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Abstract. SK‑MEL‑5 is a human melanoma cell line that has 
been used in various studies to explore new therapies against 
melanoma in different in vitro experiments. Based on this study 
we report on the development of quantitative structure‑activity 
relationship (QSAR) models able to predict the cytotoxic 
effect of diverse chemical compounds on this cancer cell 
line. The dataset of cytotoxic and inactive compounds were 
downloaded from the PubChem database. It contains the data 
for all chemical compounds for which cytotoxicity results 
expressed by GI50 was recorded. In total 13 blocks of molecular 
descriptors were computed and used, after appropriate 
pre‑processing in building QSAR models with four machine 
learning classifiers: Random forest (RF), gradient boosting, 
support vector machine and random k‑nearest neighbors. 
Among the 186 models reported none had a positive predictive 
value (PPV) higher than 0.90 in both nested cross‑validation 
and on an external dataset testing, but 7 models had a PPV 
higher than  0.85 in both evaluations, all seven using the 
RFs algorithm as a classifier, and topological descriptors, 
information indices, 2D‑autocorrelation descriptors, 
P‑VSA‑like descriptors, and edge‑adjacency descriptors as sets 
of features used for classification. The y‑scrambling test was 
associated with considerably worse performance (confirming 

the non‑random character of the models) and the applicability 
domain was assessed through three different methods.

Introduction

Quantitative structure‑activity relationship (QSAR) models 
are mathematical tools used to predict the physical, chemical 
or biological characteristics of chemical substances from 
their chemical structure, as expressed through a variety of 
‘chemical descriptors’ (1). In the famous statistical aphorism 
of George Box, ‘all models are wrong but some are useful’ (2); 
QSAR models might be imperfect, but they have proven 
useful in a plethora of applications  (3), from drug design 
(being frequently used for virtual screening, as well as lead 
optimization) (4) to toxicological predictions (being used to 
predict toxicity for a large number of substances for which 
wet lab experiments have not yet been performed and may be 
unlikely to be performed in the near‑ or mid‑term future (5), 
or from protein binding (6) to cytochrome P450 interaction 
forecasts (7).

Melanoma is considered the most threatening form of 
skin neoplasm, having fast progression and metastasizing, 
as well as a high burden of death, particularly if detected 
late  (8). Although an important number of therapies have 
recently been approved for advanced stage melanoma, the 
disease is far from being vanquished, resistance development 
through mutations or alternative signaling pathways, cancer 
heterogeneity and serious adverse events limiting the effi-
cacy and potential benefits of the newer treatments, at least 
in a proportion of the patients  (9,10). Therefore, although 
therapeutic options are now better for patients with advanced 
melanoma than they were a decade ago, there is still a need for 
developing new drugs targeting melanoma, and a variety of 
approaches are still explored, from evaluating new targets (11) 
to exploring new delivery systems for old compounds (12). 
SK‑MEL‑5 is a human melanoma cell line derived from a 
metastatic axillary node of a young female patient, and is 
characterized by a high level of expression of the V600E 
mutation of B‑Raf, of the wild-type N‑Ras (13), as well as by 
relatively high levels of the ABCB1 transcript (14). This is 
unlike SK‑MEL‑2 melanoma cell line, which has wild‑type 
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B‑Raf, but normal N‑Ras (11). It has been used in various 
studies to explore new therapies against melanoma in various 
in vitro experiments (15‑17).

In the present study, we report on our attempts to develop 
QSAR models, able to forecast the cytotoxic effects of 
different chemical compounds on the SK‑MEL‑5 melanoma 
cell line, using the data available on PubChem. Such data 
are derived from different laboratories, have been generated 
at different times, most likely with different reagents and 
laboratory equipment; moreover, whereas most QSAR studies 
are focused on a well‑defined biological target, the cytotoxicity 
data are inherently more heterogeneous, as different molecules 
may induce cytotoxicity through a variety of biochemical 
pathways. Thus, it is to be expected that QSAR modelling 
of such data is more challenging than for compounds 
targeting specific proteins or other unambiguous cell targets. 
Kalliokoski et al (18), based on a data set filtered using certain 
validity criteria have shown that the standard deviation for IC50 
is only approximately 25% higher than that of ki; we have used 
GI50, which is similar to IC50, in our models, as ki data are not 
available for cytotoxicity measurements on cultured cell lines 
(ki is applicable to distinct protein targets). Because of these 
considerations, as well as due to the relatively large structural 
diversity of the dataset, we used a binary classification 
approach (not regression models) (19) and have focused on 
4 machine learning techniques extensively made use of in 
the area of data prediction: Random forest  (RF), gradient 
boosting (BST), support vector machine (SVM) and k‑nearest 
neighbor (KNN).

