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Abstract. Non‑small cell lung cancer (NSCLC) is a 
major type of human lung cancer and the primary cause of 
cancer‑associated cases of mortality worldwide. Phosphatase 
and tensin homolog (PTEN) is a potent tumor suppressor gene 
in various human cancer types. The aim of the current study 
was to explore the role of PTEN and its associated regulatory 
mechanisms in NSCLC. Firstly, the expression of PTEN was 
detected using western blotting in a variety of NSCLC cell 
lines. The results revealed that compared with normal control 
cells, PTEN levels were significantly decreased in NSCLC 
cell lines (P<0.01). Short hairpin (sh)RNAs specific to PTEN 
were also used to knockdown endogenous PTEN in NSCLC 
cells. The results indicated that cell viability was significantly 
increased in PTEN‑knockdown cells compared with those 
transfected with negative control shRNA (P<0.01). Conversely, 
overexpression of PTEN in A549 and SK‑MES‑1 cells signifi-
cantly decreased the optical density of NSCLC cells (P<0.01). 
Flow cytometry was used to investigate the cell cycle; the 
results revealed that PTEN knockdown significantly increased 
the percentage of cells at G0/G1 phase (P<0.01) and decreased 
the number of cells at S phase (P<0.01). The molecular 
mechanism was further explored using western blotting and 
the results demonstrated that PTEN overexpression increased 
the levels of cleaved caspase‑3 (P<0.01). These results suggest 
that PTEN may be a potential target gene for gene therapy in 
patients with NSCLCs.

Introduction

Lung cancer is a common malignancy, with the highest 
incidence and mortality rates of all malignant tumors world-
wide (1). Clinical therapy for lung cancer typically includes 
surgery, chemotherapy, radiotherapy and targeted therapy (2). 
However, the 5‑year survival rate is <15%  (3), therefore, 
developing novel, effective methods to treat lung cancer is of 
great importance. Gene‑targeted therapy is one of the major 
methods used as a therapy for lung cancers (4). It is important 
to clarify the molecular mechanism of lung cancer tumorigen-
esis. Many tumor suppressor genes and oncogenes are altered 
in lung cancer; these contribute to tumorigenesis, development, 
migration and metastasis (5,6).

The phosphatase and tensin homolog (PTEN) is a tumor 
suppressor gene that was first identified in 1997 (7). It has 
been reported that PTEN is frequently deleted or mutated in 
human cancer types, including breast cancer (8,9), pancreatic 
cancer (10), colorectal cancer (11,12), liver cancer (13), pros-
tate cancer (14), gastric cancer (15) and non‑small cell lung 
cancer (NSCLC) (16). PTEN serves an important role in the 
nucleus by maintaining genomic stability via the regulation 
of RAD51 (17). Loss or gene disruption of PTEN is associ-
ated with poor prognosis in human cancer types (18). Under 
normal circumstances, RAD51 is phosphorylated by the phos-
phoinositide 3‑kinase (PI3K) family and dephosphorylated 
by the phosphatase PTEN to generate phosphatidylinositol 
(PI)‑(4,5)‑P2. However, loss of PTEN increases the levels 
of PI‑(3,4,5)‑triphosphate, which in turn activates the 
PI3K‑protein kinase B (Akt) signaling pathway to promote cell 
proliferation and survival (19,20).

Elucidating the molecular mechanism of NSCLC would 
provide a basis for clinical therapies to treat patients with 
lung cancer. Lu et al (21) have previously reported that PTEN 
inhibits cell proliferation, promotes cell apoptosis and induces 
cell cycle arrest via downregulation of the PI3K/AKT/human 
telomerase reverse transcriptase (hTERT) pathway in lung 
adenocarcinoma A549 cells. In the current study, additional 
lung cancer cell lines, including H460, SK‑MES‑1, H1299 
and A549, were used in order to investigate the regulatory 
mechanisms of NSCLC cells. The current study demonstrated 
that PTEN regulates cell phase progression and cell apoptosis, 
possibly by regulating the levels of S‑phase kinase‑associated 
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protein 2 (Skp2). Future studies providing further clarification 
regarding the role of PTEN in human NSCLC cell prolif-
eration may provide a basis for the development of novel gene 
therapies.

