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Abstract. Neurotrophins are a family of growth factors that 
regulate neural survival, development, function and plasticity 
in the central and the peripheral nervous system. There are four 
neurotrophins: nerve growth factor (NGF), brain‑derived neuro-
trophic factor (BDNF), neurotrophin‑3 (NT‑3) and NT‑4. Among 
them, BDNF is the most studied due to its high expression in 
the brain. Over the past two decades, BDNF and its receptor 
tropomyosin receptor kinase B  (TrkB) have been reported 
to be upregulated in a wide range of tumors. This activated 
signal stimulates a series of downstream pathways, including 
phosphoinositide 3‑kinase/protein kinase B, Ras‑Raf‑mitogen 
activated protein kinase kinase‑extracellular signal‑regulated 
kinases, the phospholipase‑C‑γ pathway and the transactiva-
tion of epidermal growth factor receptor. Activation of these 
signaling pathways induces oncogenic effects by increasing 
cancer cell growth, proliferation, survival, migration and epithe-
lial to mesenchymal transition, and decreasing anoikis, relapse 
and chemotherapeutic sensitivity. The present review summa-
rizes recent findings to discuss the role of BDNF in tumors, the 
underlying molecular mechanism, targeting Trk receptors for 
treatment of cancers and its potential risk.
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1. Introduction

Neurotrophins are a family of proteins that regulate neuron 
differentiation, survival, dendritic pruning, patterning of inner-
vation, synaptic function and plasticity in the central and the 
peripheral nervous system (1,2). There are four neurotrophins: 
nerve growth factor (NGF), brain‑derived neurotrophic factor 
(BDNF), neurotrophin‑3 (NT‑3) and NT‑4. They have two types 
of receptors: the p75 neurotrophin receptor and tropomyosin 
receptor kinases (Trk) (2). P75 is the receptor for all four neuro-
trophins. Regarding Trk receptors, NGF binds TrkA; BDNF and 
NT‑4 bind TrkB; and NT‑3 mainly binds TrkC (2) (Fig. 1).

Initially, neurotrophins and their receptors were thought to 
be expressed only in nervous system but further studies showed 
they are also expressed by macrophages, endocrine cells, 
immune cells, smooth and striated muscle fibers (3,4). Recently, 
neurotrophins and their Trk receptors, especially BDNF and 
TrkB, were found to be highly up‑regulated and play a vital 
role in various cancers, including breast, lung, colon‑rectum, 
pancreas, prostate, liver, myelomas and lymphoid tumors (5). 
Activation of these Trk receptors elicits a series of down-
stream signalings, including PI3K/Akt, Ras‑Raf‑MEK‑ERK, 
PLCγ pathway, transactivation of EGFR, etc. As a result, 
these pathways exhibit oncogenic effects by promoting cancer 
cell's growth, proliferation, survival, migration, epithelial to 
mesenchymal trasition, anoikis, relapse and chemotherapeutic 
sensitivity (6‑12). Drugs targeting these Trk receptors have 
been put into clinical trials for cancer therapy and promising 
results have been achieved with moderate side effects (13).

This review will summarize all recent findings about the 
role of BDNF/TrkB in tumor and its underlying downstream 
pathways. We will also conclude and discuss clinical trials 
of targeting Trk receptors for treatment of cancers and the 
potential risk.
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2. BDNF and TrkB receptor

Among the 4  neurotrophins, BDNF is the most abundant 
growth factor in the brain, which plays an important role in 
sustaining physiological processes of the brain. For example, 
BDNF regulates dendritic branching and dendritic spine 
morphology (14,15), as well as synaptic plasticity and long‑term 
potentiation (LTP) (16). BDNF also modulates hypothalamic 
metabolic function, further reflecting the diversity of its role in 
the brain (17,18).

It has been revealed that BDNF is important in the devel-
opmental and mature taste system, by supporting survival of 
taste cells and geniculate ganglion neurons, and maintaining 
and guiding taste nerve innervations (19‑21). These results 
demonstrated BDNF exhibits crucial effects in both of 
the central and peripheral nervous system. Another study 
also showed that BDNF/TrkB pathway may be involved in 
maintaining adult hippocampal neurogenesis by promoting 
survival, proliferation, and neural differentiation of neural 
stem cells (22,23). This function and underlying mechanism is 
comparable to BDNF's role in cancer (23‑25).

