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Abstract. Modulation of the tumor microenvironment is 
becoming an increasingly popular research topic in the field 
of immunotherapy, and studies regarding immune check-
point blockades and cancer immunotherapy have pushed 
cancer immunotherapy to a climax. Simultaneously, the 
manipulation of the immune regulatory pathway can create 
an effective immunotherapy strategy; however, the tumor 
microenvironment serves an important role in suppressing 
the antitumor immunity by its significant heterogeneity. A 
number of patients with cancer do not have a good response 
to monotherapy approaches; therefore, combination strategies 
are required to achieve optimal therapeutic benefits. Targeting 
the tumor microenvironment may provide a novel strategy for 
immunotherapy, break down the resistance of conventional 
cancer therapy and produce the foundation for personalized 
precision medicine. The present review summarized the 
research regarding cancer immunotherapy from the perspec-
tive of how the tumor microenvironment affects the immune 
response, with the aim of proposing a novel strategy for cancer 
immunotherapy and combination therapy.
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1. Introduction

Cancer immunotherapy is emerging as a beneficial tool for 
cancer treatment by activating the immune system to produce 
antitumor effects (1). Recently, cancer immunotherapy, particu-
larly immune checkpoint therapy, has progressed and provided 
novel strategies for the treatment of cancer. The most advanced 
approach to therapeutically utilize the antitumor activity is 
via immune checkpoint inhibitors. This strategy has recently 
achieved notable clinical success in patients with numerous 
malignant cancer types; for example, in patients with advanced 
melanoma, the blockade of cytotoxic T lymphocyte-associated 
antigen 4 (CTLA‑4) via the antibody ipilimumab and the 
inhibition of the programmed death 1 (PD-1) receptor via 
the antibody nivolumab resulted in improved overall survival 
time (2,3). In comparison to conventional therapies for cancer, 
including radiation and chemotherapy, cancer immunotherapy 
primarily targets the immune system or tumor microenviron-
ment rather than tumor cells themselves, and can induce a 
synergistic effect in combination therapies (4). However, the 
efficacy of cancer immunotherapy is limited to only certain 
patients, due to not all patients responding to these immu-
nomodulatory maneuvers, and there are notable differences 
between individuals (5). The manner in which to improve the 
efficacy of patients with cancer is fast becoming the focus of 
cancer immunotherapy. 

There is increasing evidence demonstrating that the differ-
ences in the outcome of cancer immunotherapy are attributed 
to the heterogeneity of the tumor microenvironment (6). The 
tumor microenvironment consists of tumor cells, tumor‑infil-
trating immune cells, cancer‑associated fibroblasts (CAFs), the 
tumor vasculature and the extracellular matrix (ECM), which 
collectively can promote tumor transformation, protect the 
tumor from host immunity, support tumor growth and invasion, 
foster therapeutic resistance and provide niches for dormant 
metastases to thrive (7). The presence of malignant tumor cells 
initiates a series of changes that can transform the tumor envi-
ronment into one that can promote cancer progression. The 
orchestration of these changes involves recruitment and activa-
tion of CAFs, migration of immune cells, stroma remodeling, 
development of tumor vascular networks, upregulation of the 
suppressive receptors on tumor cells and reprogramming of cell 
metabolism (8). The complexity of these changes results in the 
heterogeneity of the tumor microenvironment. Furthermore, 
the tumor immunosuppressive microenvironment is formed 
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with the development of tumor proliferation and the increasing 
heterogeneity of the tumor microenvironment, which may 
influence the cancer immunotherapy.

In the present review, the progression of tumor microen-
vironment heterogeneity, its development and the effect on 
immunotherapy, and the present and future of cancer immuno-
therapy from the perspective of the tumor microenvironment 
are summarized.

2. Formation and development of the tumor immuno-
suppressive microenvironment

Although tumor cells initially instigate the formation of 
the tumor microenvironment, the mutual influence and 
co-evolution among tumor cells, stroma components and 
immune cells continuously promote the development of 
immunosuppressive progress (7). Tumor cells utilize the nega-
tive regulatory mechanism of the immune system, in order 
to establish a full range of immunosuppressive states in the 
tumor microenvironment, which will create the conditions for 
their survival and development (9).