Materials and methods

Dataset. The dataset of cytotoxic and inactive compounds on 
the SK‑MEL‑5 cell line was downloaded from the PubChem 
data base (https://pubchem.ncbi.nlm.nih.gov) in June 2017. We 
have retained the data for all chemical compounds for which 
cytotoxicity results expressed by GI50 was recorded. Other 
assessment criteria for the same cell line (e.g., LC50 or ED50) 
were not preferred and selected because the number of records 
was much lower for these measures (35 observations for the 
former, 138  for the latter). We downloaded the PubChem 
canonical SMILES and used ChemAxon Standardizer v. 18.8.0 
(ChemAxon, Budapest, Hungary) for the standardization of 
the molecules. Duplicates were removed in two steps: First, 
we detected duplicates in R, based on the canonical SMILES, 
and replacing the GI50 with the mean value of the duplicates. 
This procedure identified most of the duplicates. In a second 
step we used the ISIDA/Duplicates (http://infochim.u‑strasbg.
fr; University of Strasbourg, France) software following the 
structure standardization and this detected an additional dupli-
cate. Standardized SMILES were converted to 2D chemical 
structures using Discovery Studio Visualizer v16.1.0.15350 
(Dassault Systèmes BIOVIA, San  Diego, CA, USA). We 
defined a compound as ‘active’ if the GI50 was less than 1 µM 
and ‘inactive’ if the GI50 was higher than the 1 µM threshold. 
We started with a number of 445 observations and, following 
removal of duplicates ended up with 422 observations, of 
which 174 labelled as ‘active’ and 248 as ‘inactive’; the ratio 
of inactive:active compounds was ~1.42. Having a balanced 
data set is important for a good performance of machine 

learning algorithms, especially when the target class is under-
represented  (20). We therefore also assessed the effect of 
balancing the data through over‑, under‑, and a combination 
of over‑ and under‑sampling, but the benefit was in most cases 
rather limited, if at all. We randomly divided the data set in 
a training (learning) set (316 compounds) and a testing set 
(106 compounds), using the rminer package of the R statistical 
tool (21).

Descriptors. Thirteen blocks of molecular descriptors 
were computed with the Dragon  7 program (version  7.0, 
https://chm.kode‑solutions.net; Kode SRL, Milano, Italy): 
Constitutional descriptors (n=47), ring descriptors (n=32), 
topological indices (n=75), walk and path counts (n=46), infor-
mation indices (n=50), 2D matrix‑based descriptors (n=607), 
2D‑autocorrelations (n=213), Burden eigenvalues (n=96), 
P‑VSA‑like descriptors (n=55), ETA indices (n=23), Edge 
adjacency indices (n=324), and molecular properties (n=20). 
We have also used the whole set of 1D and 2D descriptors 
(264 descriptors after the removal of constant, quasi‑constant 
and highly correlated variables), in order to assess whether 
models based on a larger pool of descriptors have better 
performance with the chosen classifiers than models based 
on a narrow and well‑defined family of descriptors. Thus, 
the total number of descriptor blocks used for building 
classification models was 13. Because the models based on 
the molecular properties had poor performance we did not 
include the results of those models here.

Pre‑processing and feature selection. We generated distinct 
QSAR models with each of the 15 blocks of descriptors and 
pre‑processed the data using R, v. 3.4.4 (22), and ‘mlr’ package, 
v. 2.12.1 (23). For this purpose, within each block of descrip-
tors we removed variables with constant or near constant 
values (using a threshold value of 0.1%, i.e., features for which 
less than 0.1% differed from their mode value were removed). 
Features containing missing values were also removed, 
because it is likely that for virtual screening purposes models 
built with such features will not be applicable for a part of 
the new compounds. Features highly correlated were also 
removed, using a threshold value of the coefficient correlation 
of 0.80. For each subset, after such pre‑processing we selected 
maximum 7 features using two methods: i) RF importance 
(‘random forest’ R package) (24); and ii) symmetrical uncer-
tainty (‘FSelector’ R package) (25).

Classifiers. We made use of four machine learning algorithms 
to build classification models able to predict with reasonable 
accuracy the effect of substances against the SK‑MEL‑5 mela-
noma cell line: RF, BST, SVM, and KNN.

