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Abstract. Osteoporosis (OP) is an age-related disease, and 
osteoporotic fracture is one of the major causes of disability 
and mortality in elderly patients (>70 years old). As the patho-
genesis and molecular mechanism of OP remain unclear, the 
identification of disease biomarkers is important for guiding 
research and providing therapeutic targets. In the present 
study, core genes and microRNAs (miRNAs) associated with 
OP were identified. Differentially expressed genes (DEGs) 
between human mesenchymal stem cell specimens from 
normal osseous tissues and OP tissues were detected using the 
GEO2R tool of the Gene Expression Omnibus database and 
Morpheus. Network topological parameters were determined 
using NetworkAnalyzer. Gene Ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes pathway enrichment 
analyses were performed using the Database for Annotation, 
Visualization and Integrated Discovery, and ClueGO. 
Cytoscape with the Search Tool for the Retrieval of Interacting 
Genes and Molecular Complex Detection plug‑in was used to 
visualize protein‑protein interactions (PPIs). Additionally, 
miRNA-gene regulatory modules were predicted using 
CyTargetLinker in order to guide future research. In total, 
915 DEGs were identified, including 774 upregulated and 
141 downregulated genes. Enriched GO terms and pathways 
were determined, including ‘nervous system development’, 
‘regulation of molecular function’, ‘glutamatergic synapse 
pathway’ and ‘pathways in cancer’. The node degrees of DEGs 
followed power‑law distributions. A PPI network with 541 
nodes and 1,431 edges was obtained. Overall, 3 important 
modules were identified from the PPI network. The following 

10 genes were identified as core genes based on high 
degrees of connectivity: Albumin, PH domain leucine-rich 
repeat-containing protein phosphatase 2 (PHLPP2), DNA 
topoisomerase 2-α, kininogen 1 (KNG1), interleukin 2 (IL2), 
leucine‑rich repeats and guanylate kinase domain containing, 
phosphatidylinositol‑4,5‑bisphosphate 3‑kinase catalytic 
subunit γ (PIK3CG), leptin, transferrin and RNA polymerase 
II subunit A (POLR2A). Additionally, 15 miRNA-target 
interactions were obtained using CyTargetLinker. Overall, 7 
miRNAs co-regulated IL2, 3 regulated PHLPP2, 3 regulated 
KNG1, 1 regulated PIK3CG and 1 modulated POLR2A. These 
results indicate potential biomarkers in the pathogenesis of OP 
and therapeutic targets.

Introduction

Osteoporosis (OP) is a major public health issue with a 
gradually increasing incidence, from 14.94% prior to 2008 to 
27.96% in the period between 2012 and 2015 in China (1,2). 
Nearly 27.5 million individuals in Europe were affected by OP 
in 2010 (3). Furthermore, the diagnosis of OP is difficult until 
the occurrence of bone fractures. Accordingly, research on the 
pathogenesis and molecular mechanism of OP is required in 
order to identify biomarkers and therapeutic targets.

Mutations in genes associated with OP have been detected. 
For example, cystatin A (expressed by the CSTA gene) is 
essential for epidermal development and maintenance (4). 
CSTA interacts with various genes, including one encoding 
a tyrosine kinase binding protein. These genes are associated 
with the immune regulation of osteoclasts (5). Additionally, 
a member of the fibroblast growth factors (FGFs) family, 
FGF21, is an essential endocrine hormone that regulates 
glucose and lipid metabolism (6). FGF21 affects bone 
development; it is inversely associated with regional bone 
mass density (BMD) (7). However, few studies have evalu-
ated the core genes involved in OP using a bioinformatics 
approach. Although previous studies have identified several 
potential genes and proteins associated with OP, topological 
analyses are required in order to characterize the complex 
underlying networks. Furthermore, few studies have explored 
the microRNA (miRNA/miR)‑gene regulatory networks to 
generate novel premises for OP research.

In the present study, the gene expression dataset GSE35956 
was selected from the Gene Expression Omnibus (GEO) 
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database (https://www.ncbi.nlm.nih.gov/geo) (8), and the 
GEO2R online analysis software (https://www.ncbi.nlm.nih.
gov/geo/geo2r/) was used to uncover differentially expressed 
genes (DEGs). Using these loci, a protein‑protein interac-
tion (PPI) network was obtained and a network topological 
analysis was performed in order to identify core genes with 
high degrees of connectivity. In addition, the functions of 
the DEGs and 3 central modules were analyzed, including 
analyses of over-represented biological processes (BPs), 
molecular functions (MFs), cellular components (CCs), and 
Kyoto Encyclopedia of Genes and Genomes (KEGG) path-
ways (9,10). miRNAs that regulate these core genes were 
predicted, providing a basis for further studies.

Materials and methods

Data. The gene expression dataset GSE35956 was obtained 
from the publicly accessible GEO database. GSE35956 was 
obtained through rigorous scientific design and the data can 
be analyzed with high quality. The selection criteria were as 
follows: i) Entry type: Series; ii) Organism: Homo sapiens; and 
iii) Experiment type: Expression profiling by array. The dataset 
includes human mesenchymal stem cell (hMSC) samples from 
5 middle-aged donors without any indication of the syndrome 
(age range, 42-67 years; mean age, 57.6 years; sex, 4 female and 
1 male) and 5 patients (age range, 79-94 years; mean age, 86.2 
years; sex, female) suffering from primary OP (hMSC‑OP) (11). 
Non-osteoporotic donors with total hip arthroplasty due to 
osteoarthritis and/or hip dysplasia were selected and MSCs 
from the bone marrow of the donors were obtained. MSCs 
of OP donors were isolated from femoral heads following 
low‑energy fracture of the femoral neck. Benisch et al (11) 
used the Significance Analysis of Microarrays software 
(http://statweb.stanford.edu/~tibs/SAM/) to compare gene 
expression patterns of 2 groups of hMSC populations. In the 
present study, a separate analysis of 2 groups was performed 
and each group contained the 5 aforementioned samples. The 
study was based on the GPL570 platform (Affymetrix Human 
Genome U133 Plus 2.0 Array; Affymetrix; Thermo Fisher 
Scientific, Inc., Waltham, MA, USA). The series matrix file of 
GSE35956 was downloaded from the GEO database.

Data processing for DEG identification. GEO2R and 
Morpheus (https://software.broadinstitute.org/morpheus/) 
were used to identify DEGs among experimental samples (12). 
GEO2R offers a convenient interface enabling sophisticated 
R‑based analyses of GEO data and is useful for the identifica-
tion and evaluation of DEGs (8). P<0.05 and |logFC|≥2 were 
set as the thresholds for DEG detection.