Effects of tumor cells on the tumor microenvironment. Tumor 
cells promote immune escape by forming an immunosuppres-
sive microenvironment. Antigens expressed on the surface of 
tumor cells are usually in a defective state. The decreased or 
absent expression of major histocompatibility complex class I 
restricts the activation of the tumor‑infiltrating lymphocytes 
(TILs) (9). The existing suppressive signal transduction in the 
immune system could be utilized by tumor cells, including 
PD‑1, ligand programmed death‑ligand 1 (PD‑L1), CTLA‑4, 
cytotoxic T lymphocyte activation gene 3 (LAG‑3), T cell 
immunoglobulin domain 3 mucin domain protein 3 (Tim-3) 
and cluster of differentiation (CD)160 (10), which may gradu-
ally result in T cell exhaustion (11); therefore, the inhibited 
function of TILs in the tumor microenvironment results in 
tumor immunosuppression. Tumor cells can also secrete immu-
nosuppressive factors, including transforming growth factor-β 
(TGF-β), interleukin-6 (IL-6), IL-10, vascular endothelial 
growth factor (VEGF) and matrix metalloproteinase (5,9), in 
order to cause tumor‑infiltrating immune cells to inhibit their 
antitumor effect.

Furthermore, abnormal metabolism of tumor cells can also 
enhance the immunosuppressive effect of the tumor micro-
environment. Normal cells acquire energy primarily through 
oxidative phosphorylation, and a limited number use glycolysis, 
which can be inhibited under aerobic conditions; however, the 
method by which tumor cells acquire energy is different, and is 
termed aerobic glycolysis or ‘the Warburg effect’ (12). In this 
condition, tumor cells maintain an increased rate of glycolysis 
even in the presence of adequate oxygen. This was initially 
considered to be a strategy to adapt to hypoxia, but it is now 
widely accepted that this shift of energy metabolism is not 
only to produce the necessary resources for the biosynthetic 
activities of tumor cells, but also to generate numerous acidic 
products to form the acidic tumor microenvironment, which 
results in immunosuppression (13). In addition to aerobic 
glycolysis, in order to rapidly proliferate, tumor cells are also 
required to increase the demand for amino acids. Among 
them, glutamine, methionine, tryptophan, arginine and leucine 

are essential for the tumor cells as metabolic regulators in 
supporting cancer cell growth (14), and the tumor cells are 
more competitive for these metabolic resources compared to 
tumor‑infiltrating immune cells. Additionally, indoleamine 
2,3-dioxygenase (IDO), which is highly expressed by tumor 
cells, is a rate-limiting enzyme of tryptophan metabolism that 
has regulatory effects on T cells resulting from tryptophan 
depletion in tumor microenvironments (15). In addition, the 
tryptophan metabolites, including 3-hydroxyquinolinic acid 
via the kynurenine pathway, can also directly inhibit T effector 
cells (16). Furthermore, the metabolic interplay between tumor 
cells and immune cells can contribute to the exhaustion of 
TILs and immunosuppression (17).

Effect of CAF on the tumor microenvironment. Fibroblasts 
are the dominant component of the tumor stroma (18). The 
important functions of fibroblasts include deposition of 
ECM, regulation of epithelial differentiation, regulation of 
inflammation and participation in wound healing. Activated 
fibroblasts, termed CAFs, are also critical for the formation 
of the tumor microenvironment, particularly for solid tumor 
types (19). Fibroblasts are a critical determinant in the tumor 
malignant progression and represent an important target for 
cancer therapies. 

Fibroblast activation protein α (FAPα) is selectively 
expressed on the surface of CAF, and the majority of epithe-
lial tumor types exhibit high expression of FAPα (20). FAPα 
has a dual role as a protease and in signal transduction. The 
former refers to its involvement in remodeling the construc-
tion of the microenvironment stroma by degrading fibronectin 
and changing the structure of collagen, in order to enhance 
the invasion ability of tumor cells along the fibers (21). The 
latter refers to its involvement with TGF-β, VEGF, stromal 
cell-derived factor-1, platelet-derived growth factor, hepato-
cyte growth factor and other cytokines, which could conduct 
signals to promote tumor growth, prevent immune cell 
recruitment, inhibit the function of tumor‑infiltrating immune 
cells and enhance ECM proliferation for the formation of a 
tumor biological barrier (22). Furthermore, the desmoplastic 
stroma could then surround the tumor cells and prevent access 
of antitumor drugs (23). Kraman et al (24) confirmed that 
depleting FAP‑expressing cells could reduce the occurrence 
of hypoxic necrosis in vitro and permit the immunological 
control of growth in vivo; therefore, FAP‑expressing cells are 
an important immunosuppressive component of the tumor 
microenvironment.

