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Abstract. Gastric cancer (GC) is the third leading cause of 
cancer‑associated mortality. In a previous study, we identi-
fied that α‑enolase (ENO1) promoted cell migration in GC, 
but the underlying molecular mechanisms remain to be fully 
elucidated. In the present study, small interfering RNAs were 
identified to interfere with ENO1 expression. The cDNA 
expression profiling was performed using an Affymetrix 
mRNA array platform to identify genes that may be associated 
with ENO1 in human GC cell line MGC‑803. The differen-
tially expressed genes (DEGs) were identified using the reverse 
transcription‑quantitative polymerase chain reaction, followed 
by a series of bioinformatic analyses. As a result, there were 
448 DEGs, among which 183 (40.85%) were downregulated. 
The most significant functional terms for the DEGs were the 
nuclear lumen for cell components (P=2.83x10‑4), transcrip-
tion for biological processes (P=3.7x10‑7) and transcription 
factor activity for molecular functions (P=1.16x104). In total, 
six significant pathways were enriched, including the most 
common cancer‑associated forkhead box O signaling pathway 

(P=0.0077), microRNAs in cancer (P=0.0183) and the cAMP 
signaling pathway (P=0.0415). Furthermore, a network 
analysis identified three hub genes (HUWE1, PPP1CB and 
HSPA4), which were all involved in tumor metastasis. Taken 
together, the DEGs, significant pathways and hub genes iden-
tified in the present study shed some light on the molecular 
mechanisms of ENO1 involved in the pathogenesis of GC.

Introduction

Gastric cancer (GC) is the third leading cause of cancer‑related 
mortality (1‑3), with ~1,033,701 novel diagnoses and 782,685 
mortalities worldwide in 2018  (3). Previous studies have 
indicated that GC may be driven by a number of different 
genetic abnormalities, such as mutations in cadherin 1 (4) and 
catenin α1 (5). Chromosomal aberrations including Erb‑b2 
receptor tyrosine kinase 2 (6), adenomatous polyposis coli, 
tumor protein p53 and NME/NM23 nucleoside diphosphate 
kinase  1  (7) have also been frequently identified in GC. 
Certain SNPs, such as interleukin 17A (rs2275913) (8), mucin 1 
(rs4072037) (9) and prostate stem cell antigen (rs2976392) (10), 
have indicated genetic predispositions towards an increased 
risk of GC. However, the aforementioned results are not suffi-
cient to clarify the complex pathogenesis of GC. Therefore, 
further research into the molecular aspects involved in carci-
nogenesis is required, which will offer new insights into GC 
treatment.

The α‑enolase (ENO1) gene encodes a glycolysis‑asso-
ciated enzyme, which contains 434 amino acids and has 
a molecular mass of ~57  kDa  (11). Previous studies have 
revealed ENO1 to be abnormally expressed in a number of 
cancer types and serves pivotal roles in tumorigenesis (12‑16). 
For example, in endometrial cancer, ENO1 silencing signifi-
cantly decreased malignant biological behavior; furthermore, 
the expression level of ENO1 could affect the prognosis of 
patients (14). In breast cancer, ENO1 promoted vascular endo-
thelial cell proliferation, inhibited apoptosis and accelerated 
blood vessel formation (15). In non‑small cell lung cancer, 
stably upregulated ENO1 could activate the focal adhesion 
kinase/phosphoinositide 3‑kinase (PI3K)/protein kinase B 
pathway and its downstream signals, and then activate 
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glycolysis, the cell cycle and epithelial‑mesenchymal transi-
tion‑associated genes (13,16). In colorectal cancer tissues, the 
expression level of ENO1 was significantly increased, which 
was associated with tumorigenesis and metastasis in patients 
with colorectal cancer  (17). In addition, an in vitro study 
suggested that overexpression of ENO1 promoted prolifera-
tion, migration and invasion of the colorectal cancer cell line 
HCT116 (17). However, research regarding the role of ENO1 
in GC is insufficient, and further studies are required. To date, 
only a few studies have indicated that ENO1 can promote 
chemoresistance in GC, and that increased protein levels of 
ENO1 lead to a poor prognosis for the patient (18). Previous 
studies indicated that overexpression of ENO1 can enhance 
proliferation and migration in GC cell line AGS (19), and that 
ENO1 can be upregulated by a well‑known GC‑associated 
protein, CagA, in AGS cells (20). Combined with the afore-
mentioned results, we hypothesize that ENO1 serves a role in 
the pathogenesis of GC. Microarray is a powerful tool that can 
present the whole gene expression profile (21) and, as such, 
a microarray analysis was performed on ENO1‑silencing GC 
cells with the aim of gaining further understanding into the 
molecular mechanism(s) of ENO1 in the progression of GC.