Materials and methods

Cell lines, shRNA, plasmid and reagents. The immortalized 
human bronchial epithelial cell line BEAS‑2B was obtained 
from Shanghai Bioleaf Biotech Co., Ltd. (Shanghai, 
China). Human MRC‑5 cells, (cat. no.  AA‑CELL‑79) 
were purchased from Zhixing Biological Technology 
Corporation (Guangzhou, China; http://action.binzhuang.
com/). A549 (cat. no. zs100735), H1299 (cat. no. as100207) 
and H460 (cat. no.  zs101010) cells were purchased from 
Zishi Biotechnology Corporation (Shanghai, China; 
http://pozuchou1004.cn.globalimporter.net/). SK‑MES‑1 
(cat. no. XB‑0170) was purchased from Aolu Biological 
Corporation (Shanghai, China; ht tp://www.chem17.
com/st310034/Intro.html). The cell lines were cultured 
in Dulbecco's modified Eagle's medium (Gibco; Thermo 
Fisher Scientific, Inc., Waltham, MA, USA) containing 
10% fetal bovine serum (cat. no. SH30071.03; HyClone; 
GE Healthcare Life Sciences, Logan, UT, USA) at 
37˚C in a humidified atmosphere containing 5% CO2. 
MTT was obtained from Sigma‑Aldrich (Merck KGaA, 
Darmstadt, Germany). The recombinant plasmid of 
PTEN was constructed and provided by Cyagen Biology 
Technology Corporation (Suzhou, China; https://www.
cyagen.com/cn/zh‑cn/), with open reading frames of PTEN 
digested with HindIII and BamH I and subcloned into a 
pcDNA3.1 (+) plasmid. Here, the empty pcDNA3.1 (+) 
plasmid was used as a negative control. PTEN short hairpin 
(sh)RNA (h2; cat. no.  sc‑44272‑SH) and a scrambled 
control shRNA (cat. no.  sc‑108060) were obtained from 
Santa Cruz Biotechnology, Inc. (Dallas, TX, USA). The 
A549 and SK‑MES‑1 cells, BEAS‑2B and H460 cells were 
transfected with Lipofectamine 2000 (cat. no. 11668‑027; 
Invitrogen; Thermo Fisher Scientific, Inc.) according to the 
manufacturer's protocol. The pc pcDNA3.1 (+) plasmid was 
used as a negative control of PTEN plasmid to transfect 
the lung cancer cells for overexpression of PTEN, and the 
vector already contained the shRNA sequence. A total of 
0.5 µg PTEN shRNA or control shRNA were transfected 
using Lipofectamine 2000 in 24‑well plates for 48, 72 and 
96 h. An MTT assay was performed following 48, 72 or 96 h 
of transfection. Cell cycle determination via flow cytometry 
was performed 24 h following transfection. A549 cells or 
SK‑MES‑1 cells were transfected with pcDNA3.1‑PTEN 
plasmid and control plasmid for 48 h. A total of 0.5 µg 
of PTEN recombinant plasmid and control plasmid were 
transfected using Lipofectamine 2000 in 24‑well plates for 
48 h. The expression of total caspase‑3, cleaved caspase‑3, 
poly ADP ribose polymerase (PARP) and cleaved PARP 
was assessed using western blotting.

MTT assay. An MTT assay was used to determine the viability 
of NSCLC cells. Briefly, BEAS‑2B and H460 cells, A549 and 
SK‑MES‑1 cells were transfected with PTEN‑shRNA or nega-
tive control shRNA for 48, 72 or 96 h. Cells were subsequently 

incubated at 37˚C with 20 µl of MTT (5 mg/ml) for 4 h and the 
purple crystals were dissolved in dimethylsulfoxide for 15 min. 
A total of 150 µl/well was transferred into 96‑well plates and 
the absorbance was measured using a microplate reader at 
490 nm (iMark Microplate Reader; Bio‑Rad Laboratories, 
Inc., Hercules, CA, USA). The inhibition rate was calculated 
using Microsoft Excel software 2016 (Microsoft Corporation, 
Redmond, WA, USA).

Antibodies. Rabbit monoclonal anti‑PTEN antibody (cat. 
no. ab32199), rabbit polyclonal anti‑caspase‑3 antibody (cat. 
no.  ab44976) and rabbit polyclonal anti‑active caspase‑3 
antibody (cat. no.  ab2302) were purchased from Abcam 
(Cambridge, UK). Rabbit anti‑PARP antibody (cat. no. 9542) 
was obtained from Cell Signaling Technology, Inc. (Danvers, 
MA, USA). Rabbit polyclonal anti‑cleaved PARP antibody 
(cat. no.  ab4830) was obtained from Abcam and mouse 
monoclonal anti‑β‑Actin antibody (cat. no.  sc‑47778) 
was purchased from Santa Cruz Biotechnology, Inc. The 
Anti‑SKP2 antibody (ab19877) was purchased from Abcam. 
The secondary antibodies included goat anti‑rabbit IgG H&L 
horseradish peroxidase (HRP) (cat. no. ab6721; Abcam) and 
HRP‑conjugated goat anti‑mouse IgG (cat. no. sc‑2005; Santa 
Cruz Biotechnology, Inc.).