Gene Ontology (GO) and KEGG pathway analyses of DEGs. 
GO analyses are used to annotate genes or gene products and to 
determine biological characteristics of high-throughput genome 
or transcriptome data (10). KEGG is a group of databases for 
various biological data, including genomes and biological 
pathways. The Database for Annotation, Visualization and 
Integrated Discovery v6.8 (DAVID; https://david.ncifcrf.gov/) 
is a net-based online bioinformatics resource with tools for 
the functional interpretation of large-scale gene or protein 
datasets (13). The Functional Annotation Tool of DAVID was 

used and then the upregulated and downregulated DEGs were 
inserted into the tool for GO and KEGG analysis, respectively. 
In particular, Homo sapiens were required to be selected in 
order to limit the annotation of the species, thereby generating 
a summary of gene-species mapping. Finally, the data was 
downloaded and P<0.05 was used to indicate a statistically 
significant difference.

Construction of functional annotation maps. In order to eval-
uate the biological functions of the proteins in the PPI networks 
based on upregulated, downregulated and total DEGs, the 
ClueGO plug-in v2.5.0 was used to identify over-represented 
BP terms for protein members in the network (14). ClueGO 
integrates GO terms into a PPI network and creates a func-
tional annotation map that represents the associations between 
terms. The κ score was set to 0.4, indicating the resemblance of 
GO terms for associated genes. In addition, KEGG pathways 
were used to combine associated genes with corresponding 
pathways and P<0.05 indicated a significant difference.

Network topological parameters. Network topological 
analyses were used for the comparison and characterization 
of complex networks. NetworkAnalyzer v2.7 (Department 
of Computational Biology and Applied Algorithmics at the 
Max Planck Institute for Informatics, Saarbrücken, Germany), 
which is part of Cytoscape v3.6.0, was used to analyze network 
topological parameters (15). NetworkAnalyzer only fits points 
with positive coordinate values and provides the association 
between the given data points and the corresponding points 
on the fitted curve. This coefficient provides the ratio of vari-
ability in a dataset, which is described by a fitted linear model. 
To determine whether two random variables satisfy the linear 
association, the correlation coefficient can be calculated with 
the linear regression model and the least squares method. 
Consequently, the R2 value is calculated on logarithmized 
data, where the power‑law curve: y=a xb is transformed into 
linear model: ln y=ln a + b ln x, where x and y are positive 
random variables, and a and b are constants >0. The power 
law distribution appears as a straight line with a slope of a 
power exponent. This linear association is the basis for judging 
whether a random variable satisfies a power law in a given 
instance, and the power-law distribution of node degree was 
the main parameter used to evaluate the network topology.

PPI network and module analysis. The Search Tool for the 
Retrieval of Interacting Genes (STRING) v10.5 (https://string-db.
org/) is an online tool designed to evaluate PPI information (16) 
and this was used to detect potential associations among the 
DEGs. The results were input into Cytoscape v3.6.0 (http://www.
cytoscape.org/) to map the associations among the DEGs (17). 
A confidence score ≥0.4 and a maximum number of interac-
tors of 0 were set as criteria. Molecular Complex Detection 
(MCODE) v1.5.1 (Bader Lab, University of Toronto, Toronto, 
Ontario, Canada) was used to evaluate the modules in the PPI 
network in Cytoscape (18). The definition of false discovery rate 
(FDR) is the expected value of the number of false rejects as a 
percentage of all rejected null hypotheses. The P-value is gener-
ally performed using a Student's t-test or χ2 test for the analysis 
of differential gene expression, and the false positive test can 
be performed on the P‑value using the Benjamini FDR check 
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Figure 1. Functional annotation map of PPI subnetworks for (A) all DEGs, (B) upregulated DEGs and (C) downregulated DEGs. The GO biological process 
terms for total, upregulated and downregulated DEGs included in the PPI subnetworks are represented in (A), (B) and (C), respectively. GO terms are presented 
as nodes. PPI, protein‑protein interactions; DEG, differentially expressed gene; GO, Gene Ontology.
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method (19). In other words, the second screening of DEGs 
can be performed by the FDR significance parameter. The 
screening conditions were as follows: Degree, 2; node score, 
0.2; k‑core, 2; and maximum depth, 100. A KEGG pathway 
enrichment analysis for DEGs in the module was performed 
using the Functional Annotation Tool based on the DAVID for 
these cluster genes and annotation summary results are depicted 
as a Functional Annotation Chart in Fig. 1. The count threshold 
was set to 2, which means the minimum number of genes for 
the corresponding term is 2. Additionally, Homo sapiens were 
required to be selected to limit the annotation of the species. 
P<0.05 indicated a significant difference.

Predict ion of  miR NA‑gene regula tor y modules. 
CyTargetLinker v3.0.1 (https://projects.bigcat.unimaas.
nl/cytargetlinker/) was utilized to predict miRNA‑target 
interactions (MTIs) for the genes, which were presented in a 
graphical manner using an extension of the network (20), with 
the network established by the core genes can be extended to 
be associated with miRNAs. A regulatory interaction network 
(RegIN) is a network containing regulatory interactions, often 
derived from online interaction databases (20). To generate 
a RegIN using CyTargetLinker in Cytoscape, Homo sapiens 
MTIs were obtained from the experimentally validated 
database miRTarBase v4.4, which includes 20,942 MTIs, 

Table I. Gene Ontology analysis of differentially expressed genes associated with osteoporosisa. 

Expression Category Term Countb %c P-value

Upregulated GOTERM_BP_FAT GO:0007399~nervous system development 106 13.73 4.20x10-6

 GOTERM_BP_FAT GO:0042592~homeostatic process 88 11.40 1.06x10-6

 GOTERM_BP_FAT GO:0007267~cell‑cell signaling 85 11.01 2.52x10-7

 GOTERM_BP_FAT GO:0048878~chemical homeostasis 66 8.55 1.42x10-7

 GOTERM_BP_FAT GO:0055082~cellular chemical homeostasis 47 6.09 3.77x10-6

 GOTERM_MF_FAT GO:0000981~RNA polymerase II transcription 43 5.57 1.96x10-5

  factor activity, sequence‑specific DNA binding
 GOTERM_MF_FAT GO:0015267~channel activity 31 4.02 3.65x10-4

 GOTERM_MF_FAT GO:0022803~passive transmembrane transporter 31 4.02 3.80x10-4

  activity
 GOTERM_MF_FAT GO:0015276~ligand‑gated ion channel activity 16 2.07 6.49x10-5

