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Abstract. Using whole-exome sequencing (WES) for the 
detection of chromosomal aberrations from tumor samples 
has become increasingly popular, as it is cost-effective and 
time efficient. However, factors which present in WES tumor 
samples, including diversity in exon size, batch effect and 
tumor impurity, can complicate the identification of somatic 
mutation in each region of the exon. To address these issues, 
the authors of the present study have developed a novel method, 
PECNV, for the detection of genomic copy number variants 
and loss of heterozygosity in WES datasets. PECNV combines 
normalized logarithm ratio of read counts (Log Ratio) and B 
allele frequency (BAF), and then employs expectation maxi-
mization (EM) algorithm to estimate parameters involved 
in the models. A comprehensive assessment of PECNV of 
PECNV was performed by analyzing simulated datasets 
contaminated with different normal cell proportion and eight 
real primary triple‑negative breast cancer samples. PECNV 
demonstrated superior results compared with ExomeCNV 
and EXCAVATOR for the detection of genomic aberrations 
in WES data. 

Introduction

Somatic aberrations, including copy number variants (CNV) 
and loss of heterozygosity (LOH) have an important role 
in tumor progression (1-3). Previous experimental studies 
of somatic aberrations in tumor samples were performed 
primarily by using microarray comparative genomic hybrid-
ization (array‑CGH) techniques (4,5) or single nucleotide 
polymorphism (SNP) arrays (6,7). More recently next‑gener-
ation sequencing (NGS) was developed, which allows for 
massively parallel sequencing of DNA (7-9). The NGS 
technology platform is able to efficiently sequence a sample 
in a few days, which is much shorter compared with previous 
methods (10). Whole‑exome sequencing (WES) employs 
NGS technology and only sequences the exonic regions, and 
dismisses the intragenic regions.

Compared with whole-genome sequencing (WGS), WES 
has the advantages of more straightforward interpretation, 
lower cost and significantly greater coverage, which contrib-
utes to improvements in quality of data (11-13).

Despite the promising potential of WES for detecting 
CNV from tumor samples, several critical issues are required 
to be addressed. When using WES data issues, including batch 
effect (14) among samples and the sparse nature of exonic 
regions, make algorithms that use split-read or read-pair 
signals unsuitable for CNV detection (15). To address these 
issues, several computational methods have been proposed 
to identify CNV from exome sequencing samples, including 
ExomeCNV (16), Copy Number Inference From Exome 
Reads (CoNIFER) (17), XHMM (18), CANOES (19) and 
EXCAVATOR (20). CoNIFER uses singular value decomposi-
tion to correct data, while XHMM employs principal component 
analysis to eliminate noise included in raw read depth signal and 
builds a hidden Markov model to discover CNVs in each exonic 
region (17,18). XHMM calculates the breakpoint quality score, 
which contributes to further downstream analysis. Although 
CoNIFER and XHMM have been reported to have good 
performance, many samples need to be provided at once, which 
limit their application to situations where there is a limited 
availability of sequencing samples. CANOES overcomes this 
limitation and uses a regression-based approach to estimate 
parameters in a negative binomial model (19). However, all of 
these methods have been specially developed to detect rare 
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CNVs, while common CNVs also carry substantial risk for 
disease (20). Furthermore, these methods classify each exonic 
region into one of three state classifications: Deletion, normal or 
amplification, which cannot provide the exact copy number of 
each exon (19,20). EXCAVATOR has been introduced to clas-
sify genomic regions into 5 copy number states using a hidden 
Markov model. However, this method cannot infer tumor impu-
rity in tumor samples and identify LOH, which is common in 
cancer genome (21).