Effect of the tumor abnormal vascular structure on the 
tumor microenvironment. Tumor angiogenesis is an important 
process in the tumor microenvironment. Emerging evidence 
indicates that angiogenesis and immunosuppression frequently 
occur simultaneously in response to different stimuli (25). 
Tumor neovascularization is primarily leaky, tortuous, dilated 
and saccular. The structural and functional abnormalities of 
tumor blood vessels result in the impaired blood supply and 
interstitial hypertension or high interstitial fluid pressure 
(IFP) (26). The perfusion of tumor tissues is further hampered 
by the formation of hypoxia and high IFP in the microenviron-
ment of malignant tumor types. The imbalance between the 
promotion and inhibition of angiogenic factors contributes to 
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the abnormal structure of the tumor vasculature (27). Among 
a whole range of pro-angiogenic factors that participate in 
physiological or pathological angiogenesis, VEGF is the most 
important and also a potent angiogenic factor that can increase 
the density of tumor blood vessels (28). The sufficient expres-
sion of VEGF depends on the oxygen concentration in tissues. 
There are a variety of transcription factors in tumor tissues, 
including hypoxia inducible factor (HIF), which can upregu-
late the VEGF under hypoxic conditions (29).

Therefore, combined with the abnormal metabolism of 
tumor cells, the suitable microenvironment for tumor survival 
is characterized by low pH, hypoxia and high IFP, which is 
considered to aid in rendering tumor microenvironments 
hostile to the immune cells. The low pH or acidic microenvi-
ronment can accelerate the differentiation of regulatory T cells 
(Tregs) and the development of myeloid-derived suppressor 
cells by promoting the production of IL‑2, inhibiting the infil-
tration of T cells and inducing their apoptosis, and activating 
tumor‑associated macrophages (TAMs), in order to secrete 
a large number of cytokines to promote tumor angiogen-
esis (30). Hypoxia can promote the formation of tumor blood 
vessels by upregulating the expression of pro-angiogenic 
factors such as HIF-1, VEGF, IL-6, TNFα, and tyrosine 
kinase receptor Tie2 (31), and increase the malignancy and 
trigger tumor metastasis by inducing epithelial-mesenchymal 
transition (EMT) (32). High IFP can prevent immune cells 
from recruiting to the tumor tissue and interfere with drug 
delivery. Additionally, high IFP and pro‑angiogenic factors 
can also evoke lymphangiogenesis, which is the important 
physiological basis of lymphatic metastasis (26). Collectively, 
these vascular abnormalities result in a complex immunosup-
pressive microenvironment, which may promote the survival 
and metastasis of tumor cells.

3. Heterogeneity of the tumor microenvironment

The formation of the tumor immunosuppressive microenvi-
ronment is a dynamic and complex process. In addition to 
the significant heterogeneity of tumor cells, heterogeneity of 
stroma components and immune cells can also increase the 
complexity of the tumor microenvironment (8). Additionally, 
tumor progression, pathological stage, treatment efficacy and 
prognosis are also associated with the tumor microenviron-
ment, which determines the antitumor response and remains 
a notable obstacle for the treatment of cancer (33). Therefore, 
due to the presence of tumor microenvironmental heteroge-
neity, the degree of the antitumor immune response in different 
individuals is variable.

The heterogeneity of stroma components in the tumor 
microenvironment is common. In pancreatic, breast and pros-
tate cancer, and other solid tumor types with a high content 
of CAF, the formation of high‑density ECM will increase 
the tumor IFP, and hinder the absorption of chemotherapy 
drugs and the infiltration of immune cells (19). Additionally, 
tumors with different types, locations and stages also exhibit 
tumor vascular heterogeneity (34). For instance, pancreatic 
ductal adenocarcinoma (PDA) is a stroma‑rich cancer type 
and its tumor environment has been demonstrated to consist 
of an abundance of stroma containing numerous cells types, 
but predominantly pancreatic stellate cells (PSCs) (35). The 