 GOTERM_MF_FAT GO:0022834~ligand‑gated channel activity 16 2.07 6.49x10-5

 GOTERM_CC_FAT GO:0045202~synapse 51 6.61 7.19x10-7

 GOTERM_CC_FAT GO:0044456~synapse part 42 5.44 4.81x10-6

 GOTERM_CC_FAT GO:0097060~synaptic membrane 29 3.76 6.53x10-8

 GOTERM_CC_FAT GO:0045211~postsynaptic membrane 22 2.85 4.28x10-6

 GOTERM_CC_FAT GO:0060076~excitatory synapse 20 2.59 1.79x10-5

Downregulated GOTERM_BP_FAT GO:0065009~regulation of molecular function 34 24.29 0.001
 GOTERM_BP_FAT GO:1902589~single-organism organelle 23 16.43 0.001
  organization
 GOTERM_BP_FAT GO:0007010~cytoskeleton organization 18 12.86 0.002
 GOTERM_BP_FAT GO:0043087~regulation of GTPase activity 14 10.00 9.63x10-4

 GOTERM_BP_FAT GO:0030036~actin cytoskeleton organization 12 8.57 0.002
 GOTERM_MF_FAT GO:0000166~nucleotide binding 29 20.71 0.003
 GOTERM_MF_FAT GO:1901265~nucleoside phosphate binding 29 20.71 0.003
 GOTERM_MF_FAT GO:0035639~purine ribonucleoside 24 17.14 0.004
  triphosphate binding
 GOTERM_MF_FAT GO:0032550~purine ribonucleoside binding 24 17.14 0.004
 GOTERM_MF_FAT GO:0005201~extracellular matrix structural 5 3.57 0.003
  constituent
 GOTERM_CC_FAT GO:0031012~extracellular matrix 10 7.14 0.015
 GOTERM_CC_FAT GO:0048471~perinuclear region of cytoplasm 10 7.14 0.044
 GOTERM_CC_FAT GO:0005578~proteinaceous extracellular matrix 8 5.71 0.017
 GOTERM_CC_FAT GO:0031252~cell leading edge 7 5.00 0.046
 GOTERM_CC_FAT GO:0001726~ruffle 6 4.29 0.006 

aThe top 5 terms were selected according to P-value. bCount is the number of enriched genes for each term. GO, Gene Ontology; BP, biological 
process; MF, molecular function; CC, cellular component. cRepresents the percentage of genes contained in each term to the upregulated or 
downregulated genes.
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and from 2 predicted miRNA databases, MicroCosm v5.0, 
with 541,039 MTIs, and TargetScan v6.2, with 511,040 MTIs 
(http://projects.bigcat.unimaas.nl/cytargetlinker/regins). Each 
regulatory interaction comprises 2 nodes, a source (regula-
tory component) and a target biomolecule, connected by 
a single directed edge. In the present study, the top 10 hub 
genes were selected for the extension of the network using 
CyTargetLinker.

Results

Identification of DEGs. The gene expression profiles of 10 
samples in the gene expression dataset GSE35956, including 
5 OP and 5 control samples, were analyzed. A total of 915 
DEGs between the OP and control samples were identified 
using GEO2R and Morpheus, including 774 upregulated and 
141 downregulated genes.

GO function and KEGG pathway enrichment analysis. GO 
and KEGG pathway enrichment analyses were performed 
using DAVID and the ClueGO plug‑in in order to gain a 
comprehensive understanding of the functions of the DEGs. 
The results of the GO analysis indicated that upregulated 
and downregulated genes were enriched for various BP 
terms, which are listed in Table I. For upregulated DEGs 
these included ‘nervous system development’, ‘homeostatic 
process’, ‘cell-cell signaling’, ‘chemical homeostasis’ and 
‘cellular chemical homeostasis’, and for downregulated DEGs 
they included ‘regulation of MF’, ‘single-organism organelle 

organization’, ‘cytoskeleton organization’, ‘regulation of 
GTPase activity’ and ‘actin cytoskeleton organization’. In the 
MF category, the upregulated genes were enriched for ‘RNA 
polymerase II transcription factor activity, sequence‑specific 
DNA binding’, ‘channel activity’, ‘passive transmembrane 
transporter activity’, ‘ligand-gated ion channel activity’ and 
‘ligand-gated channel activity’, while the downregulated genes 
were enriched for ‘nucleotide binding’, ‘nucleoside phosphate 
binding’, ‘purine ribonucleoside triphosphate binding’, ‘purine 
ribonucleoside binding’ and ‘extracellular matrix structural 
constituent’. A CC analysis further demonstrated that the 
upregulated genes were enriched for ‘synapse’, ‘synapse part’, 
‘synaptic membrane’, ‘postsynaptic membrane’ and ‘excit-
atory synapse’, while the downregulated genes were enriched 
for ‘extracellular matrix’, ‘perinuclear region of cytoplasm’, 
‘proteinaceous extracellular matrix’, ‘cell leading edge’ and 
‘ruffle’.

In addition, 6 KEGG pathways were identified, as listed 
in Table II, involving the ‘glutamatergic synapse’, ‘adrenergic 
signaling in cardiomyocytes’, ‘neuroactive ligand-receptor 
interaction’, ‘Rap1 signaling pathway’ and ‘cAMP signaling 
pathway’ for upregulated DEGs, and ‘pathways in cancer’ for 
downregulated DEGs.

The results of the ClueGO analysis demonstrated that upregu-
lated and downregulated DEGs were particularly enriched for BP 
terms, including ‘multicellular organism development’, ‘system 
development’, ‘response to organic substance’, ‘nervous system 
development’ and ‘cell‑cell signaling’ for upregulated DEGs, 
and ‘regulation of osteoblast differentiation’, ‘mitotic DNA 

Table II. Kyoto Encyclopedia of Genes and Genomes pathway analysis of DEGs associated with osteoporosisa. 