To overcome the limitations of existing CNV detec-
tion methods using WES data, a novel method, PECNV, is 
presented in the current study to identify CNVs and LOH 
from tumor and matched normal samples using WES data. 
Comprehensive processing procedures, including elimina-
tion of sequencing/mapping bias, batch effect and exon size 
diversity, were used in PECNV to normalize read counts 
derived from tumor WGS data. PECNV combined log ratio 
of read counts (Log Ratio) and B allele frequency (BAF) with 
two Gaussian models, which take tumor impurity and Log 
Ratio baseline shift into account. Expectation maximization 
algorithm was applied to estimate parameters included in the 
models. Copy number and LOH in each exonic region were 
estimated using the optimal parameters. A comprehensive 
assessment of PECNV was performed by analyzing simulated 
samples contaminated with different proportions of normal 
cells and eight real primary triple-negative breast cancer 
WES sequencing datasets. PECNV showed superior results 
compared with ExomeCNV and EXCAVATOR in genomic 
aberrations detection using tumor WES data.

Materials and methods

Data biases and correction. To study genomic CNVs from 
exome sequencing data, read counts (RC) aligned to each exon 
and BAF signals were obtained from the tumor sequencing 
file using SAMtools, as previously described (22). RC for each 
exonic region displays the number of reads aligned to each 
region, which can reflect copy numbers in exonic regions. As 
previously reported, there are primarily four sources of bias 
that affect RC signals, including the size of exonic regions, 
batch effect, local GC content percentage and genomic mappa-
bility (14,23). To eliminate the effect of different exon sizes 
among regions and make the data among samples comparable, 
reads counts per thousand bases per million reads sequenced 
(RPKM) were calculated as introduced by Mortazavi et al (24): 

 (1)

where TRC refers to total read counts mapped to exonic regions, 
and s is the size of the captured exonic region. Next, normal-
ization methods as described in Yoon et al (23) were employed 
to remove GC content and mappability bias. Following the 
procedure, GC-content and mappability were scaled to integer 
values. Then, the normalized RPKM was calculated using the 
following formula: 

  (2)

where NRPKM is the corrected RPKM, m is the median of 
RPKM of all exonic regions, and mx refers to the median 

RPKM of the regions, which share the same GC-content and 
mappability as the current exonic region. Following GC and 
mappability correction, the logarithmic ratio of RPKM (Log 
Ratio) between tumor samples and matched normal samples in 
each corresponding region was calculated to eliminate batch 
effect.

Statistical distributions of the signals. Previous studies (16,21) 
have shown that both Log Ratio and BAF approximately follow 
a normal distribution. Accordingly, let ri be Log Ratio and ci 
be copy number states, as defined in (21) of the i‑th exon in 
the genomic sequence. A total of four global parameters were 
employed in the PECNV model: Tumor impurity (w), Log 
Ratio baseline shift (o), and standard deviation of Log Ratio 
(σx) and BAF signals (σb). Then, the conditional probability 
density function follows a normal distribution: 

  (3)

where yc refers to the average copy number in state c, which is 
defined as:

  (4)

where ns denotes the normal copy number (ns=2), and nc is the 
tumor copy number in state c.

Similarly, BAF can be modeled by a normal distribution 
as reported in (21). Let bi be the BAF signal in i‑th exonic 
region, and its conditional probability density function can be 
formulated as:

  (5)

where Bw,c denotes theoretical BAF in mixed tumor cells and 
can be calculated as:

  (6)

where bc refers to theoretical BAF in the state in pure tumor 
samples.

EM algorithm and CBS segmentation. The EM algorithm 
was used to estimate the global parameters. EM is a general 
method, which identifies the optimal parameters that maxi-
mize the logarithm likelihood function when an incomplete 
data set is given (25). Parameters that hold same value in all 
exons in one given sample may be termed global parameter. 
Specifically, given signals (Log Ratio or BAF) X = {x1,x2…
,xN}, copy number states C = {c1,c2…,cN} and global parameter 
set Θ = {σr,σb,o,w}, the likelihood can be formulated as: 