vasculature in PDA is notably influenced by the excessive 
desmoplasia caused by the secretion of PSCs and finally leads 
to hypovascularity and perfusion impairment (36), which 
indicates that the role of tumor angiogenesis in the progres-
sion of pancreatic cancer is less notable compared with that 
of other hypervascular tumor types, including liver cancer. 
Kashiwagi et al (37) reported that murine melanoma cells 
were intracranially and subcutaneously implanted into mice, 
and the results determined that the vascular density of the 
intracranial tumor types was increased compared with that 
of subcutaneous tissues, but that the diameter was reduced. 
Compared with early renal cell carcinoma, advanced renal cell 
carcinoma exhibits an increased endothelial cell proliferation 
fraction, while presenting with a reduced microvessel density, 
which indicates that the heterogeneity in angiogenic activity is 
associated with tumor stage (38). Additionally, these structural 
abnormalities of tumor vasculature contribute to the spatial 
and temporal heterogeneity in tumor blood flow, and solid 
pressure generated by proliferating tumor cells compresses 
intratumor blood and lymphatic vessels, which further impairs 
not only the blood flow, but also the lymphatic flow (39); 
therefore, the heterogeneity in the stroma of tumor microen-
vironment requires consideration regarding the efficacy of 
immunotherapies.

The recruitment, differentiation and location of immune 
cells in the tumor microenvironment are variable among 
different tumor types, and their heterogeneity is also affected. 
Chevrier et al (40) conducted mass cytometry for high-dimen-
sional single-cell analysis in order to produce an in-depth 
human atlas of the tumor immune microenvironment in 
patients with clear cell renal cell carcinoma, and this demon-
strated the immune cell diversity in the tumor ecosystem and 
the fact that a number of specific immune signatures could 
function as biomarkers associated with progression-free 
survival. Additionally, the innate immune landscape in 
early lung adenocarcinoma indicates that the heterogeneity 
of immune cells may begin to form at an early tumor stage 
and evolve with the progression of the tumor stage, gradually 
compromising the antitumor immunity (41). Furthermore, the 
dominant types of immune cells infiltrated in tumor micro-
environments are also different. TAMs are among the most 
frequently located cells in the pancreatic tumor microenviron-
ment, while the majority of other tumor types are primarily 
dominated by TILs (42); therefore, the usage of agonist CD40 
monoclonal antibody in PDA can activate and recruit a large 
number of macrophages, which are tumoricidal and could 
facilitate the depletion of the tumor stroma (43). The tumor 
microenvironment includes a complex network of immune 
T-cell subpopulations, and the state of activation, the location 
of infiltration and the density of the tumor stroma could be 
different (44). Therefore, due to the heterogeneity of immune 
cells in the tumor immune microenvironment, Chen et al (45) 
divided it into three phenotypes according to the distribution 
of immune cells, as follows: i) Immune‑inflamed phenotype, 
where intratumor infiltration of CD4+ and CD8+ T cells, and 
parenchyma and stroma can be observed in a large number of 
immune cells; ii) immune-excluded phenotype, where immune 
cells cannot penetrate the parenchyma and only exist in the 
stroma; and iii) immune-desert phenotype, which a paucity 
of tumor‑specific T cells are located in the parenchyma or 
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stroma. Among them, the first two phenotypes are associated 
with non‑inflamed tumor types. This classification explains 
the heterogeneity of immune cells in the tumor microenvi-
ronment, indicating that the tumor microenvironment can be 
modified by changing the immune phenotype, and providing a 
theoretical basis for personalized immunotherapy. 

4. Immunotherapies targeted to the tumor microenvironment

The complexity and heterogeneity of the tumor immunosup-
pressive microenvironment increases the difficulty of cancer 
immunotherapy and is an important reason for the variable 
efficacy in immunotherapies. Unlike directly targeting the 
tumor cells, the tumor microenvironment represents an 
increasingly popular therapeutic target with a decreased risk 
of resistance and recurrence due to the genetically stable 
stromal cells (46). Recently, the immune checkpoint inhibitors 
have provided new hope and have become a focus of current 
cancer immunotherapy (47). The antitumor immunity points 
of the tumor microenvironment also have other beneficial 
targets, and application together with conventional cancer 
therapies can also provide a survival benefit for increased 
numbers of patients with cancer. The association between 
the heterogeneity of the tumor microenvironment and the 
main microenvironment-targeted therapies is demonstrated 
in Fig. 1; therefore, the combination or ‘cocktail’ therapy for 
cancer provides an increased number of advantages compared 
with monotherapy, and has become an important method to 
improve the efficacy of tumor immunotherapy (48).

