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Abstract. The intermediate filament nestin is upregulated 
in stem/progenitor cells and cancers, and regulates cell 
proliferation, migration, invasion and stemness. The present 
study comparatively analyzed serial autopsies of Japanese 
patients (n=2,206; males, 1,225; females, 981; median, 
80.7 years old; range, 33‑104 years old) with malignant tumors 
of whole organs, with respect to the clinical information, 
and 5 single nucleotide polymorphisms of the nestin gene. 
p.A1199P associated with pancreatic cancer (odds ratio, 
4.4; 95% confidence interval, 1.9‑10.0, P=0.001) while it 
did not associate with malignant neoplasms in other organs. 
p.A1199P did not associate with precancerous lesions of the 
pancreas. Single nucleotide polymorphisms of nestin were 
not associated with sex, drinking, smoking, or body weight. 
In conclusion, the amino acid 1,199 of nestin is localized in 
the tail structure of the filament and polymerizes with other 
intermediate filament proteins. The present results suggest that 
missense variations of nestin affect pancreatic carcinogenesis 
in Japanese patients.

Introduction

New cancer cases are rising worldwide because of the growing 
aging population, and the increasing prevalence of risk factors 

including smoking, drinking, and obesity. Approximately 
14.1 million new cancer cases and 8.2 million deaths occurred 
worldwide in 2012 (1). In Japan, the most common cause of 
death was malignant neoplasm (2). A substantial portion of 
cancer cases and deaths has declined by effective prevention 
methods, such as tobacco and alcohol control, vaccination, and 
the use of early detection tests. Inherited genetic mutations 
play a major role in determining the risk for cancers, and may 
provide useful information to determine the candidates for 
early detection tests (3).

Cytoskeletal components regulate cell migration, polarity, 
and morphology. A neuroepithelial stem cell marker, nestin 
(NES), is a cytoskeletal protein belonging to the group of 
class VI intermediate filament (IF) proteins (4,5). NES 
protein has head, coil, and tail structures. The tail struc-
ture of NES is known to interact with other IF proteins, 
including vimentin, desmin, α‑internexin, and synemin, to 
form heterodimers (6). NES contributes to the disassembly 
of vimentin during mitosis (7) and to the inactivation of the 
proapoptotic cyclin‑dependent kinase 5 (CDK5) (8). Mouse 
Cdk5 and Cdc2 induce phosphorylation at both threonine 316 
(Thr316) and threonine 1495 (Thr1495) of NES protein (8,9), 
and phosphorylation of NES modulates mitosis‑associated 
cytoplasmic reorganization during cell mitosis (10).

We have reported that expression of NES in various 
tumors such as pancreatic cancer (11,12), glioblastoma (13), 
lung cancer (14), malignant melanoma (15), and uterine 
cancer (16), regulates cell proliferation, migration, invasion 
and metastasis. NES regulates stemness in glioblastoma cells 
through the alteration of cyclin D1 and heat shock cognate 
71 kDa protein (13). Phosphorylation of NES at Thr315 and/or 
Thr1299 regulates cell proliferation (9), and inhibition of both 
phosphorylation sites suppresses invasion and metastasis of 
human pancreatic cancer (17).

Data from previous studies (11,12,18-21) indicate that 
inhibition of either NES expression or phosphorylation may 
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be a therapeutic target for several cancers (22). NES is not 
merely a cytoskeletal protein that serves as a progenitor cell 
marker, but also is a key regulator of cancer progression 
processes such as migration, invasion, and metastasis (5,23); 
therefore, we hypothesized that NES might play important 
roles in pathogenesis of various cancers. Multiple reports 
have shown that single nucleotide polymorphisms (SNPs) 
affect cancer predispositions. However, there have been no 
reports of a relationship between NES gene variations and 
cancer. Autopsy is a precious source to analyze various 
malignant tumors as well as of precursor lesions. In the 
present study, we comparatively analyzed serially autopsied 
patients with various malignant neoplasms, based on their 
clinical information and SNPs.