Recently, lots of evidences showed BDNF and its receptor 
TrkB play a vital role in tumor pathology (26‑28). TrkB is a 
type of receptor tyrosine kinases (RTKs) and some RTKs were 
characterized as oncogenes (29). Preclinical trials of target 
therapies on these RTKs showed promising results (13). Recent 
reports indicate that BDNF/TrkB pathway has an important 
function in neural tumors, such as neuroblastoma (30). Further 
studies have shown that BDNF/TrkB is oncogenic not only 
in neurogenic original tumors (31), but also in other tumors 
outside of the neural system (32,33).

In addition to TrkB, p75 is a receptor for a precursor form 
of BDNF (pro‑BDNF), which can be cleaved to form the 
mature form by metalloproteinases (34). Unlike TrkB, which 
is the receptor for the mature form of BDNF (35), the role of 
p75 is not well established in tumors. It is found to be overex-
pressed in glioblastoma (34,36), melanoma (37,38) and breast 
cancer (6), implying it may exhibit an oncogenic role. However, 
it also displays an oncolytic role by suppressing tumor cell 
proliferation and migration in bladder (39), hepatocellular (40) 
and gastric cancers (41). Considering p75's controversial role 
in tumor, we will only summarize the oncogenic role of 
BDNF/TrkB pathway for the following sections.

3. Oncogenic role of BDNF in tumor

As said above, BDNF's oncogenic role in cancer has initially 
been characterized in neuroblastoma, a type of cancer in 
nervous tissue  (30). It has ever been demonstrated Tyro3, 
Axl and Mertk (TAM) receptor tyrosine kinases promote 
neurogenesis by supporting neural stem cell survival, prolif-
eration and neuronal differentiation (22,42). Removal of TAM 
receptors leads to a significantly‑reduced level of neurogenesis 
and BDNF expression, indicating TAM receptors support 
neurogenesis by activating BDNF pathway (23). Some scien-
tists also concluded BDNF mediates development, migration, 
differentiation and survival of newborn neurons (43). Further 
on, high levels of BDNF were found in neuroblastoma cells 
and were discovered to be linked with better prognosis of 
neuroblastoma (44). An increase of BDNF and TrkB signaling 

in neuroblastoma cells may represent an autocrine system 
to support tumor growth, invasion and metastasis. Mover, 
BDNF/TrkB pathway was implied to induce angiogenesis 
in neuroblastoma. It was found that BDNF could stimulate 
neovascularization through recruitment of TrkB‑expressing 
endothelial progenitor cells (45,46). Lastly, this signaling was 
also demonstrated to promote resistance to chemotherapy in 
neuroblastoma cells (47).

As evidence is accumulated, BDNF/TrkB signaling is 
universally considered to have oncogenic consequences. It has 
been found BDNF/TrkB are up‑regulated in countless types of 
cancers, such as breast cancer, carcinoid, cervical, colorectal, 
glioma, liver, lung (6‑12). Some studies even revealed BDNF 
might be an important prognostic factor for cancers (12,48‑50). 
Recently, BDNF/TrkB pathway has been demonstrated to 
transactivate EGFR, a growth factor receptor commonly 
up‑regulated in many cancers (43,51). This transactivation is 
important for proliferation and migration of embryonic cortical 
neurons, lung cancer cells and ovarian cancer cells (43,51,52). 
Administration of BDNF prevents the oncolytic role of EFGR 
inhibition in colon cancer. Besides, BDNF and EGFR seems 
to compensate for each other so that dual inhibition of the 
two pathways works effectively to suppress colon cancer cell 
proliferation (53).

BDNF/TrkB can also decrease a cancer cell's sensitivity to 
chemotherapy. It has been reported that BDNF increases the 
survival of neuroblastoma cells from cisplatin, etoposide and 
vinblastine in a dose‑dependent manner (54,55). Treatment 
with antibodies against BDNF made mice more susceptible 
to chemotherapy in models of breast cancer  (6), uterine 
sarcoma (56), and neuroblastoma (57,58). BDNF administra-
tion was demonstrated to cause chemotherapeutic resistance 
in head and neck squamous cell carcinoma (59). This protec-
tive role of BDNF from chemotherapy was possibly due to 
its ability to support proliferation and survival of cancer 
cells (55).