Immune checkpoint blockade. Immune checkpoint inhibitors 
are strategies for activating immune function and normalizing 
the tumor microenvironment. Immune checkpoint inhibitors 
have become an effective means of treating numerous tumor 
types (49). The anti-PD-1/PD-L1 monoclonal antibody has 
been successfully used in clinical application and has already 
been approved for use in numerous cancer types, including 
melanoma, non-small cell lung cancer, kidney cancer and 
bladder cancer (50). Clinical trials are currently being used 
to determine the success of the application of the anti-PD-1 
antibody (nivolumab) for different malignant tumor types, 
and the objective response rate (ORR) has been found to be 
variable: 32% of melanoma, 29% of renal cell carcinoma, 17% 
of non-small cell lung cancer (33% of squamous cell carci-
noma and 12% of non-squamous cell carcinoma) (51), and 
only 13.3% of head and neck cancer (52). The mechanism of 
inhibitor therapy is the activation of T cells, which requires 
an adequate number of TILs; therefore, the heterogeneity of 
the antitumor immune response is directly associated with 
the density of TILs. According to Teng et al (53), the tumor 
microenvironment could be stratified into four different 
types based on the presence or absence of TILs and PD-L1 
expression, as follows: i) Type I (TILs+PD-L1+), where the 
tumor microenvironment is PD-L1+, with TILs driving adap-
tive immune resistance, indicating that it may benefit from a 
single-agent anti-PD-1/L1 blockade; ii) type II (TILs-PD-L1-), 
where the tumor microenvironment is PD-L1-, with no TILs, 
indicating immune ignorance; iii) type III (TILs-PD-L1+), 
where the tumor microenvironment is PD-L1+, with no TILs, 
indicating intrinsic induction and that the recruitment of 

TILs is necessary; and iv) type IV (TILs+PD-L1-), where the 
tumor microenvironment is PD-L1-, with TILs, indicating 
the role of other suppressor pathways in promoting immune 
tolerance. For type II tumors, due to their inability to produce 
an antitumor immune response in the tumor microenviron-
ment, the recruitment of T cells should be a priority. This 
stratification of the tumor microenvironment can predict the 
clinical efficacy of anti‑PD‑1/PD-L1 therapies and enable the 
optimal combination of cancer therapies tailored to target 
different tumor microenvironments (54). Furthermore, the 
latest research demonstrated that the expression of PD-L1 on 
the minimal residual disease would increase when the tumor 
recurs and acquires treatment resistance, while the proportion 
of effector cells could consistently express increased PD-1 and 
Tim-3 expression in the tumor microenvironment (55). This 
indicates that the expression of immune checkpoints should be 
monitored dynamically, and that the combination treatments 
may be valuable for improving efficacy and preventing recur-
rence in patients with tumors.

Recently, anti-PD-1 antibody Keytruda (pembrolizumab) 
has been approved by the FDA to treat solid tumor with micro-
satellite instability-high or mismatch repair-deficient (56). 
This approval confirms the important position of the immu-
notherapy-targeted tumor microenvironment in the cancer 
therapies and produces a foundation for cancer immuno-
therapy as a major part of the combination therapy strategy for 
different tumor types. With the success of PD-1/PD-L1 inhibi-
tors in cancer immunotherapy, combination therapy with other 
immune checkpoints has received increasing attention in order 
to achieve greater clinical benefit. The combination therapies, 
including dual immune checkpoint inhibitors, are undergoing 
clinical trials. Clinical studies have demonstrated that the 
anti‑PD‑1/PD‑L1 antibodies integrated with CTLA‑4 inhibi-
tors can increase the therapeutic efficacy and the percentage of 
responders in the treatment of advanced melanoma, indicating 
that the combination of immune checkpoint inhibitors can 
significantly enhance antitumor immunity (57). Currently, the 
indications and safety of PD-1/PD-L1 inhibitors in combina-
tion with CTLA‑4 inhibitors for potential usage have also been 
investigated (58), and this combination was approved by the 
US Food and Drug Administration (FDA) for patients with 
BRAF V600 wild‑type, unresectable or metastatic melanoma. 
Recently, a phase II clinical trial (CheckMate 069) indicated 
that the combination of first‑line nivolumab plus ipilimumab 
could result in improved outcomes compared with first‑line 
ipilimumab alone in patients with advanced melanoma, and the 
2-year survival rates were 63.8 and 53.6%, respectively (59). 
Additionally, Wei et al (60) demonstrated the distinct under-
lying mechanisms of anti‑PD‑1 and anti‑CTLA‑4 checkpoint 
blockade therapies using a mass cytometry-based systems 
approach to identify different subsets of exhausted T cells, 
which could improve the understanding of why the combina-
tion checkpoint blockade therapies are more effective than 
monotherapy. In other words, this combination could overcome 
the heterogeneity of TILs. Additionally, anti‑PD‑1/PD‑L1 
treatment can be used in combination with the inhibition of 
other immune checkpoints. Notably, the inhibition of PD-1 
can stimulate other immune checkpoints expressed on T cells 
and increase the resistance of anti-PD-1 therapies, including 
Tim‑3 (61,62) and LAG‑3 (63), providing a theoretical basis for 
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the combination therapy. Currently, all 5 clinical trials regarding 
the combined inhibition of Tim-3 and PD-1 are undergoing 
recruitment (NCT02817633, NCT03099109, NCT02608268, 
NCT03066648 and NCT02947165). Additionally, 8 clinical 
trials containing the combination of LAG‑3 and PD‑1 anti-
bodies are also recruiting (NCT02658981, NCT01968109, 
NCT02061761, NCT03005782, NCT02676869, NCT02966548, 
NCT02488759 and NCT02060188) (https://clinicaltrials.gov/). 
Claudin-low breast cancer, an aggressive subtype that confers 
poor prognosis and exhibits a high expression level of EMT 
genes, has been reported to recruit Tregs to the tumor micro-
environment, which inhibits an effective antitumor immune 
response (64), and this study indicated that future clinical trials 
should target the immunosuppressive elements in the tumor 
microenvironment in combination with immune checkpoint 
blockades in order to increase the efficacy. 