Category of DEGs Term Countb %c P-value Genes

Upregulated hsa04080:Neuroactive 28 3.63 2.34x10-7 AVPR2, MCHR1, GRIK2, NPY2R, GRIK3, GABRB1, 
 ligand-receptor    F2RL1, GRIK5, HCRTR1, LTB4R, CNR1, P2RY1, 
 interaction    CHRNA4, GRID1, GABRG3, GABRA2, PTGER3, 
     NPBWR2, LEP, P2RY10, ADRB1, GRM2, PRLR, 
     GRM8, CHRM1, P2RX2, GHSR, TSHR
 hsa04015:Rap1 19 2.46 1.45x10-4 PIK3CG, ADCY1, MAGI2, PGF, EFNA2, SIPA1L2, 
 signaling pathway    KITLG, FGF23, RGS14, PRKCB, CNR1, P2RY1, 
     RASGRP2, CALML6, RAPGEF3, ANGPT2, 
     RAPGEF1, AKT2, ITGA2B
 hsa04024:cAMP 16 2.07 0.002 PIK3CG, HCN2, ADCY1, PTGER3, CFTR, CNGB1, 
 signaling pathway    CNGB3, ADRB1, CHRM1, CAMK2D, CALML6, 
     RAPGEF3, GHSR, CAMK2A, TSHR, AKT2
 hsa04724:Glutamatergic 11 1.42 0.004 SLC17A8, SLC1A2, ADCY1, DLGAP1, GRM2, 
 synapse    GRM8, GRIK2, GRIK3, GRIK5, SHANK3, PRKCB
 hsa04261:Adrenergic 11 1.42 0.020 PIK3CG, ADCY1, ADRB1, CACNG8, PPP1R1A, 
 signaling in    CACNB1, CAMK2D, CALML6, RAPGEF3, CAMK2A,
 cardiomyocytes    AKT2
Downregulated hsa05200:Pathways 7 55.00 0.030 FGFR2, LAMA4, WNT4, HSP90B1, APC2, PIAS2, 
 in cancer    CDK2 

aThe top 5 terms were selected for upregulated DEGs and one term was selected for downregulated DEGs according to P‑values. bCount is the 
number of enriched genes for each term. DEGs, differentially expressed genes. cRepresents the percentage of genes contained in each term to 
the upregulated or downregulated genes.
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Table III. Summary of ClueGO analysis of DEGs for biological processes associated with osteoporosisa. 

DEG expression GO ID GO term Genes, nb %c P-value Genes

Upregulated GO:0007275 Multicellular 220 4.14 5.03x10-7 ADAMTS9, ADCY1, AKT2, ALG5, AMOT, 
  organism    ANGPT2, ANKRD54, ANPEP, APLP1, APOH, 
      AQP1, ARHGAP26, ASB4, ASCL2, ASNS, 
      ATCAY, ATN1, AVPR2, AXIN2, BCAN, BMP7, 
      BMP8B, BRSK1, BRSK2, CAMK2A, 
      CAMK2D, CBX2, CCK, CCR4, CD24, CD74, 
      CHRM1, CNGB1, CNR1, CNTN4, COL10A1, 
      CPB2, CUX2, CYP19A1, DACH1, DCHS2, 
      DDC, DMBX1, DNAH11, DRAXIN, DYRK1B, 
      EFNA2, EGR2, EMX1, EN2, EPHA4, ESRRB, 
      EZH1, F2RL1, FEZF2, FGF23, FOXE1, 
      FOXG1, FOXO1, FOXP2, FZD10, GABRB1, 
      GAL, GHSR, GJA5, GJB6, GPM6B, GPRC5B, 
      HDAC10, HES4, HID1, HIPK1, HMGA2, 
      HNF4A, HOOK1, HPRT1, HSPB6, HTN3, 
      IBSP, IKZF1, IKZF3, IL2, IRF4, ITGA2B, 
      JMJD6, JPH1, KCNIP2, KITLG, KLHL17, 
      KLHL32, KLKB1, KMT2B, KRT40, LEP, 
      LFNG, LHX2, LHX6, LHX8, LPAL2, LRRC7, 
      LSAMP, LST1, LTBP4, LYL1, MAB21L2, 
      MAGI2, MARK4, MCF2, MEF2D, MEX3C, 
      MINK1, MMP11, MOBP, MOV10L1, MT1G, 
      MYCBPAP, MYH7B, MYO3B, MYO7A, 
      NDRG2, NEUROG2, NFATC4, NME8, 
      NOBOX, NPAS1, NPPC, NPY2R, NR0B1, 
      NR2F6, NRP2, NRXN1, NTRK3, OBSL1, 
      OLFM1, P2RX2, P2RY1, PAK3, PCDH15, 
      PCDH8, PCDHGC5, PCSK6, PCYT1B, 
      PECAM1, PGF, PHOSPHO1, PIK3CG, 
      PKP2, PLCG2, POLB, PPARGC1A, 
      PPARGC1B, PPDPF, PRKCB, PRLR, PSG1, 
      PTPRB, RAB11FIP4, RAD21L1, RAPGEF1, 
      RAPGEF3, RARRES2, RAX, RFX4, RGS14, 
      RIMS1, RIPPLY2, SCEL, SCN3B, SCRT1, 
      SDK2, SEMA4D, SEMA6B, SERPINA5, 
      SETDB2, SEZ6L, SF1, SFTPD, SH3TC2, 
      SHANK3, SHOX, SIAH3, SIN3A, SLC17A8, 
      SLC1A2, SLC8A3, SMIM6, SOST, SOX10, 
      SOX2, SOX8, SPATA19, ST8SIA2, STMN4, 
      STOX1, TAF10, TBX3, TBX6, TCF21, TEF, 
      TERT, TEX11, THPO, TIE1, TNFRSF11A, 
      TP63, TRIB1, TRIM54, TRPC6, TRPM1, 
      TSHR, TSSK1B, TTPA, TUB, UBE4B, WDR72, 
      WT1, XIRP2, ZFP36L1, ZFP36L2, ZFP42
 GO:0048731 System 203 4.28 1.94x10-7 ADAMTS9, ADCY1, AKT2, AMOT, ANGPT2, 
  development    ANKRD54, ANPEP, APLP1, APOH, AQP1, 
      ARHGAP26, ASB4, ASCL2, ASNS, ATCAY, 
      ATN1, AVPR2, AXIN2, BCAN, BMP7, BMP8B, 
      BRSK1, BRSK2, CAMK2A, CAMK2D, CCK, 
      CCR4, CD24, CD74, CHRM1, CNGB1, CNR1, 
      CNTN4, COL10A1, CPB2, CUX2, CYP19A1, 
      DCHS2, DMBX1, DNAH11, DRAXIN, 
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Table III. Continued.