Patients and methods

Study population. Consecutive autopsy cases (N=2,206) 
were collected at the Tokyo Metropolitan Geriatric Hospital 
(Tokyo, Japan) between 1995 and 2012 (24). Participants with 
family relationships (n=26) were excluded from this study. 
There were 1,225 men and 981 women with a median age 
of 80.7 years (range, 33‑104 years) and a median body mass 
index (BMI) of 17.4 kg/m2 (range, 8.1‑37.9). The patients were 
enrolled in the Internet Database of Japanese Single Nucleotide 
Polymorphisms for Geriatric Research (JG‑SNP) (25). We 
collected information about smoking and drinking from 
the medical records. The most frequent causes of death 
were malignancies, infections, and cardiovascular diseases. 
Approximately 60% of patients had malignant tumors (26). 
Cancer‑bearing subjects include those with any type of cancer, 
including pathologically verified surgical resected cancer as a 
past history and occult cancer found on autopsy. We reviewed 
all the pancreatic specimens from autopsies to determine the 
presence or absence of pancreatic cancers and pancreatic 
intraepithelial neoplasia (PanIN). PanIN was defined as micro-
scopic, papillary or flat, non‑invasive, epithelial lesions with 
diameters of 5 mm or less (27). PanIN lesions were classified 
as PanIN‑1A, ‑1B, ‑2, or ‑3 according to previously described 
criteria (28,29). The present study was approved by the Tokyo 
Metropolitan Geriatric Hospital Ethics Committee (approval 
no. 15‑02). This study was conducted in accordance with the 
principles embodied in the Declaration of Helsinki, 2013. 
Written informed consent was obtained prior to the autopsy 
from the family members of all participants involved in this 
study.

Genotyping and genotype calling. Genomic DNA was 
extracted from the renal cortex using a standard procedure 
as previously reported (24). All samples were analyzed with 
Illumina Infinium HumanExome BeadChip Version 1.1 
(Illumina, San Diego, CA) by iScan (26). Genotype 
calling was performed using the Genotyping Module 
(version 1.9) of the GenomeStudio data analysis software 
package. Initial genotype clustering was performed using 
the default Illumina cluster file (HumanExome 12v1‑1_A.
egt) and the manifest file (HumanExome‑12v1‑1_A.bmp), 
using the GenTrain2 clustering algorithm. Validation of 
the polymorphisms was performed by direct sequencing, 
using the BigDyeTerminator v3.1 Cycle Sequencing kit on 

a 3130 Genetic Analyzer (both Applied Biosystems, Foster 
City, CA, USA) (26). The pathological assessment (YM and 
TA) and genotyping (MM and MNM) were performed in 
different institutions in a double‑blind fashion to minimize 
bias. We could not provide the raw data of the present study 
because we are analyzing our data for use in future studies.

Statistical analysis. We performed Fisher's exact test to deter-
mine the association between the phenotypes and SNPs using 
SPSS version 22 (IBM Corp., Armonk, NY, USA). Power 
was analyzed using PASS 15.0.5. (NCSS, LLC., Kaysville, 
UT, USA). P<0.05 was considered to indicate a statistically 
significant difference. We also analyzed the odds ratio (OR) 
and 95% confidence interval (CI).

Results

The five SNPs we analyzed in the present study are shown 
in Table I. They are in exons and located in the tail structure 
of the NES protein, and four SNPs except for NES p.P1275L 
are rare variants. All SNPs are miss sense mutations. Two 
SNPs are possibly damaging. We analyzed the association 
between SNPs of NES and various cancers in major organs. 
NES p.A1199P did associate with pancreatic cancer (OR, 4.4; 
95% CI, 1.9‑10.0, P=0.001 by Fisher's exact test, Table II). 
Large cell lung carcinoma also showed association to NES 
p.A1199P (OR, 9.2; 95% CI, 0.9‑90.9, P=0.02 by Fisher's 
exact test, Table II), but few patients harbored this change. 
The urinary tract malignancies showed an association 
with NES p.A1199P (P=0.053). Malignant neoplasms in 
other organs such as lung, colon, stomach, brain, and blood 
cancers did not associate with NES p.A1199P (Fisher's exact 
test, Tables II and III).

Other SNPs except for NES p.A1199P did not associate 
with pancreatic cancer (Table IV); therefore, we performed 
further analysis about NES p.A1199P. Alleles of NES 
p.A1199P were CC (n=2,127), GC (n=78) and GG (n=1); GC 
and GG alleles showed that amino acid number 1199 was 
changed from alanine to proline. It did not associate with sex, 
drinking, smoking, or BMI (Table V).

We examined the association of NES p.A1199P with 
precancerous lesions, PanINs (Table VI). PanIN‑1A, ‑1B, ‑2 
and ‑3 did not associate with NES p.A1199P. In addition, there 
were no significance between NES p.A1199P and low grade 
PanIN (PpanIN‑1 and ‑2), or PanIN and cancer. Presence 
of PanIN‑3 and pancreatic cancer was associated with 
NES.p.A1199P (P=0.007, Table VI). All pancreatic cancers 
were invasive ductal adenocarcinomas. Pancreatic cancer 
cases with GC+GG of NES p.A1199P showed a tendency to 
be well differentiated as compared to CC (P=0.085, data not 
shown). Sex, age, and tumor stage had no association with 
NES p.A1199P.