However, the combinations of immunotherapies are not 
always successful. Two independent studies (65,66) demon-
strated that the concurrent administration of the anti-PD-1 
antibody and the agonist antibody to OX40, a tumor necrosis 
factor family costimulatory receptor that could promote the 
activation and expansion of T cells, had an adverse effect on 
the antitumor response of OX40 stimulation and resulted in 
poor outcomes in mice. Additionally, the antitumor effect of 
sequential anti-OX40 and anti-PD-1 combination is controver-
sial between the two studies; therefore, the sequence and timing 
of immunotherapies are critical to the success of combination 
therapy, and require further investigation prior to clinical use.

The appropriate selection of immune checkpoints inhibi-
tors or other immunotherapies for personalized combination 
therapy is an indispensable option and the underlying mecha-
nism requires further investigation.

Tumor metabolism regulation. Improving the immunosup-
pression of the tumor microenvironment by regulating tumor 
metabolism is a popular research topic. Immunotherapy with 
inhibition of IDO to inhibit tumor metabolism has achieved 
notable results. Currently, there are two primary drug types 
directed against IDO: i) Highly potent IDO inhibitor that 
directly inhibits the degradation of tryptophan, such as the 
drug epacadostat (67); and ii) IDO pathway inhibitor that 
inhibits the degradation of tryptophan and also reverses 
IDO-mediated immune suppression, such as the drug 
indoximod (68). Additionally, the safety and clinical efficacy 
of these two drug types have also been confirmed in recent 
clinical trials (69,70). Significant breakthroughs in the studies 
of tumor cell metabolism have also provided novel options to 
combine with immunotherapies. IDO inhibitor epacadostat 
and anti-PD-1 antibody pembrolizumab have been demon-
strated to have a promising clinical efficacy and safety for 
advanced cancer types in clinical trials improved objective 
response rate and disease control rate (71). Furthermore, a 
clinical trial has been initiated to evaluate the preliminary 
efficacy of indoximod combined with immune checkpoint 
inhibitors (NCT02073123); therefore, it is possible to conclude 
that IDO inhibitors have a potential synergistic effect with 

Figure 1. Heterogeneity of the tumor microenvironment and the main microenvironment-targeted therapies. Tumor cells, expression of biomarkers, oxygen 
concentration, pH, IFP, angiogenesis, metabolism, ECM and other intra- and extra-tumor characters exhibit notable heterogeneity. Tumor cells can secrete 
factors into the ECM, including TGF-β, IL-6 and IL-10, in order to inhibit the function of TIL and result in tumor immunosuppression. These corresponding 
therapies include: Anti‑PD‑1 and anti‑PD‑L1 antibody targeting the immunosuppressive microenvironment; IDO inhibitor (epacadostat and indoximod) and 
glutaminase inhibitor (CB-839) targeting the tumor abnormal amino acids metabolism; hypoxia inducible factor 1α inhibitors (PX-478 and EZN-2968), B-cell 
lymphoma 2 inhibitor (AT‑101) and monocarboxylate transporter inhibitor (AZD3965) targeting the hypoxic tumor cells in the hypoxic tumor microenviron-
ment; anti-angiogenic inhibitors (bevacizumab, INF-α and apatinib) and FAPα inhibitor (sibrotuzumab, RO6874281 and FAP‑CAR T cells) targeting the 
regulation of tumor stroma; and combination therapies with chemotherapy, radiotherapy and other therapies. IFP, interstitial fluid pressure; TGF‑β, trans-
forming growth factor-β; IL, interleukin; PD-1, programmed death 1; PD-L1, PD-ligand 1; IDO, indoleamine 2,3-dioxygenase; INF-α, interferon-α; FAP, 
fibroblast activation protein; FAP‑CAR, FAP‑specific chimeric antigen receptor; TIL, tumor‑infiltrating lymphocyte; CAF, cancer‑associated fibroblast; ECM, 
extracellular matrix.
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immune checkpoint inhibitors. Additionally, due to the 
success of IDO inhibitors, other tumor-associated amino 
acids with abnormal metabolism are gaining increasing 
attention. For example, clinical trials of glutaminase inhibitor 
CB-839 alone (NCT02861300) and combined with nivolumab 
(NCT02771626) for the treatment of solid tumor types are also 
under recruitment.