Western blot analysis. The cell lysates were prepared using 
immunoprecipitation assay buffer (Beyotime Institute of 
Biotechnology, Haimen, China). Protein concentration 
determination method BCA was performed and 20 µg/lane 
of total protein was added and subsequently separated by 
10% SDS‑PAGE. Proteins were transferred onto nitrocel-
lulose membranes, which were subsequently blocked with 
5% bovine serum albumin (Thermo Fisher Scientific, Inc.) 
for 30 min at room temperature. The membrane was incu-
bated with the indicated primary and secondary antibodies. 
The primary antibody was diluted to 1:1,000 and incubated 
at 4˚C overnight. The secondary antibody was diluted to 
1:10,000 and incubated at 37˚C for 1 h. Membranes were 
washed three times for 5 min with 1X Tris‑buffered saline + 
Tween 20 buffer between each step. The bands were visual-
ized using enhanced chemiluminescence reagents (Pierce; 
Thermo Fisher Scientific, Inc.). The grey values of the 
bands were determined and calculated by Image J software 
(version 1.48, National Institutes of Health, Bethesda, MD, 
USA).

Cell cycle analysis. Cell cycle analysis was performed using 
propidium iodide staining and flow cytometry analysis 
(Propidium Iodide Flow Cytometry kit; cat. no. ab139418, 
Abcam). A total of 3x106 NSCLC cells were collected by 
centrifugation at 300 x g for 10 min at room temperature. 
The medium was discarded and cells were washed twice with 
ice‑cold PBS. Cells were subsequently fixed in 70% ethanol 
at 4˚C overnight, washed twice with PBS and centrifuged at 
room temperature at 800 x g for 5 min. Cells were resuspended 
in PBS containing 1 mg/ml RNase A (Abcam) for 30 min at 
37˚C. Propidium iodide (50 µg/ml) was added into the cell 
suspension at 4˚C for 15 min and flow cytometry analysis was 
performed using a BD LSRFortessa X‑20 flow cytometer (BD 
Biosciences, San Jose, CA, USA).
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Statistical analysis. Data were analyzed using SPSS v.13 
(SPSS, Inc., Chicago, IL, USA) and are presented as the 
mean  ±  standard deviation. Independent samples were 
analyzed using independent sample t‑tests and multiple 
comparisons were analyzed using ANOVA followed by 
Tukey's test. P≤0.05 was considered to indicate a statistically 
significant difference.

Results

PTEN levels are low in NSCLC cell lines. In order to inves-
tigate the role of PTEN in NSCLC cell proliferation, PTEN 
levels in NSCLC cells were assessed using western blotting 
(Fig. 1A). PTEN levels were significantly decreased in lung 
adenocarcinoma A549 (P<0.01) and H1299 (P<0.05) cell lines, 
lung squamous cell carcinoma cell line SK‑MES‑1 (P<0.01) 
and lung large cell carcinoma H460 cells (P<0.05) compared 
with the normal control BEAS‑2B and MRC‑5 cell lines 
(Fig. 1B).

PTEN knockdown increases the viability of BEAS‑2B and 
H460 cells. The effect of PTEN on viability in BEAS‑2B and 
H460 cells was assessed using western blotting (Fig. 2). PTEN 
was significantly downregulated in cells transfected with 
PTEN‑shRNA (P<0.01; Fig. 2B). Additionally, cell viability was 
determined using an MTT assay and the results demonstrated 
that cell viability was significantly increased in PTEN‑shRNA 
transfected cells compared with cells transfected with control 
shRNA and untreated cells (P<0.05; Fig. 2C). Furthermore, 
western blotting was performed to assess the effects of PTEN 
knockdown on caspase‑3 and PARP expression. As indicated 
in Fig. 2D and E, transfection with PTEN shRNA significantly 
decreased the levels of cleaved caspase‑3 and cleaved PARP in 
BEAS‑2B cells and H460 cells (P<0.01). These results demon-
strated that PTEN knockdown may inhibit cell apoptosis of 
lung cancer cells.