Materials and methods

Cell culture and treatment. The human GC cell line MGC‑803 
(Sun Yat‑sen University Cell Library, Guangdong, China) 
was cultured as described previously (22). The small frag-
ment small interfering RNA (siRNA) against ENO1 and 
the scrambled (control) siRNA were synthesized by Beijing 
Oligobio (Beijing, China). The siRNA‑ENO1 sequences 
were as follows: Forward, 5'‑GCA​UUG​GAG​CAG​AGG​UUU​
ATT‑3' and reverse, 5'‑UAA​ACC​UCU​GCU​CCA​AUG​CTT‑3'. 
The siRNA transfection experiment was conducted using 
Lipofectamine® 2000 (Invitrogen; Thermo Fisher Scientific 
Inc., Waltham, MA, USA), according to the manufacturer's 
protocol. The cells were plated onto 6‑well plates at a density 
of 8.0x104 cells. Following reaching ~50% confluence, cells 
were transfected. The cells were assigned to two groups: 
NC group, transfected with 50 nM scrambled siRNA; and 
ENO1‑knockdown group, transfected with 50  nM siRNA 
against ENO1. Each group had three parallel samples. 
Cells were transfected with Lipofectamine 2000 (Thermo 
Fisher Scientific, Inc., Waltham, MA, USA) in serum‑ and 
antibiotic‑free Opti‑MEM (Thermo Fisher Scientific, Inc.), 
according to the manufacturer's instructions. After 24 h, the 
cells were treated with TRIzol® (Thermo Fisher Scientific, 
Inc.) and the total RNA was extracted.

Microarray analysis. Following extraction of the total 
RNA from the NC group and ENO1‑knockdown group, the 
quality was determined using NanoDrop™ 2,000 (Thermo 
Fisher Scientific, Inc.), and the 2100 Bioanalyzer (Agilent 
Technologies, Santa Clara, CA, USA). The amplified RNA 
(aRNA) was prepared using an Affymetrix GeneChip™ 3'IVT 
Express kit (Thermo Fisher Scientific, Inc., Waltham, MA, 
USA), according to the manufacturer's protocol. The aRNA 
was purified, fragmented and hybridized with the chip probes. 
Following hybridization, the chip was stained and the final 
scanned images and raw data were obtained by the Shanghai 

GeneChem Co., Ltd. (Shanghai, China). The raw data were 
processed using the two‑way semi‑linear model, and the genes 
with fold change (FC) >1.5 and P<0.05 were regarded as 
significantly DEGs.