RFs, first proposed by Ho in 1995 (26) and improved by 
Breiman in 2001 (27) use a large number of decision trees 
(hence the name, ‘forests’), which are aggregated through boot-
strap (bagging), and prediction for unseen samples are made 
through averaging or a majority vote. It has been described as 
‘among the most accurate methods’ in the field of QSAR (28). 
It is implemented in the R package ‘random forest’ (24).

Gradient boosting machines (GBMs) represent an algo-
rithm able to combine weak learners in a strong one, building, 
in an iterative manner, additional base‑learners that have a 
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maximal correlation with the negative slope of a cost func-
tion, a variety of such functions being available (29). In QSAR 
models GBMs have shown good results with respect to perfor-
mance of prediction, speed and robustness (30). The algorithm 
was run under ‘mlr’ R package based on the implementation 
carried out in ‘bst’ (31) and ‘rpart’ (32) R packages.

Support vector machines (SVMs), proposed for the first 
time and developed by Vladmir Vapnik, makes use of a hyper-
plane separating the data from the variable space into classes. 
Variables are first mapped in a high‑dimensional space through 
a variety of kernel functions, then the algorithm identifies in 
this high‑dimensional space the maximal margin hyperplane, 
thus separating the compounds in classes (33). Its chief advan-
tage consists in the fact that it makes use of the structure risk 
minimization (SRM) principle, which is more efficient than 
the conventional empirical risk minimization (ERM) (34). 
We used the implementation of the algorithm available in the 
‘e1071’ R package (35).

KNN is a classification method, in which the separation 
of variables in classes is performed using the nearest training 
observations from the variable space (36), more precisely, a test 
instance is classified with the help of majority decision using 
the data of its KNN, as computed from the learning set (37). 
The algorithm was run under ‘mlr’ R package based on the 
implementation carried out in the ‘rknn’ R package (38).

Performance measures and model validation. A nested 
(double) cross validation method was used to tune the 
hyper‑parameters for each algorithm and to assess the perfor-
mance and robustness of the model thus developed (guiding 
the decision by the best performance in terms of Cohen's 
kappa). This is considered the most appropriate procedure 
for cross‑validation, the data being partitioned into a learning 
subset and a test subset, the learning subset being used in the 
internal loop, for the model building and selection, whereas 
the test subset is being used for the assessment of the perfor-
mance of the model picked in the inner loop. The inner loop 
used a 5‑fold cross‑validation, whereas the outer loop used a 
10‑fold cross‑validation. The nested cross‑validation method 
was performed on the 316 compounds constituting the initial 
training set (which was thus, successively divided in training 
and test subsets). To externally assess the reliability of the 
model performance on data unseen by the model, we used the 
106 compounds of the (initial) test set.

The purpose of developing the models was to identify 
compounds with a high likelihood of being active; in other 
words, we were not equally interested in classifying both posi-
tive and negative observations correctly, but rather in avoiding 
false positives. Therefore, the most relevant performance 
measure was the selectivity (true negative rate, tnr), indicating 
the proportion of observations rightly classified in the negative 
category, and we are interested in maximizing it; its comple-
mentary value (1‑tnr) gives the false positive rate, our interest 
being in its minimization. Sensitivity (true positive rate, tpr), 
defined as the proportion of observations in the positive class 
properly classified, is also relevant, although for our purposes 
it is preferably to have a higher selectivity and lower sensitivity 
than the other way round. The positive predictive value (PPV, 
precision), calculated as tp/(tp+fp), where tp is the sum of all 
true positive values correctly classified and fp the false posi-

tives (misclassified observations from the positive class), is a 
composite measure reflecting both selectivity and sensitivity. 
Although not the most important for our purposes, for a better 
understanding of performance we also looked at the balanced 
accuracy (defined as the mean of tpr and tnr) and mean 
misclassification error (MMCE), defined as the proportion of 
cases where the response (classification result for a particular 
observation) is different from the truth (the real class of a 
particular observation). All these measures are implemented 
in the mlr package (23).

Besides 10‑fold nested cross‑validation and external 
testing, Y‑scrambling was applied to assess the robustness of 
the models, ruling out to a reasonable extent the possibility 
that the models were the result of chance associations. The 
IC50 value was randomly scrambled using 500 permutations 
(R package ‘gtools’) (39) and then several different models 
were re‑built from zero (i.e., repeating the process of feature 
selection, so as to correspond to the new (scrambled) activity 
values) and the performance measures were computed for the 
new models thus re‑built.