  (7)

where p(ci ǀΘ) can be treated as constant, because it is assumed 
that copy number states follow a uniform distribution, and 
copy number states are independent of the set parameter. 
Given the observation sequence and conditional probability 
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density function, the authors of the present study aimed to 
estimate parameters that maximize the likelihood so that it 
best matches the observations in order to elucidate the corre-
sponding state sequence. In PECNV, the EM algorithm was 
implemented to identify the optimal parameters. As the first 
step, the EM algorithm calculated the expected value of the 
log-likelihood log(P(X, CǀΘ) given the signal X and the current 
estimated parameters (E step), in which the expectation of log 
likelihood can be formed as:

  (8)

where M is the total number of copy number states, Θ(i-1) refers 
to the parameter estimated in (i-1)-th iteration, and Θ is the 
next iteration. f(ciǀX,Θ(i-1)) is the posterior probability given 
both signal X and current estimated parameter Θ(i-1). Note that 
in this equation, X Θ(i-1) and are constants, and Θ is a normal 
variable that we wish to adjust. Then, the Log Ratio and BAF 
expectation can be denoted as Qr(Θ, Θ(i-1)) and Qb(Θ, Θ(i-1)) , 
respectively.

As both CNV and LOH can span multiple exons, the PECNV 
method was used to call CNV/LOH on larger segments, in 
which exons are contiguous in the human genome. Both Log 
Ratio and BAF were segmented by the CBS algorithm in order 
to identify the somatic mutation boundaries as described previ-
ously (26). Following segmentation, all exons within the same 
segment share the same CNV state.  Following segmentation, 
posterior probability f(ciǀX,Θ(i-1)) was calculated in each exon. 
As the probability depends on the signals that are in the same 
segment, f(ciǀX,Θ(i-1)) can be formulated as: 

    (9)

where xj1,xj2,...xjm are signals in the j‑th segment that the i‑th 
exonic region belongs to, and m is the number of exons in that 
segment. p(xjkǀΘ(i-1)) can be calculated as: 

  (10)

The M‑step of the EM algorithm is to find Θ to maximize the 
expectation that was computed in the E step:

   (11)

where Θ(i) is adopted for next iteration in the E‑step. It is diffi-
cult to obtain in closed-form expression by directly solving the 
equation (10). Instead in the M step, the Newton algorithm (27) 
was used to identify optimal parameters. Steps E and M were 
repeated until the algorithm converged, and then parameters 
in the last iteration were returned as the optimal estimators. 

Using optimal parameters, CNV states that the product of 
posterior probability of Log Ratio, and BAF was chosen as the 
final state in that exonic region.

Statistical analysis. Average absolute difference is employed 
to measure the difference between different methods results 
and the ground truth. Supposing there exists two signals 
S1={s11, s12, s13 ... s1M} and S1 = {s21, s22, s23 ... s2M}, which  
share the same dimension of M. The average absolute 
difference (denoted as AAD) between signals  and  can be 
calculated as:

  (12)

The smaller the value of average absolute difference, the closer 
the two signals are.

Simulated and real WES data of tumor samples. To evaluate 
the performance of PECNV in different tumor impurity 
samples, 8 tumor samples dataset were simulated with paired 
normal at x100 coverage where normal cell proportion ranged 
from 0.1 to 0.8. The simulation method was proposed by 
CLImAT (28), which employed tumor-normal admixture on 
chromosome 20 of the human reference genome. For better 
simulation of real situations, the test genome was constructed 
according to the CNV state obtained from a real WES sample. 
To generate a simulated dataset, reads were sampled from 
both control and test genomes with different tumor impuri-
ties and different coverage to be mapped to the reference 
genome. For each simulated sample, a total of 72,389 exons 
were generated with 29,134 amplified exons and 43,255 
deleted exons. With these simulated samples, a comprehensive 
evaluation of PECNV for CNV detection was performed. 
For real sequencing data, 8 paired primary triple-negative 
breast cancer (TNBC) WES samples were randomly selected 
from datasets employed by Shah et al (29) and were used in 
the present study. The reads were previously sequenced on 
the Illumina Genome Analyzer IIx platform and mapped to 
the reference genome NCBI36/hg18 using Burrows-Wheeler 
Aligner (22). The data were downloaded from the European 
Genome-Phenome Archive (https://www.ebi.ac.uk/ega/home; 
accession no. EGAS00001000132).