Overexpression of PTEN decreases the viability of lung 
cancer cell lines. PTEN was overexpressed in NSCLC cells 
and the role of PTEN in cell proliferation was evaluated 
further. A549 and SK‑MES‑1 cells were transfected with 
pcDNA3.1‑PTEN and control pcDNA3.1 (+) for 24, 48 
and 72 h. The expression of PTEN was determined using 
western blotting and cell proliferation was determined 
using an MTT assay. As illustrated in Fig. 3A and B, the 
PTEN expression was significantly increased in PTEN 
plasmid‑transfected A549 cells and SK‑MES‑1 cells 
compared with the control plasmid group (P<0.01), The 
proliferation of A549 and SK‑MES‑1 cells was significantly 
suppressed in pcDNA3.1‑PTEN overexpressed lung cancer 
cells compared with cells transfected with the control 
plasmid (P<0.05; Fig.  3C) in a time‑dependent manner. 
These data suggest that PTEN overexpression suppresses 
cell growth in lung cancer cell lines, with PTEN acting as a 
tumor suppressor gene.

Overexpression of PTEN downregulates Skp2 expression and 
induces cell‑cycle arrest in G0/G1 phase. It has previously 
been reported that PTEN signaling regulates the assembly 
of the Skp, Cullin, F‑box containing complex (SCF‑Skp2) 

at the G1/S cell cycle transition (22,23). However, to the best 
of our knowledge, it is unclear whether Skp2 expression is 
deregulated in lung cancer cells. In order to further clarify 
the molecular mechanism of PTEN, flow cytometry was used 
for cell‑cycle analysis in PTEN‑overexpressed A549 cells. 
G0/G1 phase arrest was significantly induced (P<0.01) and the 
proportion of cells in S phase was significantly decreased in 
the PTEN‑overexpressed group compared with the control 
plasmid group (P<0.01), suggesting that PTEN may regulate 
signaling pathways associated with cell cycle progression 
(Fig. 4B). In order to detect the associations between PTEN 
and Skp2, western blotting was performed and the results 
demonstrated that overexpression of PTEN significantly 
decreased the expression level of Skp2 (P<0.01; Fig. 4C), 
which suggested that Skp2 expression was likely regulated by 
PTEN in lung cancer cells.

Overexpression of PTEN activates caspase‑3 and promotes 
the cleavage of PARP. In order to assess whether PTEN 
regulates apoptosis in NSCLC cells, it was overexpressed in 
A549 cells and levels of cleaved caspase‑3 and cleaved PARP 
were detected using western blotting. PTEN overexpression 
in A549 cells significantly upregulated cleaved caspase‑3 
expression (P<0.01), which suggests that PTEN overexpression 
contributes to the activation of caspase‑3 (Fig. 5). The levels 
of PARP and cleaved PARP was also assessed using western 
blotting and the results demonstrated that PARP, the substrate 
of the activated caspase‑3, was cleaved into the active form in 

Figure 1. PTEN expression is low in non‑small cell lung cancer cell lines. 
(A) PTEN expression was assessed in lung cancer H460, H1299, SK‑MES‑1 
and A549 cell lines and normal BEAS‑2B and MRC‑5 control cells using 
western blotting and (B) quantified with β‑actin as an internal reference gene. 
*P<0.05 and **P<0.01 vs. BEAS‑2B. PTEN, phosphatase and tensin homolog; 
PARP, poly ADP ribose polymerase; Ctrl., control BEAS‑2B cells.
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Figure 2. PTEN knockdown promotes proliferation in BEAS‑2B cells and H460 cells. (A) BEAS‑2B cells and H460 cells were transfected with PTEN‑shRNA and 
control shRNA for 48 h and PTEN levels were assessed using western blotting and (B) quantified **P<0.01, compared with Ctrl. shRNA group. (C) The PTEN‑shRNA 
and Ctrl. shRNA transfected BEAS‑2B cells and H460 cells were cultured for 48, 72 or 96 h and cell viability was determined using an MTT assay. *P<0.05, between 
PTEN shRNA and Ctrl. shRNA in 48 h; **P<0.01, between PTEN shRNA and Ctrl. shRNA in 72 h or 96 h; (D) BEAS‑2B cells and H460 cells were transfected with 
PTEN shRNA and control shRNA for 48 h and the expression of caspase‑3, cleaved caspase‑3, PARP and cleaved PARP was determined using western blotting. 
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PTEN overexpressing cells (P<0.01 vs. Ctrl. plasmid; Fig. 5). 
These results suggest that overexpression of PTEN increases 
cell apoptosis in NSCLCs.