We assessed the applicability domain (AD) of the 
models developed employing the KNN approach developed 
by Sahigara et al  (2013) (40) and the method proposed by 
Roy et al (2015) (37), which assumes normal distribution of 
the descriptor values, using code written by us in R. We have 
also explored the local density methods implemented in the 
R package ‘ldbod’ (41), using arbitrary thresholds of 5 and 10% 
for the ranked values of the local density‑based outlier scores 
computed against the reference values of the train set. The 
same techniques were used to investigate and detect outliers 
among the train set values.

Results

Assessment of the dataset chemical diversity. To ensure a 
reasonable predictive accuracy of QSAR models it is impor-
tant to have a data set sufficiently diverse  (42) and in the 
literature various ways of the chemical diversity assessment 
have been used. We have computed a dissimilarity matrix 
based on the Gower distance, which is an appropriate measure 
for data sets containing combinations of numerical and 
categorical or binary variables and returns a distance that is 
already scaled, i.e., is always a number between 0 (identical 
values, no dissimilarity) and 1 (very distinct values, maximal 
dissimilarity) (43). For the dissimilarity matrix we used all 
1D and 2D descriptors computed by Dragon Program, v. 7.0 
after minimal processing for the removal of constant and near 
constant features (1,920 remaining descriptors). To get a quick 
understanding of the differences, a heat map of the dissimi-
larity matrix was drawn and examined (Fig. 1). As indicated 
by the (smaller) density plot, most of the observations have 
a dissimilarity coefficient of 0.2‑0.6, i.e., there is a moderate 
chemical diversity in the whole dataset.

We also used the technique of Xu et al (42), who used a 
scatter plot of the molecular weight and AlogP for the substances 
from the learning and test subsets to assess whether the latter 
were distributed in the same chemical space as the former 
compounds. The graph showed that most test points were close 
to one or more several train points, but there were also a few 
outliers which seemed to be out of the AD of the models (Fig. 2).
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The exploration of the AD for the seven best performing 
models with the first two methods (based on the KNN and 
local probability density) has shown that for most only a 
small proportion (3.77‑12.3% for the different sets of features 
and depending on the method used for the assessment) of 
the test set observations were outside the AD; moreover, in 
most cases despite the fact that those cases were outside the 
AD, most of them were predicted correctly (for instance all 
of the nine values identified by the KNN‑based method as 
outside AD were predicted correctly by the RF model based 
on the first set of topological descriptors and oversampling, 
and 11 out of 13 values identified by the Roy method (37) as 
outside AD were also correctly classified for this method; in 

the case of 2D‑autocorrelations, for the KNN method out of 
four values outside AD, three were correctly classified, all 
five values identified by probability density methods at the 
5% threshold were correctly predicted and four out of five 
identified by the Roy method were correctly labeled by this 
model.

In the case of informational indices, the number of test 
observations outside AD identified by the KNN method was 
surprisingly high (29.25%, almost one in every three obser-
vations), and slightly more than half of those cases (51.61%) 
were wrongly classified. The Roy method identified only five 
outliers and two of them were wrongly classified. The prob-
ability density methods suggested that slightly more than half 
of the values outside AD for this model were wrongly classi-
fied (3 out of 5 and 6 out of 10 most extreme values based on 
the outlier scores were wrongly predicted).

Performance of nested cross validation. We attempted to 
use the connectivity indexes but all descriptors of this subset 
had some values not available and therefore we preferred to 
discard this subset and not to build classification models based 
on these descriptors.

Using 4 classifiers, 13 different sets of descriptors, as well 
as ‘synthetic’ samples obtained by over-sampling or a combi-
nation of over‑ and under‑sampling (‘smote’) different models 
were build, the performance of which was assessed through 
nested cross validation. Because we used 2 different algo-
rithms for feature selection, which in most cases identified two 
partially different subsets of features (in rarer cases a single set 
of features), the total number of models evaluated was 186 (not 
counting those built with molecular properties, whose perfor-
mance was poor). We report here only those models (n=28) 
with an acceptable performance [positive predictive value 
(PPV) higher than 75% in both the nested cross‑validation 
and on the previously unseen dataset] (Tables I and II). The 
performance of each model in the nested cross‑validation and 
on the independent data set is shown in the Tables SI and SII.