Discussion

In the present study, we investigated the relationship between 
SNPs of NES and malignant neoplasm predispositions in 
autopsied Japanese patients. Our data suggests that NES 
p.A1199P associates with the occurrence of pancreatic 
cancer, though other malignant neoplasms did not show any 
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association to SNPs of NES. Furthermore, NES p.A1199P did 
not associate with occurrence of PanIN, suggesting that only 
a small portion of PanINs are precancerous lesions (24). The 
high incidence rate of PanINs and our previous study (24) both 
support this conclusion.

Morbidity and mortality of pancreatic cancers have been 
increasing worldwide (30,31). In Japan, pancreatic cancer is the 
fifth and fourth leading cause of cancer‑related death in men and 
women, respectively (32). Risk factors for pancreatic cancer are 
tobacco use (33), heavy alcohol consumption, diabetes, obesity, 
pancreatitis, low 25‑(OH) vitamin D levels, and aging (34,35). 
The vast majority of pancreatic cancers are thought to arise from 

PanINs; high‑grade PanINs (carcinomas in situ) are considered 
as precursors of pancreatic cancer (29,36-38). Approximately 
5‑10% of patients with pancreatic cancer have family histories 
of pancreatic cancer (39,40). Recent studies for pancreatic 
ductal adenocarcinoma (PDAC) using Caucasian populations 
have identified associations with chromosome bands of ABO, 
KLF5, NR5A2, CLPTM1L‑TERT (41,42); LINC‑PINT, 
BRCAR1, PDX1, ZNRF3, PVT1 (43); LINC00673, SUGCT 
and TP63 (44). A recent study also showed that three SNPs 
in NR5A2, MYC and CLPTM1L‑TERT represent independent 
risk factors of pancreatic cancer; NR5A2 expression in the 
pancreatic cancers was markedly decreased (45). In Japanese 

Table II. Malignant tumors in major organs and NES p.A1199P.

Organ Type Tumor + (%) Tumor ‑ (%) OR 95% CI P‑value

Lung CC 253 (11.5) 1,871 (85.0)
 GC+GG 7 (0.3) 71 (3.2) 0.729  0.332‑1.603  0.430 
Large cell carcinoma/lung CC 3 (0.1) 2,121 (96.3)
 GC+GG 1 (0) 77 (3.5) 9.174 0.944‑90.0909  0.020a 
Stomach CC 239 (10.8) 1,887 (85.6)
 GC+GG 7 (0.3) 72 (3.3) 0.767  0.349‑1.686  0.509 
Colorectum CC 209 (9.5) 1,917 (86.9)
 GC+GG 4 (0.2) 75 (3.4) 0.489  0.177‑1.351  0.159 
Pancreas CC 47 (2.1) 2,078 (94.3)
 GC+GG 7 (0.3) 71 (3.2) 4.367  1.905‑10  0.001b 
Liver CC 68 (3.1) 2,058 (93.3)
 GC+GG 0 (0) 79 (3.6) N.D. N.D. 0.106 
Biliary tract CC 61 (2.8) 2,065 (93.7)
 GC+GG 2 (0.1) 77 (3.5) 0.880  0.211‑4.219  0.860 
Kidney CC 32 (1.5) 2,094 (95.0)
 GC+GG  1 (0) 78 (3.5) 0.839  0.113‑6.211  0.863 
Urinary tract CC 41 (1.9) 2,085 (94.6)
 GC+GG 4 (0.2) 75 (3.4) 2.710  0.947‑7.752  0.053 
Prostate CC 197 (16.0) 987 (80.4)
 GC+GG 7 (0.6) 37 (3.0) 0.948  0.416‑2.155  0.898 
Blood CC 195 (8.9) 1,930 (87.6)
 GC+GG 4 (0.2) 74 (3.4) 0.535  0.194‑1.479  0.221 
Brain  CC 2 (0.1) 2,122 (96.4)
 GC+GG 0 (0) 78 (3.5) N.D. N.D. 0.786

aP<0.05; bP<0.001. OR, odds ratio of GC+GG to CC; CI, confidence interval; N.D., not determined. 

Table I. Single nucleotide polymorphisms of nestin.

Number Alleles In‑exon Mutation(s) rs number Prediction Minor allele frequency

exm109872 [A/G] EXON Missense_P1275L rs3748570 Benign 0.2413
exm109911 [T/C] EXON Missense_S1016N rs2365718 Possibly damaging 0.0043
exm109937 [T/G] EXON Missense_L791I rs77202633 Benign 0.0553
exm1719129 [G/C] EXON Missense_A1199P rs78303930 Possibly damaging 0.0170 
exm1719137 [A/G] EXON Missense_V876A rs143673331 Benign 0.0028
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Table III. Other malignant tumors and NES p.A1199P.