In addition, BDNF/TrkB pathway promotes resilience 
against the programmed death of anchorage dependent 
cancer cells. This programmed death of cancer cells, known 
as anoikis, is important to fight against many types of 
cancers. As solid tumors metastasize from the original sites 
and migrate to other regions with plentiful nutrients, tumor 
cells may undergo anoikis (60). However, some tumor cells 
can have a mesenchymal transition from an epithelial nature 
so that they survive short travel through the blood to distant 
organs (61). Interestingly, BDNF/TrkB has been reported to 
regulate the resistance to anoikis of several cancers since 
up‑regulation of BDNF/TrkB was found in metastatic tumor 
cells. Nevertheless, no activation of BDNF/TrkB pathway was 
observed in non‑metastatic tumor cells or tumor cells that fail 
to survive through metastasis (60,62,63). This supports how 
BDNF/TrkB signaling may perhaps play a crucial role in the 
progression and invasion of malignant tumors.

Finally, BDNF/TrkB pathway has been implied to mediate 
cancer reformation after successful treatment of cancer. 
Scientists overexpressed TrkB in a neural crest‑derived cell 
line and implanted them into mice. These cells formed tumors 
10 days after implantation and killed all mice within one 
week after tumor formation (31). Cancer stem cells are similar 
to neural crest‑derived cells. They divide slowly but can 



ONCOLOGY LETTERS  17:  2031-2039,  2019 2033

turn into cancer cells under some condition. Chemotherapy 
can kill rapidly‑dividing tumor cells but can't target these 
slowly‑dividing cells. It has been shown that TrkB‑positive 
cancer stem cells can cause tumor reformation after successful 
treatment of mice with triple‑negative breast cancers  (32). 
These findings demonstrate the importance of continuous 
treatment with TrkB inhibitor after successful removal of 
tumor cells with chemotherapy.

4. Molecular pathways of BDNF/TrkB's oncogenic role

As discussed above, it has been observed that BDNF and TrkB 
levels increase in many types of cancers, conferring aggres-
sive phenotypes due to their resistance to chemotherapeutic 
agents  (64). BDNF binds its receptor TrkB and triggers a 
cascade of signals, including PI3K/Akt, Ras‑Raf‑MEK‑ERK, 
PLCγ pathway, transactivation of EGFR, Jak/STAT, 
nuclear factor kappa‑light‑chain‑enhancer of activated 
B cells (NF‑kB), Urokinase‑type plasminogen activator 
(UPAR)/UPA, Wnt/β‑catenin and Vascular endothelial growth 
factor (VEGF) pathways, etc. Among these pathways, the first 
4 are mostly studied and therefore will be discussed in this 
review and summarized as shown in Fig. 2.

PI3K/Akt can be activated by BDNF/TrkB and then leads 
to production of pro‑migratory, anti‑apoptotic and pro‑survival 
proteins (65,66). Some recent studies have indicated that TrkB 
receptor activation induces phosphorylation of tyrosine 705 
of STAT3, which then activates PI3K/Akt (67). This pathway 
will activate the mammalian target of rapamycin complex 1 
(mTORC1), resulting in increased protein synthesis and cell 
survival by direct phosphorylation of its effectors, such as 
the ribosomal S6 kinase1 (S6K1), and elF4E‑binding proteins 
(4E‑BPs) to terminate binding to elF4E and relieve the block 
on translation (68,69). Besides, PI3K/Akt pathway can trans-
duce to amplify hypoxia‑inducible factor 1‑alpha (H1F1a), 
which is a transcriptional activator of TrkB expression. This 

positive feedback loop aggravates and extends BDNF/TrkB's 
effect on tumor (67,70).

As a universal attenuator of chemotherapeutic efficacy, 
BDNF/TrkB exhibits this role by mediating PI3K/Akt pathway, 
since inhibition of PI3K abrogated BDNF's ability to protect 
cancer cells from etoposide (55). PI3K/Akt pathway promotes 
resistance to extrinsic apoptosis through down‑regulation of 
Bim, a pro‑apoptotic protein that facilitates mitochondrial‑medi-
ated or intrinsic apoptosis  (59,71). In addition, PI3K/Akt 
pathway is involved in up‑regulation of Fas apoptotic inhibitory 
molecule 2 (FAIM2), which works to inhibit Fas‑mediated 
Caspase‑8‑dependent apoptosis (72). The two possible pathways 
also explain how BDNF promotes resistance to anoikis through 
activation of PI3K/Akt.