Reverse transcription‑quantitative polymerase chain reaction 
(RT‑qPCR) analysis. To determine the interference efficiency 
of siRNA‑ENO1 and to validate the gene chip results, ENO1 
and five random genes were selected for RT‑qPCR analysis and 
were as follows: AVL9 cell migration‑associated (AVL9), glia 
maturation factor β (GFMB), G‑protein‑coupled receptor 180 
(GPR180), microfibrillar‑associated protein 3 (MFAP3)and 
septin 8 (SEPT8). The total RNA was extracted from the cells 
and the quality was assessed using the aforementioned method. 
RNA was reverse‑transcribed into cDNA using a reverse 
transcription kit (cat. no. 05091284001; Roche Diagnostics, 
Basel, Switzerland), according to the manufacturer's protocol. 
qPCR was carried out in a volume of 10.0  µl, including 
5.0 µl SYBR® Select Master mix (Roche Diagnostics), 3.4 µl 
DNase/RNase‑free water (Beijing Solarbio Science and 
Technology Co., Ltd., Beijing, China), 1.0 µl cDNA, 0.30 µl 
forward primer and 0.30 µl reverse primer. β‑actin was selected 
as the internal reference gene. The Piko Real detection system 
(Thermo Fisher Scientific, Inc.) was used for the amplification 
according to the manufacturer's protocol. The primers were 
synthesized by Generay Biotech Co., Ltd. (Shanghai, China) 
and the sequences were as follows: ENO1 forward, 5'‑GGG​
AAT​CCC​ACT​GTT​GAG​GT‑3' and reverse, 5'‑CGG​AGC​TCT​
AGG​GCC​TCA​TA‑3'; β‑actin forward, 5'‑GGG​AAA​TCG​TGC​
GTG​ACA​TTA​AGG‑3' and reverse, 5'‑CAG​GAA​GGA​AGG​
CTG​GAA​GAG​TG‑3'; ALV9 forward, 5'‑TTC​CAT​TTC​TGG​
GTG​GCA​AGT‑3' and reverse, 5'‑ACA​TCG​TGG​TGG​TCG​
GAT​TTC‑3'; GMFB forward, 5'‑CAG​CGT​TGT​TCG​TTT​CTT​
TGC‑3' and reverse, 5'‑GTC​TTT​GGT​TGT​TTG​TGA​TGT​
TGC‑3'; MFAP3 forward, 5'‑AAT​GAC​ATA​GAT​GCC​ACC​
TTG‑3' and reverse, 5'‑GTG​TCC​CTC​TTC​CAC​CTC​TTA‑3'; 
SEPT8 forward, 5'‑GGA​ATA​ATG​TTC​ACC​TTG​CTG​TCT‑3' 
and reverse, 5'‑TTT​GCC​TCT​ACT​TCA​TCA​CGC‑3'. For all 
RT‑qPCR experiments, the samples were amplified in tripli-
cate, each consisting of three replicates. The relative levels of 
target gene mRNA were calculated and normalized relative to 
β‑actin using the 2‑ΔΔCq method (23).

Functional enrichment analysis. The functional enrichment 
analyses of the DEGs were performed using DAVID  6.7 
(https://david.ncifcrf.gov) (24). Briefly, all the differentially 
expressed genes (DEGs) were uploaded in the ‘Functional 
Annotation̓ section of DAVID 6.7, and set E=0.01. The result 
would indicate the DEGs mapping to different Gene Ontology 
(GO) terms. The GO annotation (www.geneontology.org) 
includes three parts: Biological processes (BP), cellular compo-
nents (CC) and molecular functions (MF), which provide a 
descriptive framework and functional annotation of DEGs. 
The pathway enrichment analysis was performed using Kyoto 
Encyclopedia of Genes and Genomes (KEGG; http://www.
genome.jp/kegg) (25,26). P<0.05 was considered to indicate 
statistically significant functional terms and pathways.

Protein‑protein interaction (PPI) network construction and 
module selection. A PPI network was constructed based 
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on Biological General Repository for Interaction Datasets 
(BioGRID) in WebGestalt (http://www.webgestalt.org/option.
php). The DEGs were mapped to BioGRID and PPI pairs 
were acquired. Interactions with a confidence score >0.4 were 
retained in the network and were visualized using Cytoscape 
(version 3.5.1; http://cytoscape.org). In the PPI network, a node 
represents a protein product of a DEG and the degree repre-
sents the number of proteins linked to this node. The nodes 
with a high degree (>10) were considered to be important and 
named ‘hub genes̓ in the present study. The PPI modules were 
screened using the ClusterONE plugin (version 1.0; http://www.
paccanarolab.org/clusterone) in Cytoscape (27). Results were 
considered statistically significant when P<0.0005.

Statistical analysis. All the data were analyzed using SPSS 
software (version 15.0; SPSS, Inc., Chicago, IL, USA). The 
measurement data were expressed as the mean ± standard 
deviation. Comparison between two groups was performed 
using an independent sample t‑test. P<0.05 was considered to 
indicate a statistically significant result.

Results

Successful knockdown of the ENO1 gene in MGC‑803 cells. 
The mRNA expression levels of ENO1 were downregulated 
12.08‑fold (array data; Fig. 1) and 11.43±0.39‑fold (RT‑qPCR 
data; Fig. 2) in the ENO1‑knockdown group compared with in 
the NC group. The results indicated that the siRNA fragments 
targeting the ENO1 gene were successful and that silencing 
was efficient.