DEG expression GO ID GO term Genes, nb %c P-value Genes

      DYRK1B, EFNA2, EGR2, EMX1, EN2, 
      EPHA4, ESRRB, EZH1, F2RL1, FEZF2, 
      FGF23, FOXE1, FOXG1, FOXO1, FOXP2, 
      FZD10, GABRB1, GAL, GHSR, GJA5, GJB6, 
      GPM6B, GPRC5B, HDAC10, HES4, HID1, 
      HIPK1, HMGA2, HPRT1, HSPB6, HTN3, 
      IBSP, IKZF1, IKZF3, IL2, IRF4, ITGA2B, 
      JMJD6, JPH1, KCNIP2, KITLG, KLHL17, 
      KLHL32, KLKB1, KMT2B, KRT40, LEP, 
      LFNG, LHX2, LHX6, LHX8, LPAL2, LRRC7, 
      LSAMP, LST1, LYL1, MAB21L2, MAGI2, 
      MARK4, MCF2, MEF2D, MEX3C, MINK1, 
      MOBP, MT1G, MYH7B, MYO3B, MYO7A, 
      NDRG2, NEUROG2, NFATC4, NOBOX, 
      NPAS1, NPPC, NPY2R, NR0B1, NR2F6, 
      NRP2, NRXN1, NTRK3, OBSL1, OLFM1, 
      P2RX2, P2RY1, PAK3, PCDH15, PCDH8, 
      PCDHGC5, PCSK6, PCYT1B, PECAM1, 
      PGF, PHOSPHO1, PIK3CG, PKP2, PLCG2, 
      POLB, PPARGC1A, PPARGC1B, PPDPF, 
      PRKCB, PRLR, PSG1, PTPRB, RAB11FIP4, 
      RAD21L1, RAPGEF1, RAPGEF3, RARRES2, 
      RAX, RFX4, RGS14, RIMS1, RIPPLY2, SCEL, 
      SCN3B, SCRT1, SDK2, SEMA4D, SEMA6B, 
      SERPINA5, SETDB2, SEZ6L, SF1, SFTPD, 
      SH3TC2, SHANK3, SHOX, SIN3A, SLC17A8, 
      SLC1A2, SLC8A3, SMIM6, SOX10, SOX2, 
      SOX8, ST8SIA2, STMN4, STOX1, TAF10, 
      TBX3, TBX6, TCF21, TERT, TEX11, THPO, 
      TIE1, TNFRSF11A, TP63, TRIB1, TRPC6, 
      TRPM1, TSHR, TTPA, TUB, UBE4B, WDR72, 
      WT1, XIRP2, ZFP36L1, ZFP36L2, ZFP42
 GO:0010033 Response to 138 4.34 <0.001 ABCA2, ABCC2, ADCY1, AIM2, AKT2, 
  organic    ANGPT2, APLP1, AQP1, AQP4, ASNS, 
  substance    ATP6V0A4, AVPR2, BMP7, BMP8B, BRSK2, 
      CACNB1, CAMK2A, CAMK2D, CCDC3, 
      CCL23, CCR4, CD24, CD6, CD74, CFTR, 
      CGN, CHRM1, CHRNA4, CNR1, CPB2, 
      CRLF2, CSF2RA, CUX2, CXCL5, DBH, DDC, 
      EGR2, ELANE, EPHA4, ESRRB, F2RL1, 
      FABP4, FGF23, FOXO1, FOXP2, FZD10, 
      GABRB1, GAL, GBP5, GHSR, GJB6, GPD1, 
      GRIK5, HCN2, HCRTR1, HFE2, HID1, 
      HIPK1, HNF4A, HPRT1, IBSP, IL2, IL22RA2, 
      IL37, IRF4, ITIH4, KANK2, KHSRP, LATS2, 
      LEP, LMO3, LPAL2, LRRC19, LRRC3, LTBP4, 
      MAGI2, MAP2K7, MAPK4, MCF2, MEFV, 
      MT1G, MTHFR, MTSS1L, NFATC4, NPPC, 
      NR0B1, NR2F6, NRP2, NRXN1, NTRK3, 
      P2RX2, P2RY1, PAK3, PAQR9, PCSK6, PELO, 
      PGF, PID1, PIK3CG, PLCG2, POLB, 
      POLR2A, PPARGC1A, PPARGC1B, PRKCB, 
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Table III. Continued.

DEG expression GO ID GO term Genes, nb %c P-value Genes

      PRLR, PSG1, RAPGEF1, RAPGEF3, RARRES2,
      RERG, RIPOR1, RNASE7, RNF31, RXRB,SIN3A, 
      SLC11A1, SLC1A2, SLC8A3, SORBS1, SOST,
      SOX10, SOX2, SOX30, TAT, TCF21, TERT,
      THPO, TIE1, TNFRSF11A, TP63, TRIB1, TSHR, 
      TUB, UBE4B, WT1, ZFP36L1, ZFP36L2
 GO:0007399 Nervous system 109 4.61 <0.001 ADCY1, AKT2, APLP1, AQP1, ARHGAP26, 
  development    ASCL2, ATCAY, ATN1, AVPR2, BCAN, BMP7, 
      BRSK1, BRSK2, CAMK2A, CAMK2D, CCK, 
      CCR4, CHRM1, CNGB1, CNR1, CNTN4, CUX2, 
      DMBX1, DRAXIN, EFNA2, EGR2, EMX1, EN2, 
      EPHA4, EZH1, FEZF2, FOXG1, FOXP2, 
      FZD10, GABRB1, GAL, GHSR, GPM6B, 
      GPRC5B, HDAC10, HES4, HIPK1, HPRT1,  
      IL2, KCNIP2, KLHL17, LEP, LHX2, LHX6,  
      LHX8, LRRC7, LSAMP, LST1, MAB21L2,  
      MAGI2, MARK4, MCF2, MEF2D, MINK1,  
      MOBP, MYO7A, NDRG2, NEUROG2, NFATC4, 
      NPAS1, NPPC, NR0B1, NR2F6, NRP2, NRXN1,  
      NTRK3, OBSL1, OLFM1, P2RY1, PAK3,  
      PCDH15, PCDH8, PCDHGC5, PPARGC1A,  
      RAPGEF1, RAX, RFX4, RGS14, RIMS1, SCN3B,  
      SCRT1, SDK2, SEMA4D, SEMA6B, SEZ6L,  
      SH3TC2, SHANK3, SLC17A8, SLC1A2,  
      SLC8A3, SOX10, SOX2, SOX8, ST8SIA2,  
      STMN4, TBX3, TBX6, TERT, TP63, TRPC6,  
      TRPM1, TSHR, UBE4B, ZFP36L1
 GO:0007267 Cell‑cell 94 5.64 1.18x ADRB1, AMER3, ANPEP, AQP1, AXIN2,  
  signaling   10-8 BRSK1, BRSK2, CACNB1, CADPS, CAMK2A, 
      CCL23, CD24, CFTR, CHRM1, CHRNA4,  
      CNR1, CNTN4, CUX2, CXCL5, DBH, DLGAP1,  
      DRAXIN, EFNA2, EGR2, EPHA4, FGF23, 
      FOXO1, FZD10, GAL, GHSR, GJA5, GPRC5B,  
      GRID1, GRIK2, GRIK3, GRIK5, GRM2, GRM8, 
      HCN2, HCRTR1, HMGA2, HNF4A, IL2, JPH3, 
      KCNIP2, LATS2, LEP, LTBP4, MAGI2, MCHR1, 
      MINK1, MYCBPAP, NDRG2, NETO1, NFATC4,  
      NPBWR2, NPPC, NPTX2, NPY2R, NRXN1,  
      P2RX2, P2RY1, PANX2, PCDH15, PCDH8, 
      PCDHGC5, PGF, PKP2, PLCG2, RAPGEF1,  
      RAPGEF3, RASL10B, RGS14, RIMS1, SCEL,  
      SCN3B, SHANK3, SHISA9, SIRPG, SLC1A2,  
      SLC5A7, SLC8A3, SORCS3, SOST, SOX10,  
      SOX2, STXBP5L, SYNPO, TBX3, TERT, 
      TNFRSF11A, TP63, TSHR, UNC13C
Downregulated GO:0045667 Regulation 5 4.42 0.001 FGFR2, IL6ST, PIAS2, PRKD1, WNT4
  of osteoblast
  differentiation
 GO:0044774 Mitotic DNA 5 4.31 0.001 CDK2, CNOT7, PLK3, TOP2A, TP73
  integrity 
  checkpoint
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integrity checkpoint’, ‘central nervous system neuron develop-
ment’, ‘mitotic G1/S transition checkpoint’ and ‘mitotic G1 DNA 
damage checkpoint’ for downregulated DEGs (Table III). KEGG 
pathways involved in ‘neuroactive ligand-receptor interaction’ 
and the ‘p53 signaling pathway’ for upregulated and downregu-
lated DEGs, respectively, were identified.