BDNF/TrkB pathway has also been shown to transactivate 
EGFR even without the endogenous EGF ligand (43) (Fig. 2). 
In vitro study demonstrated administering BDNF leads to 
expected TrkB phosphorylation and also EGFR phosphory-
lation no matter if EGF is present in the culture media or 
not (43). Transactivation of EGFR stimulates expression of 
PLC‑γ, which then causes the release of calcium ions from 
intracellular compartments and the generation of diacylg-
lycerol. Diacylglycerol can activate protein kinase C (PKC), 

Figure 1. Neurotrophins and their receptors. NGF binds to TrkA receptors, 
BDNF and NT4 bind to TrkB, and NT3 mainly binds to TrkC receptors. All 
of these neurotrophins also bind to the low‑affinity receptor p75. NGF, nerve 
growth factor; BDNF, brain‑derived neurotrophic factor; NT, neurotrophin; 
Trk, tropomyosin receptor kinase.

Figure 2. Summarized molecular pathway of BDNF/TrkB's oncogenic role. 
Four signaling pathways are discussed in the present review: i) Phosphorylation 
of STAT3 activates the PI3K/Akt signaling pathway, which will then 
amplify H1F1a to positively control TrkB expression, stimulate mTORC1 
for the expression of pro‑survival proteins and reduce Bim, but increase 
FAIM2 in order to inhibit apoptosis or anoikis; ii) Ras‑Raf‑MEK‑ERK 
signaling is activated in order to promote the survival, proliferation and 
migration of cancer cells; iii) activated expression of PLC‑γ causes the 
release of calcium ions from intracellular compartments and the generation 
of diacylglycerol. Diacylglycerol activates PKC, which exerts oncogenic 
effects; and iv) Transactivation of EGFR by BDNF/TrkB can also regulate 
cancer by activating the above 3 signaling pathways. An upwards pointing 
arrow after each signal protein indicates upregulation of expression level 
while a downwards facing arrow represents decreased expression. BDNF, 
brain‑derived neurotrophic factor; Trk, tropomyosin receptor kinase; STAT3, 
signal transducer and activator of transcription 3; PI3K, phosphoinositide 
3‑kinase; PLC‑γ, phospholipase‑C‑γ, mitogen‑activated protein kinase. PKC, 
protein kinase C; H1F1a, hypoxia‑inducible factor 1α; FAIM2, Fas apoptotic 
inhibitory molecule 2; MEK, mitogen activated protein kinase kinase; ERK, 
extracellular signal‑regulated kinases.
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which is linked to carcinogenesis and maintenance of 
malignant phenotype (73). Besides, EGFR can result in the 
progression of cancer cells through G1 phase and into S 
phase by regulating the cyclin dependent kinases (CDK) and 
the cyclins (74). EGFR can also cause Ras activation, which 
involves large number of protein factors, including Raf, 
mitogen‑activated protein kinase (MAPK), cytosolic kinases 
and nuclear transcription factors (75,76). Activation of Ras 
will in turn accelerate cell‑cycle progression and contribute 
to poor prognosis of patients with cancers (12,77). Moreover, 
it is possible that transactivation of EGFR regulates cancer 
through PI3K/Akt pathway, as shown in breast cancer (78), 
head and neck cancer (79), and prostate cancer (80).

Finally, BDNF/TrkB is considered to be able to directly 
activate Ras and PLC‑γ pathways, both of which play a vital 
role in a wide range of cancers (Fig. 2). In the central nervous 
system, it is well documented that BDNF/TrkB activates the 
Ras‑Raf‑MEK‑ERK signaling and regulates the neuronal 
differentiation (81). BDNF/TrkB pathway is also demonstrated 
to regulate synaptic plasticity by promoting the PLCγ‑mediated 
expression of protein kinase C (82). Recent studies showed 
Ras and PLC‑γ mediated oncogenic role may be triggered 
by BDNF/TrkB. For example, BDNF/TrkB activates NF‑κB 
expression through stimulation of PLCγ and therefore enhances 
ovarian cancer cell survival by suppressing anoikis  (83). 
BDNF/TrkB is also demonstrated to promote epithelia‑mesen-
chymal transition, as well as the migration and invasion of 
cervical cancer by activating Ras‑Raf‑MEK‑ERK pathway (84).