Discussion

Lung cancer comprises malignant lung tumors characterized 
by uncontrolled cell growth  (24). NSCLC is the primary 
type of lung cancer and accounts for ~85% of all lung cancer 
cases (25). It has previously been reported that PTEN func-
tions as a tumor suppressor in a variety of human cancer 
types (26,27). Lu et al (21) reported that PTEN inhibits cell 
proliferation, promotes cell apoptosis and induces cell cycle 
arrest via downregulation of the PI3K/AKT/hTERT pathway 
in lung adenocarcinoma A549 cells, which is consistent with 
the results of the current study. In the current study, multiple 
lung cancer cell lines, including H460, SK‑MES‑1, H1299 
and A549, were used. Although the levels of PTEN were 
decreased in lung cancer cell lines compared with the normal 
control cells BEAS‑2B, there was still substantial PTEN 
expression in NSCLC cell lines. It was probably the limited 
decrease in PTEN expression, not other factors, that was the 
major player for NSCLC progression (21).

However, there are some limitations of the current study. 
The current study identified that PTEN plays an important role 
in the proliferation and cell cycle progression of lung cancer 
cells. Further study would investigate how PTEN regulates the 
proliferation or cell cycle of cancer cells, for example, which 
specific cancer‑related signaling pathways are regulated by 
PTEN or how the microRNA expression profiles are changed 

in the progression of lung cancer cells. Further studies should 
be performed in at least two other lung cancer cells lines, to 
validate the findings of the present study.

Levels of PTEN were markedly decreased in lung 
cancer cell lines compared with normal control cells. 
The MTT assay results in H460 cells revealed that PTEN 
knockdown promotes the proliferation of lung cancer cells. 
However, overexpression of PTEN in A549 and H460 cells 
significantly inhibited cell growth. This was consistent with 
a previous study by Li et al (13) in which overexpression 
of PTEN effectively inhibited proliferation of liver cancer 
cells and promoted their apoptosis. Furthermore, in bladder 
cancer cells, overexpression of PTEN suppressed growth 
and induced apoptosis by inhibiting the expression of 
surviving (28). It has also been identified that overexpression 
of PTEN induces cell growth arrest and apoptosis in human 
breast cancer ZR‑75‑1 cells (29) and human ovarian cancer 
cells (30). Together, these data suggest that PTEN functions 
as a tumor suppressor and may be an effective target for the 
regulation of NSCLC cell proliferation.

Cell apoptosis is a process of programmed cell death that 
occurs in multicellular organisms (31). There are two major 
apoptosis signaling pathways: Extrinsic (death receptor‑medi-
ated) and intrinsic (mitochondrial)  (32,33). Caspase‑3 is 
activated in the extrinsic and intrinsic pathways (34) and is 
therefore an effective molecule for inducing cell apoptosis to 
treat cancer cells (35). In the current study, overexpression 
of PTEN was demonstrated to increase the level of cleaved 
caspase‑3 in NSCLC cells. In response to apoptotic signals, 
cleaved caspase‑3, the active form of caspase‑3, cleaves the 

Figure 2. Continued. (E) The ratios of Caspase‑3, cleaved caspase‑3, PARP and cleaved PARP in BEAS‑2B and H460 cells were are presented in histograms 
*P<0.05 and **P<0.01 vs. Ctrl. shRNA‑transfected cells. PTEN, phosphatase and tensin homolog 10; sh, short hairpin; Ctrl., control; PARP, poly ADP ribose 
polymerase; OD, optical density.
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116 kDa substrate, PARP, into 85 and 25 kDa fragments (35). 
In the current study, the cleaved 85 kDa fragment of PARP was 
detected. Furthermore, PTEN overexpression was observed to 
increase the percentage of cells in G0/G1 phase and decrease 
the number of cells in S phase, suggesting that PTEN induced 
G0/G1 cell cycle arrest. The results of the current study suggest 
that PTEN is capable of inducing apoptosis and may therefore 
be a potential effective target for gene therapy in patients with 
NSCLC.

In conclusion, PTEN suppressed non‑small cell lung 
cancer cell growth by promoting G0/G1 arrest and cell apop-
tosis. Taken togather, the results f the present study suggest 

that PTEN may be a potential target gene for gene therapy in 
patients with NSCLC.
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cells. PTEN, phosphatase and tensin homolog; Ctrl., control; PARP, poly ADP 
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