 
expression is altered in PCa, and that the expression of this gene 
is associated with the survival of squamous cell carcinoma 
following surgery (35,36). It has additionally been revealed to 
affect the extracellular signal‑regulated kinase/c‑Jun signaling 
pathway in hepatocellular carcinoma (37). In addition, ACOX1 
has been reported to be associated with migration and metastasis 
in the xenografts of colorectal carcinoma (38), and associated 
with the mitogen‑activated protein kinase signaling pathway 
in hepatocellular carcinoma  (39). A similar function was 
detected for ASRGL1 in endometrial carcinoma (39), although 
the underlying mechanism remains unclear. Collectively, these 
results indicate that the candidate genes used in the model are 
reliable, thus reinforcing the robustness of the model.

In a previous study, Huang et al (6) used gene expression 
to predict biochemical recurrence using TCGA expression 
data, the study lacked a validation dataset. The present study 
was novel as it developed a robust prediction model for 
PCa that was validated using another platform. Indeed, the 
RNA‑sequencing data was presented with log2‑transformed 
FPKM values, whereas microarray data was presented as 
log2‑transformed intensity values. The formula was calculated 
using the relative gene expression level, regardless of its unit. 

This may explain why this model is functional across different 
platforms.

However, limitations of the present study exist. Firstly, the 
present study is a retrospective study. The clinical information 
and long‑term follow‑up are unavailable, and detailed clinical 
information are unavailable. Thus, bias may have resulted. 
Secondly, although the robustness of the risk score was 
validated using another dataset, the clinical utilization of the 
risk score requires further studies in order to fully confirm its 
efficiency. The present findings may provide novel insights for 
predicting the biochemical recurrence of patients with PCa.
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