5. Clinical trials of targeting Trk receptors for treatment 
of cancer

Scientists have developed two highly potent and selective 
TrkB inhibitors, cyclotraxin‑B (85) and antinuclear antibodies 
(ANA)‑12 (86), which can inhibit TrkB and its downstream 
processes. However, they are not applied to clinical trials since 
targeting all Trk receptors seems more promising to treat 
cancer. Like TrkB, TrkA and TrkC are up‑regulated in many 
types of cancers and demonstrated to be oncogenic as well (13). 
For example, Light et al (87) reported TrkA up‑regulation in 
neuroblastomas was associated with poor prognosis, while 
activated expression and signaling of TrkC corresponded to 
a more aggressive and invasive neuroblastoma. Besides, the 
kinase domain of the three receptors are remarkably conserva-
tive. TrkB and TrkC share 100% identical residues in the ATP 
binding sites, and there is only a 2‑residue difference between 
TrkA and TrkB (88). Considering kinase domain determines 
their activity, it is reasonable and applicable to design inhibi-
tors targeting the conservative kinase domain. Based on the 
fact that the three Trk receptors share similar kinase domain 
and all have oncogenic role, drugs targeting all of them were 
designed and applied to clinical trials.

Entrectinib is an ATP‑competitive inhibitor of the Trk 
proteins, c‑ros oncogene 1 (ROS1), and anaplastic lymphoma 
kinase (ALK). It is currently being investigated in multiple 
phase II studies, including breast cancer, renal cancer, 
ovarian cancer, non‑small cell lung cancer (NSCLC), and 
sarcomas (89). Promising results have been reported, including 
increased objective response rate, median progression‑free 
survival rate and overall survival rate. Interestingly, Entrectinib 

has also shown the efficacy to treat brain tumors, implying 
that it can penetrate blood‑brain barrier (BBB) (90). Similar to 
Entrectinib, Larotrectinib is another pan‑Trk inhibitor which 
is able to penetrate BBB and shows positive results in multiple 
phase II clinical trials, including glioblastoma, small cell lung 
cancer (SCLC), colorectal cancers, melanoma pancreatic and 
ovarian (91,92). A table was made to summarize all clinical 
trials for the two Trk inhibitors (Table I).

Cabozantinib is an orally bioavailable small molecule 
inhibitor of Trk receptors, c‑Met, RET, ROS1, ALK, and 
vascular endothelial growth factor 2 (VEGFR2) with 
approved treatment for metastatic medullary thyroid cancer 
and prostate cancer (13). Recently, Cabozantinib was approved 
as an anti‑angiogenic therapy for advanced renal cell carci-
noma, by eliciting significant improvements in response 
rates, progression‑free survival, and overall survival (93,94). 
Currently, more clinical trials are underway to evaluate its role 
in CNS tumors, like gliomas (95). Considering its capacity of 
penetrating BBB, promising results are expected.

6. Potential side effects of targeting BDNF/TrkB pathway 
to treat cancer

Though the clinical trials received promising results, we should 
not ignore the potential side effects of targeting BDNF/TrkB 
for cancer treatment. As a neurotrophin factor in the nervous 
system, BDNF regulates multiple processes including neuron 
differentiation, survival, dendritic pruning, patterning of 
innervation, synaptic function and plasticity  (1,2). Our lab 
has demonstrated BDNF plays a vital role in the central and 
peripheral nervous system by regulating the developmental and 
mature taste system (19‑21), and maintaining adult hippocampal 
neurogenesis (22,23). A recent clinical trial even showed eleva-
tion of BDNF levels by using CX1846 can correct age‑related 
issues (96). Therefore, we should be extremely careful when 
targeting BDNF/TrkB to treat cancer. Doses of BDNF/TrkB 
inhibitors and side effects of nervous system should be closely 
monitored. Dysfunction of central nervous system may be 
expected, like memory loss, ataxia, anhedonia, lethargy and 
depression (97). As a result, it is necessary to specifically target 
tumors with administration of BDNF/TrkB inhibitors. Gene 
delivery using viral vectors may be a good option since it can 
specifically target tumor cells with appropriate promoters.