Gene expression profile analysis and hierarchical clustering. 
The microarray included two groups with six samples, and 
the heat map results are presented in Fig. 1. As a result, there 
were 448 DEGs with a FC value >1.5 and P<0.05, among 
which, 183 (40.85%) were downregulated and 265 (59.15%) 
were upregulated. The top ten DEGs with high FC were 
tropomyosin 4 (TPM4), fibroblast growth factor 2 (FGF2), 
inhibitor of DNA binding 2, mitochondrial ribosomal protein 
S33, small integral membrane protein 13, cyclin J, AVL9 cell 
migration‑associated (AVL9), serum/glucocorticoid regu-
lated kinase family member 3  (SGK3), G protein‑coupled 
receptor  180 (GPR180) and mesoderm development LRP 
chaperone.

Verification of the array data using RT‑qPCR analysis. Five 
DEGs (AVL9, GMFB, GPR180, MFAP3 and SEPT8) were 
selected for qPCR analysis. The results  (Fig. 2) indicated 
that the mRNA levels of AVL9, GMFB, GPR180, MFAP3 
and SEPT8 were downregulated 2.78‑, 2.68‑, 2.72‑, 2.67‑ and 
2.23‑fold, respectively. In the RT‑qPCR experiment, these 
genes were downregulated 3.05±0.07‑, 2.33±0.12‑, 3.15±0.06‑, 
2.77±0.08‑ and 2.89±0.12‑fold, respectively. The array data 
were in concordance with the RT‑qPCR results.

Functional annotation analysis of the DEGs. The gene anno-
tation analysis was performed using DAVID and the detailed 
results (Table I) identify the number of significant functional 
classifications for BP, CC and MF as 26, 7 and 10, respectively. 
The DEGs were mainly enriched in transcription, blood vessel 

morphogenesis and cell cycle for BP. CC enrichment was 
detected for genes associated with the nuclear lumen, organelle 
lumen and nucleoplasm, and MF enrichment was identified for 
genes associated with transcription factor activity, transcrip-
tion regulator activity and cytoskeletal protein binding.

KEGG pathway enrichment analysis. The DEGs responding 
to ENO1 silencing were enriched in six significant pathways: 
Systemic lupus erythematosus [Homo sapiens (hsa)05322; 
P<0.001], viral carcinogenesis (hsa05203; P=0.00141), 
alcoholism (hsa05034; P=0.003), forkhead box  O (FoxO) 
signaling pathway (hsa04068; P=0.0077), miRNAs in 
cancer (hsa05206; P=0.0183) and cAMP signaling pathway 
(hsa04024; P=0.0415) (Table II).

PPI network analysis. The PPIs among the 448 DEGs were 
predicted using WebGestalt with information from BioGRID. 
The constructed network consisted of 209 proteins (nodes) 
and 293 interactions (edges) (Fig. 3). In addition, there were 
seven genes that had high degrees with edges ≥10 in the PPI 
network. These seven genes were HECT, UBA and WWE 
domain‑containing 1, E3 ubiquitin protein ligase (HUWE1; 
degree,  16), protein phosphatase  1 catalytic subunit  β 
(PPP1CB; degree, 16), heat shock protein family A (Hsp70) 
member 4 (HSPA4; degree, 16), signal transducer and activator 
of transcription 3 (STAT3; degree, 13), anillin actin‑binding 
protein (degree, 12), Src homology  3 domain‑containing 
kinase‑binding protein 1 (degree, 10) and casein kinase 2α2 
(degree, 10), respectively. Among these, HUWE1, PPP1CB 
and HSPA4 were the top three nodes with 16 edges.

Module analysis and protein domain analysis. ClusterONE 
was applied for module analysis to further predict potential 
protein complexes. For the network constructed above, 
there were three significant modules (P<0.0005; Fig. 4), as 
follows: Module A (nodes, 24; density, 0.101; quality, 0.549; 
P=0.00000791); Module B (Nodes, 18; density, 0.183; quality, 
0.683; P=0.000136) and Module C (nodes, 17; density, 0.132; 
quality, 0.581; P=0.00045) (Table III). For the protein domain 
analysis, one significant domain was found for Module B: 
Myosin head, motor domain (IPR001609) (P=0.034). No 
significantly enriched protein domains were identified in 
Modules A and C.

Discussion

In the present study, a total of 448 DEGs responded to ENO1 
knockdown in the human GC cell line MGC‑803. Certain 
DEGs that demonstrated significantly decreased expression 
in the present study, including TPM4, have been reported 
to be associated with clinical progression in patients with 
colon cancer (28). Another gene, SGK3, which was identi-
fied to be downregulated in the present study has previously 
been reported to serve an important role in the development 
of breast cancer (29). In addition, FGF2, which also demon-
strated significantly decreased expression, is a well‑known 
oncogene (30,31).