Hypoxic and acidic microenvironments are associated with 
the consequence of tumor metabolism, and reversing them is 
also being used as a strategy to regulate the tumor microen-
vironment. PX-478 is a selective inhibitor that can suppress 
hypoxia-induced HIF-1α levels (72). In a previous clinical trial, 
patients with refractory solid tumor types were treated with 
EZN-2968, a locked nucleic acid antisense oligonucleotide 
against HIF-1α (73). The number of cases was too small to 
veritably reflect the efficacy, but even so, there were a number 
of patients who responded to the treatment. Additionally, 
lactate can specifically upregulate B‑cell lymphoma 2 (Bcl‑2) 
through translational control and can promote resistance to the 
glucose starvation of tumor cells (74). In the clinical trial of 
abnormal lactate metabolism, it was determined that the use 
of cisplatin and etoposide in combination with Bcl-2 inhibitor 
AT‑101 could enhance the antitumor effect (75). Furthermore, 
the clinical trial regarding the the transport of lactic acid, 
pyruvate and other metabolites, and monocarboxylate trans-
porter inhibitor AZD3965, which could prevent the release of 
lactic acid by hypoxic tumor cells and then inhibit their growth 
and survival, is also recruiting (NCT01791595) (76).

Tumor stroma regulation. Regulation of the heterogenous 
stroma components in the tumor microenvironment could 
modulate its immunosuppressive conditions. Promoting 
normalization of tumor blood vessels and weakening the 
function of CAFs are the key roles in effectively transporting 
oxygen, drugs or immune cells and other components to tumor 
tissues, reducing the tumor proliferation and invasion (77). 

The first anti‑angiogenic therapy, Avastin (bevacizumab), 
was approved by the FDA in 2003. Considerable effort into the 
development of anti-angiogenic therapies has been undertaken, 
and a number of these inhibitory agents have been approved for 
clinical use against a number of cancer types; however, tumors 
can frequently escape the effects of these agents, causing the 
disease to eventually progress (78). Therefore, anti-angiogenic 
therapy may serve a role in vessel normalization, in order to 
increase immune cell infiltration and enhance the efficacies 
of immunotherapies (79). The combined treatment of bevaci-
zumab and interferon-α has also entered phase 2 and 3 clinical 
trials and demonstrated improved clinical efficacy in metastatic 
renal cell carcinoma, confirming the clinical value of combined 
application of anti-vascular therapy and immunotherapy when 
compared with monotherapy (80,81). Furthermore, the clinical 
trials combined with VEGF receptor tyrosine kinase inhibitor 
apatinib and PD-1 inhibitor are currently recruiting, in order to 
evaluate the efficacy for the treatment of gastric cancer types 
(NCT03092895 and NCT02942329).

Additionally, there are several studies have also 
attempted to improve the immunosuppressive condition by 
modulating the function of CAFs in the tumor microenviron-
ment. The humanized monoclonal antibody sibrotuzumab, 
which is directed against the specific antigen FAPα on 