Besides, recent studies suggest that BDNF overexpres-
sion in the hypothalamus may have an oncolytic effect. It is 
found that mice with enriched environmental (EE) housing 
had high expression of BDNF in the hypothalamus and also 
got augmented T‑cell cytotoxicity. This increased anti‑tumor 
immune response was abrogated by hypothalamic knockdown 
of BDNF, implying BDNF mediates the oncolytic effects of 
EE housing (98). Besides, tumors of EE mice had reduced 
expression of several pro‑survival proteins like VEGF, IGF‑1 
and p‑ERK, which normally confer resistance to chemo-
therapeutic agents. These results were derived from mice 
transplanted with breast cancer cells (99), melanoma cancer 
cells (100), and even glioma cells (101). It is suggested that 
up‑regulation of BDNF in the central nervous system may 
have an effect of oncolysis rather than oncogenesis, even if the 
tumor is within the central nervous system. The underlying 
mechanism may be due to that BDNF supports survival and 
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maturation of peripheral T‑cell (102). As a result, when we 
target BDNF/TrkB for cancer treatment, a close monitoring 

of T‑cell activity is necessary so that the antitumor immune 
response won't be attenuated.

Table I. Ongoing clinical trials for Entrectinib and Larotrectinib in different types of cancers.

NCT identifier	 Drug	 Phase	 Cancer type	 Status

NCT02568267	 Entrectinib	 II	 Breast cancer, cholangiocarcinoma, colorectal cancer, head and neck	 Recruiting
			   neoplasms, lymphoma, large‑cell, anaplastic, melanoma, neuroendocrine
			   tumors, non‑small cell lung cancer, ovarian cancer, pancreatic cancer, 
			   papillary thyroid cancer, primary brain tumors, renal cell carcinoma,
			   sarcomas, salivary gland cancers, and adult solid tumor
NCT03330990	 Entrectinib	 I	 Advanced solid tumor	 Completed
NCT02650401	 Entrectinib	 I	 Solid tumors, CNS tumors, and neuroblastoma	 Recruiting
NCT02097810	 Entrectinib	 I	 Locally advanced solid tumors, metastatic solid tumors	 Active, not 
				    recruiting
NCT02587650	 Entrectinib	 II	 ALK fusion protein expression, BRAF wt Allele, invasive skin 	 Recruiting
			   melanoma, MET fusion gene positive, NRAS wt Allele, NTRK1 fusion
			   positive, NTRK2 fusion positive, NTRK3 fusion positive, RET fusion
			   positive, ROS1 fusion positive, stage III cutaneous melanoma AJCC v7,
			   stage IIIA cutaneous melanoma AJCC v7, stage IIIB cutaneous
			   melanoma AJCC v7, stage IIIC cutaneous melanoma AJCC v7, and
			   stage IV cutaneous melanoma AJCC v6 and v7
NCT02576431	 Larotrectinib	 II	 Non‑small‑cell lung carcinoma, thyroid neoplasms, sarcoma, colorectal	 Recruiting
			   neoplasms, salivary gland neoplasms, biliary tract neoplasms, brain
			   neoplasm, primary, carcinoma, ductal, breast, melanoma, solid tumors,
			   glioblastoma, bile duct neoplasms, astrocytoma, head and neck
			   squamous cell carcinoma, pontine glioma, pancreatic neoplasms, ovarian
			   neoplasms, renal cell carcinoma, cholangiocarcinoma, bronchogenic
			   carcinoma, bronchial neoplasms, lung neoplasms, respiratory tract
			   neoplasms, thoracic neoplasms, neoplasms, nerve tissue, nevi and
			   melanomas	
NCT02637687	 Larotrectinib	 I and II	 Neoplasms, central nervous system neoplasms	 Recruiting
NCT03213704	 Larotrectinib	 II	 Advanced malignant solid neoplasm, malignant glioma, ann arbor stage	 Recruiting
			   III childhood non‑hodgkin lymphoma, ann arbor stage IV childhood
			   non‑hodgkin lymphoma, malignant glioma, NTRK1 fusion positive,
			   NTRK2 fusion positive, NTRK3 fusion positive, recurrent central
			   nervous system neoplasm, recurrent childhood ependymoma, recurrent
			   childhood malignant germ cell tumor, recurrent childhood 
			   medulloblastoma, recurrent childhood non‑hodgkin lymphoma, recurrent 
			   childhood rhabdomyosarcoma, recurrent childhood soft tissue sarcoma,
			   recurrent ewing sarcoma, recurrent glioma, recurrent hepatoblastoma, 
			   recurrent langerhans cell histiocytosis, recurrent malignant solid 
			   neoplasm, recurrent neuroblastoma, recurrent osteosarcoma, recurrent 
			   peripheral primitive neuroectodermal tumor, refractory central nervous 
			   system neoplasm, refractory childhood malignant germ cell tumor,
			   refractory langerhans cell histiocytosis, refractory malignant solid 
			   neoplasm, refractory neuroblastoma, refractory non‑hodgkin lymphoma, 
			   rhabdoid tumor, stage III osteosarcoma AJCC v7, stage III soft tissue 
			   sarcoma AJCC v7, stage IV osteosarcoma AJCC v7, stage IV soft tissue 
			   sarcoma AJCC v7, stage IVA osteosarcoma AJCC v7, stage IVB 
			   osteosarcoma AJCC v7, and wilms tumor	
NCT02122913	 Larotrectinib	 I	 Unspecified adult solid tumor, protocol specific	 Recruiting