Availability of PECNV. The PECNV software package 
implemented by Matlab is freely available from: https://github.
com/lxcheng/PECNV. Using a Windows 7 operating system 
with 2.6 GHz CPU and 4 G RAM, it takes ~10 min to process 
a single tumor sample. RC and BAF can be obtained from the 
tumor sequencing file using SAMtools (22).

Results

Estimation of tumor impurity of simulated datasets. The 
simulated samples were detected by PECNV, and the results 
are shown in Fig. 1A. PECNV was able to accurately predict 
tumor impurity between 0.1‑0.8 (sum of square difference 
to ground truth equals to 1.83x10-4), indicating PECNV can 
efficiently estimate the proportion of tumor cells from samples 
with different levels of tumor impurities. The accurate 
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estimation of tumor impurity indicates a good performance in 
detecting CNVs.

Next, the latest version of EXCAVATOR (version 2.2) was 
compared with PECNV using the simulated datasets Copy 
number accuracy of the results was calculated and shown in 
Fig. 1B. The accuracy of EXCAVATOR decreased as tumor 
impurity increased, particularly when tumor impurity was 
between 0.3‑0.5. When tumor impurity was >0.6, the detec-
tion accuracy was maintained at ~0.6. By contrast, PECNV 
achieved a high accuracy (>0.99) in all 8 simulated samples, 
suggesting that PECNV is able to accurately predict copy 
number in samples with different levels of tumor impurity.

Comparison of CNV detection of simulated datasets using 
different methods. Sensitivity and specificity values were 
calculated to compare the performance of PECNV and 
EXCAVATOR in the detection of CNVs in simulated samples 
at 100x coverage. The results are shown in Fig. 2. When tumor 
impurity was <0.3, good results were obtained with PECNV 
and EXCAVATOR, with average sensitivity and specificity 
values >0.98. However, as the tumor impurity increased >0.40, 
EXCAVATOR showed a reduction in power to detect CNV 
as sensitivity started to decrease. However, a high specificity 
was maintained (>0.99), which indicated that EXCAVATOR is 
relatively conservative in identifying CNVs. Compared with 
EXCAVATOR, PECNV exhibited strong robustness to tumor 
impurity and obtained high sensitivity and specificity across 
all simulated samples. These results indicated that PECNV is 
able to accurately identify CNVs even when tumor impurity is 
relatively high.

Samples with 200x and 300x coverage were also simu-
lated to evaluate the performance of PECNV (Fig. 3) in 
deep sequenced samples. Overall, PECNV achieved a good 
performance in terms of sensitivity and specificity in the 
simulated tumor samples with tumor impurity at three 
different sequencing coverage. As tumor impurity varies in 
tumor samples with different coverage, the performance of 
PECNV remains excellent, demonstrating the robustness of 
PECNV to tumor impurity. Furthermore, there is an improve-
ment in sensitivity at 200x and 300x coverage with PECNV 
compared with 100x, when tumor impurity is 0.9. This finding 
suggested that PECNV has the potential to identify CNVs in 
highly contaminated tumor samples, which have been deep 
sequenced.