Among the 186 models reported in the Tables SI and SII, 
none had a PPV higher than 0.90 in both nested cross‑valida-
tion and on the external dataset, but seven models had a PPV 
higher than 0.85 in both evaluations, all seven using the RF 
algorithm as a classifier and topological descriptors, infor-
mation indices, 2D‑autocorrelation descriptors, P‑VSA‑like 
descriptors, and edge‑adjacency descriptors as sets of features 
used for classification. For 16 models PPV was higher than 
80% with the two assessment methods (cross‑validation and 
external evaluation). Using the pool of all descriptors and two 
feature selection algorithms did not lead to better results than 
using smaller blocks of descriptors: None of the 16 models 
developed with the pool of all 1D and 2D descriptors had a 
PPV higher than 80% in both cross‑validation and external 
testing and only two of those 16 models had a PPV higher than 
75% in both evaluations. We have not explored a larger range 
of feature selection options for this large pool of descriptors, 
but with the two also applied on the smaller blocks there was 
no clear advantage in using the larger number of descriptors as 
a start. Thus, on the subject of descriptor efficiency more is not 
necessarily better, in our case less was rather more.

The nitrogen percentage, oxygen atom numbers and oxygen 
percentage, number of multiple bonds, of heavy atoms, and 

Figure 1. Heat map depicting the chemical diversity of the substances used in 
our study, based on the Gower distance. The left column shows their activity 
(active or inactive), whereas in the heat map proper darker regions corre-
spond to higher dissimilarity and whiter to lower dissimilarity. The density 
plot shows the distribution of the (scaled) Gower distances (dissimilarity).

Figure 2. Distribution of the two data sets (learning, n=316 and external, 
n=106) in bi‑dimensional chemical space (molecular weight and atomic 
LogP). The triangles correspond to the training data set, whereas the circles 
to the test.
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of terminal atoms, as well as the average molecular weight, 
were the most important constitutional descriptors. The sense 
of the interactions between nitrogen percentage and average 
molecular weight, and between nitrogen percentage and number 
of terminal atoms in the RF model based on the unbalanced 
data is shown for exemplification in Figs. S1 and S2. Among 
the ring descriptors, the first two most important were the 
molecular cyclized degree and aromatic ratio, both being easy 
to compute and easy to interpret; a sense of their interaction in 
an RF model is shown in Fig. S3.

The y‑scrambling test was associated with considerably 
worse performance of the models re‑built through the same 
steps as the initial models, with respect to all performance 
measures employed (e.g., PPV not higher than 0.50 and sensi-
tivity lower than 5%), thus strongly suggesting that the good 
performance of the models was not the result of chance, but 

rather of a real association between the cytotoxic effect on the 
melanoma cell line SK‑MEL‑5 and the descriptor blocks used 
in those models.

Discussion

A small number of ‘local’ QSAR models have been publi
shed (44‑47), focused on the cytotoxicity of a limited number 
of similar substances against one or several cancer cell lines, 
but such models have a narrow range of chemical structures 
and a narrow domain of applicability (48). Our study is one 
of the few where cytotoxicity assessed on a cancer cell line 
(SK‑MEL‑5) is explored through ‘global’ QSAR modelling. 
Such an approach is more challenging, because even for a 
single therapeutic target (a protein) median efficacy values 
(such as IC50) are more heterogeneous and likely to be affected 

Table I. Performance of selected classification models with PPV higher than 75% for the 10-fold nested cross-validation.