The DEGs were enriched in six significant pathways: 
Systemic lupus erythematosus, viral carcinogenesis, alco-
holism, FoxO signaling pathway, miRNAs in cancer and 
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Table I. GO analysis of the DEGs regulated by ENO1 silencing.

Identifier	 Functional term	 Count	 P‑value

Biological process
  GO:0006350	 Transcription	 86	 6.43x10‑7

  GO:0006355	 Regulation of transcription, DNA‑dependent	 73	 5.37x10‑6

  GO:0045449	 Regulation of transcription	 96	 1.08x10‑5

  GO:0051252	 Regulation of RNA metabolic process	 73	 1.18x10‑5

  GO:0010629	 Negative regulation of gene expression	 28	 1.00x10‑4

  GO:0016481	 Negative regulation of transcription	 26	 1.40x10‑4

  GO:0006357	 Regulation of transcription from RNA polymerase II promoter	 35	 1.81x10‑4

  GO:0048514	 Blood vessel morphogenesis	 16	 1.98x10‑4

  GO:0010605	 Negative regulation of macromolecule metabolic process	 35	 2.17x10‑4

  GO:0045934	 Negative regulation of nucleobase, nucleoside, nucleotide and nucleic	 27	 3.13x10‑4

	 acid metabolic process
  GO:0010558	 Negative regulation of macromolecule biosynthetic process	 28	 3.74x10‑4

  GO:0051172	 Negative regulation of nitrogen compound metabolic process	 27	 3.82x10‑4