NCT, National Clinical Trials.
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7. Conclusion and discussion

BDNF plays an important role in a wide range of cancers 
by binding its receptor TrkB  (6‑12). Up‑regulation of 
BDNF/TrkB results in a series of downstream signalings, 
including PI3K/Akt, Ras‑Raf‑MEK‑ERK, PLCγ pathway, 
and transactivation of EGFR, etc (Fig.  2). Stimulation of 
these signalings exerts oncogenic effects by mediating cancer 
cell's growth, proliferation, survival, migration, epithelial to 
mesenchymal trasition, anoikis, relapse and chemotherapeutic 
sensitivity  (6‑12). Although BDNF/TrkB regulates several 
downstream signalings and these pathways may correspond 
to each other, not all these signalings will be stimulated in 
response to BDNF/TrkB. For example, it was reported that 
BDNF can rescue neuroblastoma cells from etoposide. 
Inhibition of PI3K but not MAPK can abrogate this ability, 
indicating MAPK pathway may not be involved in this onco-
genic role (103).

Entrectinib (90), Larotrectinib (91), and Cabozaninib (93) 
are three drugs targeting Trk receptors for treatment of cancer 
and the clinical trial results are promising. In some cancers, 
patients have increased objective response rate, median 
progression‑free survival rate and overall survival rate. 
Considering the three drugs can all penetrate BBB, we should 
pay close attention to their side effects on central nervous 
system. Larotrectinib has shown toxicity profile with fatigue, 
dizziness and memory loss (92). Besides, BDNF in central 
nervous system, especially hypothalamus, have an oncolytic 
role by increasing T‑cell toxicity (98,100,101). When targeting 
Trk receptors for treatment of cancer, these drugs will also 
decrease activity of BDNF/TrkB in the central nervous system 
and thus may attenuate BDNF‑mediated anti‑cancer immune 
response. A close monitoring of T‑cell activity is therefore 
necessary.

Since BDNF plays a crucial role in oncogenesis, is it still 
safe to activate BDNF/TrkB for treatment of some neuro-
degenerative diseases? Like human hormones, too much 
or too little of BDNF may be harmful. It is not suggested 
that healthy people should take BDNF as a supplement due 
to the potential risk of oncogenesis. Nevertheless, admin-
istration of BDNF may be beneficial in some aging and 
neurodegenerative diseases, such as amyotrophic lateral 
sclerosis (ALS), peripheral neuropathy, Parkinson's disease 
and Alzheimer's disease (104‑106). Under these unhealthy 
conditions, BNDF/TrkB is down‑regulated and there is no 
evidence that administration of BDNF can cause cancer. For 
clinical application, BDNF is not directly administrated since 
it is a moderately‑sized and charged protein, and can't easily 
cross BBB. Therefore, scientists have spent decades trying 
to establish small drugs that could penetrate BBB and safely 
augment BDNF levels in the brain. Recently, Ampakines, a 
modulator of α‑amino‑3‑hydroxy‑5‑methyl‑4‑isoxazolepropi
onic acid (AMPA) receptor, have been found to significantly 
elevate BDNF levels in some brain regions and also success-
fully correct age‑related memory issues without severe side 
effects (96,107).
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