Estimation of tumor impurity of TNBC datasets. PECNV, 
EXCAVATOR and ExomeCNV were applied to 8 real paired 
TNBC WES samples. To assess the performance of PECNV, 
the corresponding SNP‑arrays assayed by Affymetrix SNP6.0 
array (Affymetrix; Thermo Fisher Scientific, Inc., Waltham, 
MA, USA) were detected by Allele‑Specific Copy number 
Analysis of Tumors (ASCAT) (30), and these results were used 
as the ground truth. As the first step, tumor impurity values 
estimated by ASCAT and PECNV were assessed (Table I). The 
tumor impurity values detected by ASCAT ranged from 0.28 
to 0.59. The estimated tumor impurity of WES data detected 
by PECNV was consistent with the results attained by ASCAT 
(average of absolute difference, 4.8x10-2).

Next, the average copy number (ACN) of the tumor 
samples as detected by the different methods was assessed 

Figure 1. Comparison of PECNV and EXCAVATOR. (A) Tumor impurity 
estimated by PECNV. (B) Accuracy of copy number detection. CN, copy 
number.

Figure 2. Performance of PECNV and EXCAVATOR for detection of CNVs 
in simulated samples with different tumor impurities. Comparisons of 
(A) sensitivity and (B) specificity. PE, PECNV; EX, EXCAVATOR.

Figure 3. Performance of the PECNV method for detection of copy number 
variants in simulated samples with different tumor impurities at 100x, 200x 
and 300x coverage. Comparisons of (A) sensitivity and (B) specificity.
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(Table I). EXCAVATOR provided a good estimate of ACN in 
tumor samples where ACN was close to 2 (such as S3 and S7). 

ExomeCNV achieved reasonable results in tumor samples with 
ACN lower than 2, particularly for tumor sample S8 where the 
ACN was 1.87. By comparison, the ACNs obtained by PECNV 
exhibited good concordance with ASCAT. For example, the 
estimated ACNs attained by EXCAVATOR and ExomeCNV 
were 2.26 and 2.08, respectively, in highly amplified tumor 
sample S1 (Table I), where the ACN was 3.62, predicted by 
ASCAT. The difference between EXCAVATOR, ExomeCNV 
and ASCAT was 1.36 and 1.54, respectively, whereas 
PECNV predicted a value of 3.60 for ACN, which was close 
to the ground truth. Additionally, the average absolute differ-
ence of ACN between the WES based methods and ASCAT  
were calculated for the 8 TNBC samples. The average absolute 
difference of ACN for EXCAVATOR and ExomeCNV were 
0.49 and 0.47, respectively. Compared with EXCAVATOR and 
ExomeCNV, PECNV markedly improved the performance 
with an average absolute difference of 0.14. These results 

Table I. ACN and tumor impurity estimated by ASCAT, PECNV, EXCAVATOR and ExomeCNV in 8 real primary triple‑negative 
breast cancer datasets. 

 ASCAT PECNV
 --------------------------------------------- --------------------------------------------- EXCAVATOR ExomeCNV
Sample ACN Impurity ACN Impurity ACN ACN

S1 3.62 0.37 3.60 0.40 2.26 2.08
S2 1.55 0.52 1.67 0.57 2.00 2.06
S3 1.85 0.59 2.06 0.64 2.03 2.02
S4 2.56 0.56 2.76 0.60 2.00 2.11
S5 1.74 0.49 2.06 0.61 2.18 2.00
S6 2.54 0.33 2.60 0.30 2.07 2.01
S7 2.30 0.58 2.43 0.59 2.11 2.04
S8 1.87 0.28 1.92 0.33 2.16 1.87

ACN, average copy number. 

Table II. Total number of copy number gains, losses and exons 
in 8 real primary triple‑negative breast cancer datasets.

Sample Gains Losses Total Exons

S1 125,779 2,610 128,389 164,318
S2 2,864 70,686 73,550 164,318
S3 39,350 44,650 84,000 164,318
S4 64,993 776 65,769 164,318
S5 21,278 68,809 90,087 164,318
S6 71,267 9,884 81,151 164,318
S7 63,587 31,385 94,972 164,318
S8 24,397 49,899 73,996 164,318

Exons, the total number of exons.