  GO:0045892	 Negative regulation of transcription, DNA‑dependent	 21	 4.39x10‑4

  GO:0051253	 Negative regulation of RNA metabolic process	 21	 5.34x10‑4

  GO:0031327	 Negative regulation of cellular biosynthetic process	 28	 5.50x10‑4

  GO:0009890	 Negative regulation of biosynthetic process	 28	 7.64x10‑4

  GO:0001568	 Blood vessel development	 16	 9.55x10‑4

  GO:0001525	 Angiogenesis	 12	 9.60x10‑4

  GO:0007049	 Cell cycle	 34	 1.189962x10‑3

  GO:0001944	 Vasculature development	 16	 1.215671x10‑3

  GO:0031099	 Regeneration	 8	 1.374438x10‑3

  GO:0051726	 Regulation of cell cycle	 18	 3.03174x10‑3

  GO:0031100	 Organ regeneration	 5	 3.326962x10‑3

  GO:0007507	 Heart development	 13	 6.280962x10‑3

  GO:0030593	 Neutrophil chemotaxis	 4	 8.795164x10‑3

  GO:0007167	 Enzyme‑linked receptor protein signaling pathway	 17	 9.52888x10‑3

Cell component
  GO:0031981	 Nuclear lumen	 52	 2.58x10‑4

  GO:0070013	 Intracellular organelle lumen	 60	 3.75x10‑4

  GO:0043233	 Organelle lumen	 60	 6.74x10‑4

  GO:0031974	 Membrane‑enclosed lumen	 60	 1.097428x10‑3

  GO:0005654	 Nucleoplasm	 34	 1.312471x10‑3

  GO:0005783	 Endoplasmic reticulum	 34	 4.951755x10‑3

  GO:0044451	 Nucleoplasm part	 22	 8.735324x10‑3

Molecular function
  GO:0003700	 Transcription factor activity	 43	 2.18x10‑4

  GO:0030528	 Transcription regulator activity	 58	 5.22x10‑4

  GO:0008092	 Cytoskeletal protein binding	 26	 6.25x10‑4

  GO:0016564	 Transcription repressor activity	 18	 1.995073x10‑3

  GO:0043014	 α‑tubulin binding	 4	 2.056678x10‑3

  GO:0003677	 DNA binding	 77	 3.813995x10‑3

  GO:0046914	 Transition metal ion binding	 88	 6.180415x10‑3

  GO:0003779	 Actin binding	 17	 6.453361x10‑3

  GO:0008270	 Zinc ion binding	 75	 6.826083x10‑3

  GO:0004672	 Protein kinase activity	 26	 7.297114x10‑3 

GO, Gene Ontology.
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cAMP signaling pathway (Table II). Among these, some were 
reported to be associated with cancer development, such as 
the cAMP signaling pathway and FoxO signaling pathway. 
cAMP signaling regulates protein levels by controlling gene 
transcription via transcriptional activators that are involved in 
cancer cell migration, proliferation, apoptosis, and cytoskel-
eton remodeling in bladder cancer (32), breast cancer (33) and 
lung cancer (34). Furthermore, an exchange protein directly 
activated by cAMP (EPAC1) has been regarded as a prognostic 
marker and may be a potential therapy target for GC (35), 
which suggests the important role that the cAMP signaling 
pathway serves in the pathological processes of GC. The FoxO 
signaling pathway has also been reported to be associated with 
breast cancer (36), bladder cancer (37), prostate cancer (38) and 
lung cancer (39). Previous studies have demonstrated that there 
may be crosstalk between the cAMP signaling pathway and the 
FoxO signaling pathway. On one hand, activation of the cAMP 
signaling pathway increased FoxO1 phosphorylation (40). On 

Figure 2. RT‑qPCR verification of the array data. Fold changes of selected genes 
in NC and ENO1‑knockdown groups using microarray and RT‑qPCR analyses. 
RT‑qPCR, reverse transcription‑quantitative polymerase chain reaction; ENO1, 
α‑enolase; AVL9, AVL9 cell migration‑associated; GMFB, glia maturation 
factor β; GPR180, G‑protein‑coupled receptor 180; MFAP3, microfibrillar‑asso-
ciated protein 3; SEPT8, septin 8. All values are relative to the negative controls. 

Figure 1. Array data. Hierarchical clustering dendrogram comparing MGC‑803 cells transfected with scrambled siRNA (control) and siRNA against ENO1. 
Each sample represents the average gene expression value for three replicates. Green, low expression; red, high expression. siRNA, small interfering RNA; 
NC, negative control; ENO1 knockdown, siRNA against ENO1; ENO1, α‑enolase.

Table II. Detailed information of the Kyoto Encyclopedia of Genes and Genomes pathway analysis.

Identifier	 Name	 Count	 Gene	 P‑value

hsa05322	 Systemic lupus erythematosus	 6	 HIST1H2BD, HIST1H2BG, HIST1H2BF, HIST1H2BE, 	 <0.001
			   HIST1H2BI, HIST1H2BC
hsa05203	 Viral carcinogenesis	 10	 CDKN1A, HIST1H2BD, CCND1, STAT3, TRAF3, 	 1.41x10‑3

			   HIST1H2BG, HIST1H2BF, HIST1H2BE, HIST1H2BI,
			   HIST1H2BC
hsa05034	 Alcoholism	 6	 HIST1H2BD, HIST1H2BG, HIST1H2BF, HIST1H2BE, 	 3.11x10‑3

			   HIST1H2BI, HIST1H2BC
hsa04068	 FoxO signaling pathway	 6	 CDKN1A, SGK3, CCND1, STAT3, TGFBR1, SETD7	 7.7x10‑3

hsa05206	 MicroRNAs in cancer	 8	 CDKN1A, CYP1B1, DICER1, PDCD4, MCL1, PLAU, 	 1.83x10‑2

			   CCND1, STAT3
hsa04024	 cAMP signaling pathway	 5	 ADCY9, HTR1D, PPP1CB, RAC1, CREB3L2	 4.15x10‑2

hsa, Homo sapiens; FoxO, Forkhead box O; cAMP, cyclic adenosine monophosphate.
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the other hand, FoxOs supported the metabolic requirements 
of normal and tumor cells via the PI3K signaling pathway, 
which was reported to interact with the cAMP signaling 
pathway in a number of physiological processes (41). In addi-
tion, systemic lupus erythematosus was the most significant 
pathway response to ENO1 inhibition, and this result was 
similar to that in our previous study on TPI silencing (22). 
As previously discussed, although no definitive evidence has 
suggested the involvement of systemic lupus erythematosus in 
the pathogenesis of GC, there may be an association between 

the two since certain sporadic patients were affected by GC 
and systemic lupus erythematosus simultaneously (22,42,43). 
The molecular mechanisms underlying the involvement of 
systemic lupus erythematosus in the pathogenesis of GC are 
not currently fully understood and further research is required.