Functional annotation map of PPI subnetworks. ClueGO 
provided a functional annotation map for PPI subnetworks, in 
which protein members are enriched corresponding to their GO 

terms and pathways (Fig. 1). Regulation of osteoblast differen-
tiation was linked to 5 genes. Among these, FGF receptor 2, 
interleukin 6 signal transducer and Wnt family member 4 genes 
were also associated with a number of BP terms, including 
‘central nervous system projection neuron axonogenesis’, 
‘cardiac muscle hypertrophy’, ‘positive regulation of focal adhe-
sion assembly biological process’ and ‘pathways in cancer’.

Analyses of network topological properties. The node degrees 
for the total upregulated and downregulated DEGs generally 

Table III. Continued.

DEG expression GO ID GO term Genes, nb %c P-value Genes

 GO:0021954 Central 4 5.41 0.001 ADARB1, FGFR2, NFIB, SZT2
  nervous 
  system 
  neuron 
  development
 GO:0044819 Mitotic G1/S 4 5.19 0.002 CDK2, CNOT7, PLK3, TP73
  transition 
  checkpoint
 GO:0031571 Mitotic G1  4 5.19 0.002 CDK2, CNOT7, PLK3, TP73 
  DNA damage 
  checkpoint

aThe top 5 terms were selected according to P-value. bNumber of enriched genes for each term. GO, Gene Ontology; DEGs, differentially 
expressed genes; BP, biological process. cRepresents the percentage of genes contained in each term to the upregulated or downregulated genes.

Table IV. Topological parameters for the total, the upregulated and the downregulated PPI subnetworks. 

   Correlation Clustering Network Network
PPI subnetwork y=axb R2 coefficient coefficient centralization density

Total  y=256.19x-1.478 0.863 0.931 0.249 0.137 0.010
Upregulated  y=191.96x-1.462 0.901 0.939 0.256 0.153 0.012
Downregulated  y=18.646x-1.291 0.809 0.984 0.142 0.287 0.044 

R2 is a measure of the fit quality, with a range of 0‑1 (a higher value indicates a better fit). The correlation between observations and the 
corresponding points on the fitted curve was determined. Clustering coefficient denotes an average of the clustering coefficients of all nodes 
in the network. Network centralization is a connectivity distribution index. Network density is the normalized value of the average number of 
neighbors. PPI, protein-protein interaction.

Table V. Enriched pathways for modules A-Ca. 

Modules Terms P‑value FDR Genes

A Neuroactive ligand‑receptor 1.53x10-6 0.001 MCHR1, PTGER3, GRM2, GRM8, CNR1, NPY2R, NPBWR2
 interaction
B Ubiquitin mediated proteolysis 0.021 2.096 UBA6, HERC1
C Neuroactive ligand‑receptor 3.94x10-9 2.36x10-6 HCRTR1, P2RY10, LTB4R, CHRM1, P2RY1, F2RL1, GHSR 
 interaction

aOne term was selected for each module according to P‑value. FDR, false discovery rate.
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obeyed power-law distributions, as demonstrated in Fig. 2. 
Supplementary topological parameters, including the clus-
tering coefficient, network centralization and network density, 
are listed in Table IV.

Core genes and modules in the PPI network. The top 10 core 
genes with the highest node degrees were determined using 
Cytoscape and the STRING database. These were albumin 
(ALB), PH domain leucine-rich repeat-containing protein 
phosphatase 2 (PHLPP2), DNA topoisomerase 2‑α (TOP2A), 
kininogen 1 (KNG1), interleukin 2 (IL2), leucine-rich repeats 
and guanylate kinase domain containing (LRGUK), phospha-
tidylinositol‑4,5‑bisphosphate 3‑kinase catalytic subunit γ 
(PIK3CG), leptin (LEP), transferrin (TF) and RNA polymerase 
II subunit A (POLR2A). Using an MCODE analysis, several 
significant modules were identified, including 541 nodes and 
1431 edges. The 3 modules with the lowest P-values were 
selected to evaluate enriched pathways (Fig. 3 and Table V).

Identif ication of miRNA‑gene regulatory modules. 
CyTargetLinker was used to predict miRNA‑gene interactions 
for the 10 core genes. In total, 305 predicted MTIs were identi-
fied using the MicroCosm database and 277 predicted MTIs 
were identified using the TargetScan database, including 456 
nodes and 582 edges. Additionally, setting a threshold func-
tionality of 2, 15 MTIs were found from the MicroCosm and 
TargetScan databases. The genes and miRNAs are shown in 
Fig. 4. Specifically, 7 miRNAs that co‑regulate IL2, 3 miRNAs 
that regulate PHLPP2, 3 miRNAs that regulate KNG1, 1 
miRNA that regulates PIK3CG and 1 miRNA that modulates 
POLR2A were detected (Table VI).