Table III. Loss of heterozygosity, sensitivity, specificity and 
accuracy of PECNV and ExomeCNV. 

 PECNV ExomeCNV
 ------------------------------------------ -----------------------------------------
Sample SEN SPE ACC SEN SPE ACC

S1 0.94 0.99 0.98 0.99 0.05 0.25
S2 0.80 1.00 0.91 0.98 0.09 0.47
S3 0.99 0.99 0.99 0.99 0.12 0.84
S4 1.00 0.98 0.99 1.00 0.21 0.73
S5 0.80 0.98 0.90 0.77 0.69 0.72
S6 0.99 0.99 0.99 0.99 0.09 0.72
S7 0.92 0.98 0.95 0.99 0.06 0.63
S8 0.97 0.99 0.99 0.99 0.18 0.50

SEN, sensitivity; SPE, specificity; ACC, accuracy.

Figure 4. Sensitivity and specificity of PECNV, EXCAVATOR and 
ExomeCNV for detection of copy number variants in primary triple-negative 
breast cancer datasets. Comparisons of (A) sensitivity and (B) specificity. PE, 
PECNV; EX, EXCAVATOR; EC, ExomeCNV.
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suggested that PECNV has the potential for inferring tumor 
impurity and ACNs in complicated tumor samples.

Comparisons of CNV detection in TNBC datasets. In order to 
evaluate the accuracy of PECNV, sensitivity and specificity 
of the three methods were determined (Fig. 4). The genomic 
aberration profiles of the 8 TNBC samples are summarized in 
Table II. The samples share the same number of exons, while 
the number of copy number gains or losses varied. Sample S1 
contained the highest number of CNVs, while samples S4 had 
the lowest number of CNVs. In general, EXCAVATOR had 
the worst performance in terms of sensitivity, with an average 
value of 0.18. Among all tumor samples, the highest sensi-
tivity was obtained in tumor sample S1. Consistent with the 
finding in assessment of the simulated data, it was found that 
EXCAVATOR tends to be conservative in identifying CNVs. 
In comparison with EXCAVATOR, ExomeCNV achieved 
higher sensitivity in all samples. In particular, the highest 
sensitivity and specificity values were obtained in tumor 
sample S8 with ExomeCNV.  However, ExomeCNV exhibited 
lower specificity in most tumor samples.

In general, ExomeCNV obtained better sensitivity and lower 
specificity compared with EXCAVATOR. By contrast, PECNV 
obtained the highest sensitivity across all samples accompanied 
by comparable specificity. Notably, PECNV obtained the best 
performance in tumor samples S2 and S4 in terms of sensi-
tivity and specificity. Although for tumor samples S5 and S7, 
ExomeCNV exhibited better specificity, PECNV demonstrated 
better sensitivity for both samples. Taken together, the results 
demonstrated that PECNV exhibited a better overall perfor-
mance in terms of sensitivity and specificity compared with 
EXCAVATOR and ExomeCNV, suggesting that PECNV has a 
good efficiency for detection of CNVs.

Apart from sensitivity and specificity, receiver operating 
characteristic (ROC) curves of the 8 samples (Fig. 5) were used 
to compare the performance of the different methods. In the 
present study, PECNV was compared to EXCAVATOR using 
ROC curves in the 8 TNBC samples. However, PECNV was not 
compared with ExomeCNV as ExomeCNV does not provide 
the possibility of calling CNVs, which are required to generate 
the ROC curve. As shown in Fig. 5, the ROC curves of PECNV 
were above EXCAVATOR in all 8 samples, which indicate that 
PECNV has better performance compared with EXCAVATOR. 
Additionally, the area under the curve (AUC) was calculated to 
compare the results. The mean AUC of the 8 samples obtained 
by PECNV was 0.96, while the value for EXCAVATOR was 
0.62, which suggested that PECNV has a higher detection power.