The constructed PPI network based on BioGRID included 
209  nodes and 293  edges. There were seven DEGs with 
a degree ≥10, among which, the first three were PPP1CB, 
HUWE1 and HSPA4, which were regarded as hub genes 
and may interact with ENO1 in GC progression. These 

Figure 3. Protein‑protein interaction (PPI) network of differentially expressed genes (DEGs) based on BioGRID. The network contained 209 nodes and 293 
edges. There were seven genes with a high degree ≥10 and the first three, HUWE1, PPP1CB and HSPA4, all had a degree of 16. HUWE1, HECT, UBA and WWE 
domain‑containing 1, E3 ubiquitin protein ligase; PPP1CB, protein phosphatase 1 catalytic subunit β; HSPA4, heat shock protein family A (Hsp70) member 4.
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three genes have been reported to be associated with cancer 
development. PPP1CB, encoding protein phosphatase 1 
catalytic subunit β isoform, has been reported in prostate 
cancer, chronic lymphocytic leukemia (44) and even used as 
a potential biomarker for distinguishing malignant melanoma 
from other melanocytic lesions (45). HUWE1, as a ubiquitin 
ligase, has been regarded as a tumor suppressor and served 
key roles in tumorigenesis (46). For example, compared with 
normal thyroid tissue, HUWE1 was downregulated in human 
thyroid cancer tissues, and overexpression of HUWE1 in 
thyroid cancer cells enhanced chemotherapeutic sensitivity 
and inhibition of cell proliferation, cell migration and inva-
sion (47). The third hub gene HSPA4 encodes a heat shock 
70 protein. It has been reported that upregulation of heat 

shock proteins (HSPA12A, HSP90B1, HSPA4, HSPA5 and 
HSPA6) in tumor tissues is associated with poor outcomes 
from hepatitis B virus‑associated early‑stage hepatocellular 
carcinoma (48). Furthermore, HSPA4 has been reported to 
regulate cell migration and delay gastric ulcer healing (49). 
To the best of our knowledge, the present study is the first to 
identify the possible association between PPP1CB, HUWE1, 
HSPA4 and ENO1. Further studies are required to confirm 
these connections and their functions in the pathogenesis in 
GC tumorigenesis.

In summary, the results of the present study provide a 
comprehensive bioinformatic analysis of the genes associated 
with ENO1. The important signaling pathways (such as cAMP 
signaling pathway and FoxO signaling pathway) and key genes 

Table III. Detailed information of three modules screened from the PPI network of all DEGs.

Module	 Nodes	 Density	 Quality	 P‑value	 Members

A	 24	 0.101	 0.549	 7.905x10‑6	 HSPE1, PGM2L1, HSPA4, ARFIP1, TMED7, TMEM30A, 
				    	 HUWE1, GANAB, GBAS, TROVE2, ATL3, SEC24D,
				    	 FAM114A1, ZW10, HDLBP, FAP, PA2G4, DNAJA2, WIPI2,
				    	 MCL1, PRSS23, THRB, PSMD10, HIST1H2BC
B	 18	 0.183	 0.683	 1.356x10‑4	 SORBS2, ARHGAP21, ANLN, PPP1CB, TPM4, SSFA2, 
				    	 MYO1C, LARP4, SSH1, ACTR2, EFHD2, STBD1, PPP1R3C,
				    	 MYO6, CPM, RIF1, APOBEC3B, TMEM33
C	 17	 0.132	 0.581	 4.502x10‑4	 RGS19, MAPK6, CUX1, FOXK2, NFATC2, TLK2, MAP1B, 
				    	 GATAD2A, RBPJ, MTA1, HNRNPA0, NFIA, KDSR, CA12,
				    	 MAX, GADD45A, FNBP1

Figure 4. Modules identified from the network based on BioGRID. Three modules were identified with P<5x10‑4. Module A (nodes, 24; density, 0.101; 
quality, 0.549; P=7.91x10‑6); Module B (nodes, 18; density, 0.183; quality, 0.683; P=1.36x10‑4) and Module C (nodes, 17; density, 0.132; quality, 0.581; P=4.50x10‑4).
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(such as PPP1CB, HUWE1 and HSPA4) may help to narrow 
down the role of ENO1 in the pathogenesis and treatment 
of GC.
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