Discussion

OP has become a pervasive public health problem; it is char-
acterized by decreased bone strength and an increased risk of 
fractures (21). The pathogenesis of OP involves an imbalance 
between osteoclast resorption and osteoblast bone formation. 
MSCs have multiple differentiation potential, and they can 
directly participate in bone formation by phenotypic differ-
entiation into osteoblasts and indirectly via paracrine effects. 
During the process of aging, MSCs in bone marrow transform 
into other types of cells, including adipocytes and osteoblasts, 
leading to OP (22). Owing to the high prevalence and gravity 
of OP, understanding its pathogenic and molecular mechanisms 
is urgent for drug development and treatment. Microarray 
and high-throughput sequencing approaches have been used 
extensively to predict therapeutic targets for diseases, including 
OP. In the present study, the gene expression dataset GSE35956 
was obtained from the GEO database to explore core genes and 
predict regulatory miRNAs involved in OP. Specifically, 5 hMSC 
specimens from normal osseous tissues and 5 hMSC specimens 
from OP samples were included and 915 DEGs were identified, 
including 774 upregulated and 141 downregulated genes.

Subsequently, network topological properties were 
analyzed to distinguish between the predicted network and a 
random network. A node degree approximating a power‑law 
distribution is a standard characteristic of scale‑free networks, 
and the PPI network in this study obeyed this rule (23,24). 
The 3 subnetworks were true complex biological networks 

characterized as scale‑free, suggesting that the PPI network is 
reliable and robust.

OP‑associated DEGs identified in the present study are not 
necessarily biologically meaningful. A number of effective 
methods, including GO and KEGG analyses, can be used to 
determine the importance of DEGs, with the goal of clarifying 
the roles of individual molecules in BPs. Accordingly, GO and 
KEGG pathway analyses were performed using the DEGs in 
the present study. Upregulated DEGs were primarily associated 
with ‘nervous system development’, ‘multicellular organism 
development’, ‘RNA polymerase II transcription factor 
activity’, ‘sequence‑specific DNA binding and synapse’, while 
downregulated DEGs were associated with the ‘regulation of 
molecular function’, ‘regulation of osteoblast differentiation’, 
‘nucleotide binding’ and ‘extracellular matrix’. Based on the 
KEGG pathway analysis, upregulated DEGs were enriched 
for ‘neuroactive ligand-receptor interaction’, ‘Rap1 signaling 

Figure 2. Power-law distributions of node degrees for (A) the total, (B) the 
upregulated and (C) the downregulated PPI subnetworks. Degree is a 
parameter used to describe the number of interacting partner proteins. As 
the number of linked nodes increases, the average degree decreases. PPI, 
protein-protein interactions.
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pathway’, ‘cAMP signaling pathway’, ‘glutamatergic synapse’ 
and ‘adrenergic signaling in cardiomyocytes’, while the down-
regulated DEGs were involved in the ‘p53 signaling pathway’.

Based on an analysis of the PPI network, the following 
core genes were identified: ALB, PHLPP2, TOP2A, KNG1, 
IL2, LRGUK, PIK3CG, LEP, TF and POLR2A. Among these, 

ALB had the highest degree of connectivity. These hub genes, 
particularly ALB, TOP2A, KNG1, IL2, PIK3CG, LEP and 
TF, were enriched for homeostatic processes and the regula-
tion of apoptotic processes. A recent study has reported that 
homeostatic processes are imbalanced in postmenopausal 
osteoporotic women (25). In addition, triggering apoptotic 
processes could promote osteoclast apoptosis, thus alleviating 
OP (26). It could be hypothesized that the hub genes are 
associated with the development of OP. ALB and its product, 

Figure 3. Top 3 modules from the protein‑protein interactions network. 
(A) Module A, 14 nodes and 91 edges; (B) module B, 10 nodes and 45 edges; 
and (C) module C, 8 nodes and 28 edges.

Figure 4. miRNA regulation of genes. (A) Extended regulatory network of 
miRNAs and target genes. The MTIs obtained from the MicroCosm data-
base (n=305) and TargetScan database (n=277) are indicated in black and 
red, respectively. The overlap threshold function was set to display only MTIs 
present in 2 regulatory interaction networks. (B) Defined number of predicted 
miRNAs and target genes. Genes and miRNAs are denoted as red circles and 
yellow rounded rectangles, respectively. Additionally, green edges represent 
MTIs from the database TargetScan v6.2, and yellow edges represent MTIs 
from the database MicroCosm v5.0. The names of the genes and miRNAs 
are displayed on the nodes. miRNA, microRNA; MTI, microRNA-target 
interaction.
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which has a good binding capacity for hormones, is involved 
in various BPs, including antioxidant activity, the regulation 
of apoptotic processes and the cellular response to starvation. 
The precise function of ALB and its role in OP are unclear. 
However, a previous study found that the expression of ALB 
differed significantly between a normal group and an OP 
group (P<0.05), and others have linked oxidative status with 
bone alterations (27-29). PHLPP2 is involved in the regulation 
of protein kinase B (Akt) and protein kinase C signaling, and 
mediates dephosphorylation in the C-terminal domain hydro-
phobic motif of members of the AGC serine/threonine protein 
kinase family. The protein is also involved in signal trans-
duction and hippocampus development. PHLPP2 exhibits 
nuclear localization and is expressed in numerous tissue 
types, including the small intestine, brain, bone marrow and 
ovaries (30). PHLPP inhibitors may relieve mechanical pain 
and slow cartilage degradation in osteoarthritic joints (31). 
Therefore, PHLPP2 has a potential regulatory role in OP and 
is a target for future research. TOP2A, which encodes a DNA 
topoisomerase, is associated with various processes, including 
chromosome condensation (32). Mutations in TOP2A are 
associated with the development of drug resistance, including 
etoposide and doxorubicin (33‑35). Exposure to atmospheric 
oxygen promotes TOP2A expression in mouse MSCs, leading 
to oxidative stress, reduced cell viability and the inhibition of 
cell proliferation (36). KNG1 exhibits alternative splicing to 
produce 2 distinct proteins: High- and low-molecular-weight 
kininogen. KNG1 also factors in the G-protein-coupled 
receptor signaling pathway and the inflammatory response. 
Zhang et al (37) revealed that KNG1 is significantly associ-
ated with the complement and coagulation cascade pathway 
in Kashin‑Beck disease. Further research is required to 
clarify the role of KNG1 in OP. IL2 proteins are involved in 
cytokine secretion and are vital for the proliferation of T and 
B lymphocytes. Targeted knock‑outs of similar genes in mice 
cause ulcerative diseases, suggesting that IL2 serves an impor-
tant role in antigen-stimulated immune responses (38). The 