				    Balanced
Models	 Specificity	 Sensitivity	 PPV	 accuracy	 MMCE

Topological descriptors‑RF (1)	 0.9374	 0.3583	 0.8424	 0.6479	 0.3022
Topological descriptors‑RF (2)	 0.9298	 0.3628	 0.7964	 0.6463	 0.3105
Topological descriptors‑RF (1), over	 0.9148	 0.5752	 0.8749	 0.745	 0.2548
Topological descriptors‑RF (1), smote	 0.8946	 0.499	 0.8158	 0.6968	 0.3086
Walk and path‑RF (1)	 0.9465	 0.285	 0.7587	 0.6158	 0.3231
Information indices‑RF (1)	 0.9486	 0.3434	 0.8368	 0.646	 0.3003
Information indices‑RF (2)	 0.9685	 0.3448	 0.8848	 0.6566	 0.2878
Information indices‑RF (1), over	 0.9022	 0.634	 0.8715	 0.7681	 0.2319
Information indices‑RF (1), smote	 0.9023	 0.5438	 0.851	 0.723	 0.2776
Information indices‑BST (1), smote	 0.78	 0.7536	 0.7803	 0.7668	 0.2344
2D-autocorrelation-RF (1)	 0.927	 0.3414	 0.776	 0.6342	 0.3063
2D-autocorrelation-RF (2)	 0.9687	 0.3005	 0.8707	 0.6346	 0.3063
2D-autocorrelation-RF (2), over	 0.9453	 0.611	 0.9201	 0.7782	 0.2289
2D-autocorrelation-RF (2), smote	 0.9174	 0.4858	 0.8583	 0.7016	 0.2993
Burden eigenvalues‑RF (2)	 0.941	 0.3373	 0.7943	 0.6391	 0.3063
Burden eigenvalues‑RF (2), over	 0.8803	 0.6373	 0.8417	 0.7588	 0.2427
Burden eigenvalues‑RF (2), smote	 0.8445	 0.6265	 0.8057	 0.7355	 0.2641
P-VSA-like‑RF (1)	 0.9327	 0.3528	 0.7825	 0.6428	 0.3058
P-VSA-like‑RF (2)	 0.9332	 0.3716	 0.7996	 0.6524	 0.2967
P-VSA-like‑RF (2), over	 0.9149	 0.6159	 0.8891	 0.7654	 0.2369
P-VSA-like‑RF (2), smote	 0.8919	 0.5541	 0.8273	 0.723	 0.283
Eta indices‑RF (2)	 0.9384	 0.3807	 0.8394	 0.6596	 0.2872
Edge adjacency‑RF (1)	 0.9412	 0.3453	 0.8242	 0.6432	 0.307
Edge adjacency‑RF (2)	 0.9301	 0.3652	 0.8006	 0.6477	 0.3038
Edge adjacency‑RF (1), over	 0.9031	 0.6477	 0.8635	 0.7754	 0.2239
Edge adjacency‑SVM (1), over	 0.7663	 0.7113	 0.7519	 0.7388	 0.2696
Global‑BST (1), over	 0.793	 0.8137	 0.7899	 0.8034	 0.1994
Global‑BST (1), smote	 0.7974	 0.7957	 0.7927	 0.7966	 0.202

RF, random forest classifier; BST, gradient boosting classifier; SVM, support vector machines; PPV, positive predictive value. Numbers in 
brackets indicate the subset of features selected by the different feature selection algorithms (1‑random forest importance and information gain; 
2‑symmetrical uncertainty); over denotes the training set balanced through oversampling; smote denotes the training set balanced through the 
smote technique (synthetic minority oversampling technique). The first term in the name of each model indicates the block of descriptors used 
for its building.
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by multiple sources of errors and to differ from one laboratory 
to another and from one experiment to another, depending on 
the experimental conditions. It is of notoriety that assays based 
on MTT and analogues rarely give consistent IC50 values. In 
the case of cisplatin effect on the SKOV‑3 cell lines, the IC50 
values reported in 17 published study sources varied between 
2 and 40 µM, and although at the beginning it was thought that 
those inconsistencies were related to the reagents and their way 
of using them in various laboratories, it was later discovered 
that IC50 remained inconsistent even when the assay was 
carried out by the same researcher in the same laboratory (49). 
Moreover, as it has been stated in the literature with respect to 
the methodology used in computing such efficacy values, ‘just 
because a value is obtained does not mean it is accurate’ (50). 
For these reasons, QSAR modeling of IC50 is more 

challenging and this was the reason why we preferred the use 
of classification techniques instead of modeling directly the 
IC50 values through methods for continuous variables and our 
results show that developing QSAR models with reasonable 
performance in these conditions is feasible.

All seven best performing models used RF algorithm as 
a classifier, as were all 16 models with PPV higher than 80% 
in both nested 10‑fold cross‑validation and external testing. 
Two BST models and one using SVM had PPV higher than 
75%, but for the latter algorithms the performance tended to 
be lower than that of RFs. These classifiers were more prone to 
overfit, having good performance with the artificially balanced 
data set (oversampling and smote technique), but rather poor 
performance in the external evaluation. In an independent 
study RFs also were reported to have better performance 

Table II. Performance of selected classification models with PPV higher than 75% on the independent data set.