Comparison of copy number accuracy in real tumor datasets. In 
order to comprehensively evaluate the performance of different 
methods, values for copy number accuracy were also calcu-
lated for all tumor samples. As shown in Fig. 6, ExomeCNV 
exhibited higher accuracy compared with EXCAVATOR in 4 
tumor samples, which indicates its power in detecting CNVs. 
PECNV achieved higher levels of accuracy in all tumor samples 
compared with ExomeCNV and EXCAVATOR, with average 
copy number accuracy values of 0.89, 0.52 and 0.50 for PECNV, 
ExomeCNV and EXCAVATOR, respectively. Overall, PECNV 
demonstrated better performance in accuracy in the detection of 
copy number in real WES datasets.

Figure 6. Accuracy of PECNV, ExomeCNV and EXCAVATOR in detecting 
copy number variants. CN, copy number; PE, PECNV; EX, EXCAVATOR; 
EC, ExomeCNV.

Figure 5. Receiver operating characteristic curves of PECNV and EXCAVATOR for detection of copy number variants in 8 real primary triple‑negative breast 
cancer datasets. Samples (A) S1; (B) S2; (C) S3; (D) S4; (E) S5; (F) S6; (G) S7 and (H) S8.
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Comparison of LOH detection in real tumors. In the present 
study, the performance of different methods for LOH detec-
tion in exonic regions was also evaluated. LOHs represent 
another type of somatic aberrations in the cancer genome (21). 
However, since only ExomeCNV is capable of detecting LOH 
using WES data (16,30), the results of both PECNV and 
ExomeCNV obtained from all tumor samples were compared. 
As shown in Table III, the results of ExomeCNV suggested 
significant bias in LOH detection with a low specificity and a 
high sensitivity. For example, in tumor sample S1, the accuracy 
of ExomeCNV was 0.25.

On the contrary, PECNV achieved balanced performance 
with satisfactory levels of sensitivity and specificity. Notably, 
the levels of accuracy in all 8 samples were markedly higher 
compared with ExomeCNV. In conclusion, PECNV was able 
to efficiently detect LOH regions in tumor WES data.

Discussion

In the present study, a novel method, PECNV, for accurate 
identification of copy number and LOH in tumor WES datasets 
was described. PECNV adopts a comprehensive correction 
and normalization procedure for eliminating batch effect and 
mapping bias confronted in exome sequencing. Additionally, 
PECNV is able to reduce the side effects of batch effect and 
mapping bias by automatically estimating and correcting 
tumor impurity and signal baseline shift, which enables an 
improved performance compared over other existing methods. 
Compared with EXCAVATOR and ExomeCNV, which 
dismisses BAF signals or take separate analysis of Log Ratio 
and BAF signals, PECNV simultaneously combines Log Ratio 
and BAF signals in modeling and parameters estimation, 
which results in an increased ability to detect CNVs and LOH.

However, the PECNV method has several limitations. 
Although PECNV is able to accurately infer tumor impurity 
up to 80%, it may fail as tumor impurity continues to rise. In 
such case, both Log Ratio and BAF signals become extremely 
attenuated and amplification or deletion regions are hard to be 
distinguished from normal regions. As a result, PECNV may 
have difficulty in detecting somatic aberrations.

Another limitation is related to tumor heterogeneity. 
The underlying assumption adopted in PECNV is that only 
one type of aberration is allowed in each exonic region. In 
practice, the hypothesis may be rejected in the presence of 
heterogeneity. For example, Oesper et al (31) reported in tumor 
progression that multiple tumor subclones may appear in 
somatic cells. Therefore, detection of CNVs in heterogeneous 
samples is challenging. Currently, few methods have been 
developed to identify CNVs in heterogeneous tumor samples 
with WES sequencing. Sophisticated computational methods 
and in-depth biological analysis are required to address this 
issue (28,32). PECNV and other previous studies may help 
towards solving this challenging task.
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