present study revealed that IL2 is associated with the positive 
regulation of tissue remodeling, including bone remodeling, 
but little is known about the effects and mechanisms of IL2 
in OP. LRGUK comprises 3 domains: A leucine‑rich repeat, 
a guanylate kinase‑like domain and an unnamed domain (39). 
LRGUK exhibits biased expression in the testis, bone marrow 
and lungs, and functions in ATP‑binding and kinase activity. 
Studies on LRGUK are rare. One previous study demon-
strated that LRGUK is associated with type 2 diabetes and 
fasting glucose levels (40). PIK3CG phosphorylates inositol 
lipids and is involved in the immune response process; 
it serves a vital role by recruiting pleckstrin homology 
domain-containing proteins to the membrane, including 
Akt1, and by activating signaling cascades involved in cell 
growth, proliferation and differentiation (41). Additionally, 
PIK3CG regulates bone homeostasis by modulating osteo-
clastogenesis and bone homeostasis (42), suggesting that this 
gene is linked to OP. LEP encodes a protein secreted by white 
adipocytes and serves an important role in energy balance 
regulation. This protein is also involved in endocrine function 
and in the regulation of immune and inflammatory responses. 
Tariq et al (43) found that body weight and body mass index 
impact BMD, whereas serum leptin is not associated with 
BMD. Zheng et al (44) identified that LEP overexpression in 
bone marrow stromal cells can stimulate periodontal regen-
eration in osteoporotic conditions. The association between 
LEP and OP is unclear, and should be a focus of future studies. 
TF encodes an extracellular or secreted glycoprotein with an 
N-terminal transmembrane domain and a short cysteine-rich 
cytoplasmic loop prior to the unique C-terminal ends (45). 
The protein is involved in cellular iron ion homeostasis, 
post‑translational protein modification and the regulation of 
protein stability. The putative iron sensor TF receptor 2 can 
bind to iron-loaded TF in the bloodstream, which increases 
the expression of hepcidin by stimulating the bone morpho-
genetic protein signaling pathway (46). POLR2A provides a 
platform for transcription, mRNA processing and chromo-
some remodeling (47). This gene encodes an essential subunit 
of RNA polymerase II and is ubiquitously expressed in the 
testis, skin and bone marrow, and is involved in numerous 
physiological processes, including the regulation of gene 
silencing by miRNA and of RNA splicing (48,49). However, 
the biological functions of POLR2A in OP remain unknown.

A module analysis of the PPI network demonstrated that OP 
is linked to neuroactive ligand‑receptor interactions and ubiq-
uitin-mediated proteolysis. The neuroactive ligand-receptor 
interaction pathway can be activated by targeting the cell 
membrane G protein coupled receptor, which is involved in 
signal transduction from the extracellular to the intracellular 
components, including glycine, serine and threonine (50,51). 
Neuroactive steroids, which influence the modulation of the 
γ-aminobutyric acid receptor, are hormones that act as regula-
tors of neurotransmitter receptors to either enhance or suppress 
neuronal activity (52). Moreover, ubiquitin-mediated prote-
olysis has been reported to serve a key role in MSC osteogenic 
or adipogenic differentiation (53) and the ubiquitin-mediated 
proteolysis pathway serves a critical role in various processes, 
including the cell cycle, cellular response to stress, DNA 
repair and immune regulation (54). Therefore, combined 
with the present results, these data indicate that neuroactive 

Table VI. A list of 5 hub genes and their predicted miRNAs 
from the CyTargetLinker extension network analysisa.

Gene miRNAs

IL2 hsa-miR-524-5p, hsa-miR-520d-5p, 
 hsa-miR-181b, hsa-miR-181a, hsa-miR-181d, 
 hsa-miR-181c, hsa-miR-186
PHLPP2 hsa-miR-509-3p, hsa-miR-134, hsa-miR-367
KNG1 hsa-miR-361-5p, hsa-miR-578, hsa-miR-942
PIK3CG hsa-miR-142-3p
POLR2A hsa-miR-873 

aThese were selected among 10 hub genes with a threshold of 2 
regulatory interaction networks. The miRNA‑target interactions were 
obtained from the MicroCosm database (305) and TargetScan data-
base (277). miRNA/miR, microRNA; IL2, interleukin 2; PHLPP2, 
PH domain leucine-rich repeat-containing protein phosphatase 2; 
KNG1, kininogen 1; PIK3CG, phosphatidylinositol‑4,5‑bisphosphate 
3‑kinase catalytic subunit γ; POLR2A, RNA polymerase II subunit A.
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ligand-receptor interactions and ubiquitin-mediated prote-
olysis may serve key roles in the progression of OP, and are 
potential targets for drug development and treatment.

In the present study, an integrated miRNA-gene analysis 
of core genes associated with OP was performed. An overlap 
threshold of 2 was set to identify only interactions supported 
by 2 MTI databases, and to ensure credible and accurate 
results. Overall, 15 predicted miRNAs and their target genes 
were screened. IL2 was regulated by miRNAs hsa-miR-524-5p, 
hsa-miR-520d-5p, hsa-miR-181b, hsa-miR-181a, hsa-miR-181d, 
hsa-miR-181c and hsa-miR-186. These miRNAs were enriched 
for biological function terms, including ‘molecular function’, 
‘enzyme regulator activity’ and ‘immune system process’. 
PHLPP2 was associated with miRNAs hsa-miR-509-3p, 
hsa-miR-134 and hsa-miR-367, which are mainly associated 
with organelles. miRNA hsa-miR-361-5p was observed to 
modulate KNG1, along with hsa-miR-942 and hsa-miR-578. 
These are involved in blood coagulation and platelet activation. 
Furthermore, hsa-miR-142-3p may serve a vital role in OP by 
regulating PIK3CG, which is involved in the estrogen and B 
cell receptor signaling pathways. miRNA hsa-miR-873, which 
is associated with metabolic pathways, co-regulates POLR2A. 
The present results indicate that a series of miRNAs simultane-
ously regulate the same gene, as observed for IL2, PHLPP2 and 
KNG1. Further studies are required to verify these interactions.

In conclusion, the results of the present study improve our 
understanding of the progression of OP based on an in-depth 
bioinformatics analysis of DEGs. In total, 915 DEGs and 10 
core genes (ALB, PHLPP2, TOP2A, KNG1, IL2, LRGUK, 
PIK3CG, LEP, TF and POLR2A) involved in OP were iden-
tified. Additionally, miRNAs associated with target genes 
were identified; these may be crucial for the initiation and 
progression of OP. However, further experimental studies are 
required in order to determine the precise roles of these genes 
and miRNAs. The present study provides a useful set of genes 
and miRNAs for future studies on the molecular mechanisms 
of OP and for the determination of therapeutic targets.
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