				    Balanced
Models	 Specificity	 Sensitivity	 PPV	 accuracy	 MMCE

Topological descriptors‑RF (1)	 0.9194	 0.5	 0.8148	 0.7097	 0.2547
Topological descriptors‑RF (2)	 0.9194	 0.5227	 0.8214	 0.721	 0.2453
Topological descriptors‑RF (1), over	 0.9355	 0.5682	 0.8621	 0.7518	 0.217
Topological descriptors‑RF (1), smote	 0.9516	 0.5909	 0.8966	 0.7713	 0.1981
Walk and path‑RF (1)	 0.9516	 0.2727	 0.8	 0.6122	 0.3302
Information indices‑RF (1)	 1	 0.5	 1	 0.75	 0.2075
Information indices‑RF (2)	 0.9839	 0.5227	 0.9583	 0.7533	 0.2076
Information indices‑RF (1), over	 1	 0.5227	 1	 0.7614	 0.1981
Information indices‑RF (1), smote	 1	 0.5682	 1	 0.7841	 0.1792
Information indices‑BST (1), smote	 0.9355	 0.75	 0.8919	 0.8427	 0.1415
2D-autocorrelation-RF (1)	 0.9355	 0.3864	 0.8095	 0.6609	 0.2924
2D-autocorrelation-RF (2)	 0.9677	 0.4091	 0.9	 0.6884	 0.2642
2D-autocorrelation-RF (2), over	 0.9032	 0.5	 0.7857	 0.7016	 0.2642
2D-autocorrelation-RF (2), smote	 0.9194	 0.4773	 0.8077	 0.6983	 0.2642
Burden eigenvalues‑RF (2)	 0.9516	 0.4773	 0.875	 0.7144	 0.2453
Burden eigenvalues‑RF (2), over	 0.9516	 0.5909	 0.8966	 0.7713	 0.1981
Burden eigenvalues‑RF (2), smote	 0.9355	 0.5682	 0.8621	 0.7518	 0.217
P-VSA-like‑RF (1)	 0.9783	 0.6562	 0.9545	 0.8173	 0.1538
P-VSA-like‑RF (2)	 0.9783	 0.6875	 0.9565	 0.8329	 0.141
P-VSA-like‑RF (2), over	 0.9783	 0.7812	 0.9615	 0.8798	 0.1026
P-VSA-like‑RF (2), smote	 0.9783	 0.9062	 0.9667	 0.9423	 0.0513
Eta indices‑RF (2)	 0.9032	 0.4318	 0.76	 0.6675	 0.2924
Edge adjacency‑RF (1)	 0.9839	 0.4545	 0.9524	 0.7192	 0.2358
Edge adjacency‑RF (2)	 0.9839	 0.3864	 0.9444	 0.6851	 0.2642
Edge adjacency‑RF (1), over	 0.9516	 0.4545	 0.8696	 0.7031	 0.2547
Edge adjacency‑SVM (1), over	 0.9023	 0.6364	 0.8235	 0.7698	 0.2076
Global‑BST (1), over	 0.8871	 0.9318	 0.8542	 0.9095	 0.0943
Global‑BST (1), smote	 0.9032	 0.9318	 0.8723	 0.9175	 0.0849

RF, random forest classifier; BST, gradient boosting classifier; SVM, support vector machines; PPV, positive predictive value. Numbers in 
brackets indicate the subset of features selected by the different feature selection algorithms (1‑random forest importance and information gain; 
2‑symmetrical uncertainty); over, denotes the training set balanced through oversampling; smote, denotes the training set balanced through the 
smote technique (synthetic minority oversampling technique). The first term in the name of each model indicates the block of descriptors used 
for its building.
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than BST (51), and in a comparative study it was reported that 
BST was more sensitive to noise than other machine learning 
algorithms (52). Balancing the data, irrespective of the classi-
fier used tended to increase the sensitivity with a slight cost in 
specificity.

Of the thirteen descriptor blocks assessed by us to build the 
QSAR models, the best performing models (PPV higher than 
80% in both cross‑validation and external testing) used five 
of these blocks: Topological descriptors, information indices, 
2D‑autocorrelation descriptors, P‑VSA‑like descriptors and 
edge adjacency indices.

Of the topological descriptors, the Balaban centric 
index (BAC) had the largest importance. It has been described 
as reflecting the molecular shape, but as little importance 
in other models published up to now (53). Other important 
topological descriptors were: Path/walk-2‑randic shape 
index  (PW2), which has been described as important in 
describing the antiviral activity of azolo‑adamantanes (54); 
lopping centric index (LOC), which has been used previously 
in QSAR models for cytotoxic compounds on cancer cell 
lines  (55,56); and Narumi harmonic topological index, 
which also has been shown useful in developing predictive 
cytotoxicity models (57).