CAFs, could block its dual function of protease and signal 
transduction, then inhibit tumor progression, invasion and 
metastasis progression, and reduce its negative regulation 
of antitumor immunity. In phase 1 and 2 clinical trials 
using sibrotuzumab alone (82,83), only a limited number of 
patients achieved stable disease and the expected clinical 
response rate was not met; however, whether the efficacy of 
the treatment could be improved by combining it with other 
immunotherapies requires further investigation. RO6874281 
is a bispecific antibody containing an IL‑2 variant targeting 
FAPα. The IL-2 variant does not bind to Tregs, which could 
prevent the immunosuppressive capacity of the Tregs (84). 
By specifically targeting FAPα, the antibody could not only 
increase the local IL-2 concentration, in order to activate the 
immune effector cells in the tumor microenvironment, but 
also inhibit the deterioration of the tumor microenvironment 
by directly blocking FAPα. Due to the consistent expression 
of FAP in the tumor stroma, modified T cells that express a 
FAP‑specific chimeric antigen receptor have also been engi-
neered to inhibit the tumor proliferation and augment host 
immunity (85-87). Clinical trials regarding monotherapy 
(NCT02627274) and combination with other immuno-
therapies (NCT03063762) are currently being conducted to 
evaluate the safety, tolerability and preliminary therapeutic 
efficacy. 

Therefore, studies regarding the stroma components in 
the tumor microenvironment will continue to be conducted 
in order to improve the effectiveness of the tumor immu-
nosuppression and provide a novel alternative approach for 
personalized combination therapy.

Combination with chemotherapy and radiotherapy. 
Immunotherapy combined with traditional radiotherapy and 
chemotherapy has received increasing attention. Different 
chemotherapeutic drugs have different immunological mech-
anisms underlying the efficacy of the cancer therapy (88), 
including: i) Increased immunogenicity resulting in tumor 
cell apoptosis from drugs such as anthracycline, 5‑fluoro-
uracil (5-Fu) and oxaliplatin; ii) direct immunostimulation 
activating the tumor immunity of immune effector cells 
from such as gemcitabine, paclitaxel and pemetrexed; and 
iii) indirect immunostimulation inhibiting the immunosup-
pressive cells from drugs such as 5-Fu, cyclophosphamide 
and oxaliplatin. Additionally, radiotherapy can also influ-
ence the tumor immune response. Tumor cell death from 
irradiation can enhance the antitumor immunity by inducing 
antigen expression on tumor cells and activating lympho-
cytes (89,90), and by generating the abscopal effect (91). 
Chemotherapy or radiotherapy can eliminate a number of 
the tumor cells in advance, then expose a large number of 
the tumor antigens and neoantigen products in the micro-
environment, which could recruit increased numbers of 
immune effector cells, and finally improve the immunosup-
pressive state of the tumor microenvironment. Currently, the 
rationale for combining immunotherapy with chemotherapy 
and radiotherapy has been verified (92), and preclinical 
studies have also been well investigated (93,94); therefore, 
it is plausible that combining immunotherapy with standard 
conventional therapies, including chemotherapy or radio-
therapy, will provide synergistic antitumor effects (95), but 
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the most beneficial dose and the appropriate time requires 
investigation (89,96).

5. Conclusions and perspectives

The tumor immunosuppressive microenvironment is in a 
dynamic status and is coordinated by multiple immunosup-
pressive signals in the regulatory network. In the course 
of clinical cancer treatment, due to the tumor types, stages, 
histological features and other microenvironment-associated 
factors, heterogeneity of the tumor microenvironment will 
cause immunosuppression and then result in the differences 
in the efficacy of immunotherapies. Despite the success in 
targeting non-tumor cell components, including immune 
checkpoint blockade, focusing on a single immunosuppressive 
target is ineffective in the majority of patients with cancer. 
Even among the cancer types that do respond to the immune 
checkpoint inhibitors, including melanoma, non-small cell 
lung cancer and renal cell cancer, few patients exhibit objective 
control of tumor progression. Following blocking or inhibiting 
of one immunosuppressive signal, the tumor will compensate 
through other mechanisms to generate the resistance and 
reduce the efficacy of this immunotherapy. The association 
between heterogeneity of the tumor microenvironment and the 
immunotherapy response remains a significant challenge.

In the future, immunotherapy may be required to be tailored 
for each patient with cancer according to the tumor microenvi-
ronment. The application of novel immune biomarkers and the 
ability to monitor and evaluate the tumor microenvironment by 
novel strategies, in order to improve early cancer diagnosis and 
predict the therapeutic efficacy and prognosis, requires further 
investigation. Personalized immunotherapy based on individual 
genetic, molecular and immune profiling has the potential to 
produce the most optimized outcomes for patients with cancer, 
but healthcare costs must be kept in an affordable range. Notably, 
the combinations must be designed in a rational and safe manner, 
and further clinical trials should be conducted, in order to verify 
the combination therapies prior to progressing to clinical use.
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