Information indices best associated with the cytotoxic 
activity on the SK‑MEL‑5 were the mean information 
content on the vertex degree equality (IVDE), which has 
been previously shown to be important in predicting the 
COX‑2 (58) and p56lck protein tyrosine kinase (59) inhibitory 
activities, Balaban U index (relevant in previous models for 
describing sweetness  (60). Structural information content 
index (neighborhood symmetry of 0-order, SIC0), also used 
earlier for COX-2 inhibition prediction  (61), as well as in 
toxicity models (62) turned out to be important in our models. 
Other information indices pertinent for the prediction of 
the anti‑melanoma cell activity were the Balaban V index 
(shown to be relevant for the inhibitory effect on MATE1 
transporter) (63), mean information content on the distance 
equality (IDE) used beforehand in models for HDM2 
inhibitors (64), the Balaban Y index, Kier symmetry index, and 
the relative number of symmetry classes (rGES; not identified 
as important in other published QSAR models).

Among the 2D‑autocorrelations, the most important 
descriptors were geary autocorrelation of lag 1 weighted by 
polarizability, used earlier to model cyclooxygenase‑2 inhi
bitors (GATS1p) (65); moran autocorrelation of lag 3 weighted 
by Sanderson electronegativity (MATS3e), used previously to 
describe the antimalarial activity (66); geary autocorrelation 
of lag 3 weighted by Sanderson electronegativity (GATS3e), 
reported as significant in describing the antitubercular activity 
of 1,4‑dihydropyridine‑3,5‑dicarboxamides  (67), moran 
autocorrelation of lag  3  and  2, respectively, weighted by 
ionization potential (MATS3i and MATS2i), geary autocorre
lation of lag  2 weighted by mass (GATS2m), and moran 
autocorrelation of lag 6 weighted by polarizability (MATS6p), 
not identified in previous publications as important for other 
QSAR models.

P‑VSA‑like descriptors have been scarcely used in QSAR 
models, as shown by the scarce studies including them. Among 
this group of descriptors, the most important used by us in 
building models with a reasonably good performance were: 

P_VSA‑like on LogP, bin 5, P_VSA‑like on mass, bin 4 (P_
VSA_m_4), P_VSA‑like on potential pharmacophore points, 
aromatic atoms, P_VSA‑like on LogP, bin 1, P_VSA‑like on 
potential pharmacophore points, L ‑ lipophilic, P_VSA‑like 
on Molar refractivity, bin 1, and P_VSA‑like on Molar refrac-
tivity, bin 2. Of this group, only the P_VSA‑like on mass, bin 4 
(P_VSA_m_4) was reported in models on olfactory proper-
ties (68), whereas the remainder have not been reported in other 
QSAR models as being significant features. The same is true 
for the relevant edge‑adjacency descriptors used in building 
our models: Although a number of other studies reported the 
use of different edge‑adjacency descriptors, none of those 
found by the feature selection algorithms applied by us were 
reported in published models: SpMAD_AEA(ed)‑spectral 
mean absolute deviation from augmented edge adjacency 
matrix weighted by edge degree; SpMAD_EA(bo)‑normalized 
leading eigenvalue from augmented edge adjacency matrix 
weighted by bond order; Eig02_AEA(bo)‑eigenvalue n. 2 from 
augmented edge adjacency matrix weighted by bond order; 
SpDiam_EA(bo)‑spectral diameter from edge adjacency 
matrix weighted by bond order; SpMAD_AEA(dm)‑spectral 
mean absolute deviation from augmented edge adjacency 
matrix weighted by dipole moment; SpDiam_EA(dm)‑spectral 
diameter from edge adjacency matrix weighted by dipole 
moment; SpMaxA_EA(dm)‑normalized leading eigenvalue 
from edge adjacency matrix weighted by dipole moment.

Simpler, more easily interpretable descriptors, such as 
constitutional ones, ring descriptors or molecular properties 
led to models with lower performance (but models with PPV 
higher than 70% could be built with the constitutional and ring 
descriptors).

Exploring a variety of descriptor blocks to produce 
QSAR models able to anticipate the cytotoxicity of chemical 
compounds on the cancer cell line SK‑MEL‑5, we were able 
to build models with good performance in terms of selectivity 
and PPV, but with relatively low sensitivity. In other words, 
the models built have good performance in having a low rate 
of false positives, but this is done at the cost of labelling about 
half of the active compounds as ‘inactive’. Of the four clas-
sification algorithms applied, RF was the most effective, all 
models with PPV higher than 85% in both (nested) cross‑vali-
dation and external evaluation being built with this classifier. 
The descriptors most appropriate to describe the effect on 
the cancer cell line SK‑MEL‑5 were topological, information 
indices, 2D‑autocorrelation descriptors, P‑VSA‑like descrip-
tors and edge adjacency indices. All these groups are rather 
hard to interpret in a simple manner, but simpler descriptors 
(e.g., constitutional descriptors, ring descriptors, molecular 
properties) led to less successful models.
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