Organ Type Tumor + (%) Tumor ‑ (%) OR 95% CI P‑value

Adenocarcinoma/lung CC 115 (5.2) 2,009 (91.2)
 GC+GG 2 (0.1) 76 (3.5) 0.460 0.112‑1.894  0.270 
Squamous cell carcinoma/lung CC 77 (3.5) 2,047 (93.0)
 GC+GG 3 (0.1) 75 (3.4) 1.064 0.328‑4.785  0.918 
Adenosquamous carcinoma lung CC 8 (0.4) 2,116 (96.1)
 GC+GG 0 (0.0)  78 (3.5) N.D. N.D. 0.587 
Small cell carcinoma lung CC 55 (2.5) 2,069 (94.0)
 GC+GG 2 (0.1) 76 (3.5) 0.990 0.237‑4.132  0.989 
Unclassified cancer lung CC 11 (0.5) 2,113 (96.0)
 GC+GG 0 (0.0) 78 (3.5) N.D. N.D. 0.524 
Mesothelioma CC 1 (0.0) 2,124 (96.4)
 GC+GG 0 (0.0)  78 (3.5) N.D. N.D. 0.848 
Esophageal cancer CC 32 (1.5) 2,091 (95.0)
 GC+GG 0 (0.0) 78 (3.5) N.D. N.D. 0.275 
Colon cancer CC 163 (7.4) 1,963 (89.0)
 GC+GG 3 (0.1) 76 (3.4) 0.475 0.148‑1.524  0.201 
Rectal cancer CC 52 (2.4) 2,074 (94.1)
 GC+GG 1 (0.0) 78 (3.5) 0.511 0.070‑3.745  0.501 
Small intestine cancer CC 11 (0.5) 2,115 (95.9)
 GC+GG 0 (0.0) 79 (3.6) N.D. N.D. 0.522 
Lymphocytic leukemia CC 18 (0.8) 2,107 (95.6)
 GC+GG 1 (0.0) 77 (3.5) 1.520 0.200‑11.494  0.683 
Malignant lymphoma CC 119 (5.4) 2,005 (91.1)
 GC+GG 1 (0.0) 77 (3.5) N.D. N.D. 0.099 
Myelodysplastic syndrome CC 39 (1.8) 2,086 (94.7)
 GC+GG 0 (0.0) 78 (3.5) N.D. N.D. 0.227 
Myelogenous leukemia CC 104 (4.7) 2,021 (91.7)
 GC+GG 2 (0.1) 76 (3.4) 0.512 0.124‑2.110  0.345 
Myeloma CC 38 (1.7) 2,087 (94.7)
 GC+GG 1 (0.0) 77 (3.5) 0.713 0.097‑5.263  0.739 
Breast cancer CC 74 (3.4) 2,050 (93.1)
 GC+GG 0 (0.0) 78 (3.5) N.D. N.D. 0.094 
Uterine cancer CC 20 (2.1) 919 (94.4)
 GC+GG 0 (0.0)  35 (3.6) N.D. N.D. 0.383 
Ovarian cancer CC 5 (0.5) 939 (95.9)
 GC+GG 0 (0.0) 35 (3.6) N.D. N.D. 0.666 
Thyroid cancer CC 52 (2.4) 2,072 (94.1)
 GC+GG 2 (0.1) 76 (3.5) 1.048 0.250‑4.386  0.948 
Sarcoma CC 7 (0.3) 2,117 (96.1)
 GC+GG 0 (0.0) 78 (3.5) N.D. N.D. 0.612 
Melanoma CC 1 (0.0) 2,123 (96.4)
 GC+GG 0 (0.0) 78 (3.5) N.D. N.D. 0.848 
Skin cancer CC 9 (0.4) 2,112 (96.0)
 GC+GG 0 (0.0) 78 (3.5) N.D. N.D. 0.564 
Head and neck cancer CC 25 (1.1) 2,099 (95.3)
 GC+GG 0 (0.0) 78 (3.5) N.D. N.D. 0.335 
Other tumor CC 9 (0.4) 2,115 (99.2)
 GC+GG 0 (0.0) 9 (0.4) N.D. N.D. 0.565 
Unclassified tumor CC 4 (0.2) 2,120 (96.3)
 GC+GG 0 (0.0) 78 (3.5) N.D. N.D. 0.701

OR, odds ratio of GC+GG to CC; CI, confidence interval; N.D., not determined. 
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Table IV. SNPs of nestin and pancreatic cancer.

SNP Reference no. OR 95% CI P‑value

P1275L rs3748570 0.630 0.366‑1.085  0.116
S1016N rs2365718 1.047 0.058‑18.790  1.000
L791I rs77202633 0.738 0.289‑1.885  0.670
A1199P rs78303930 4.367 1.905‑10  0.001a

V876A rs143673331 1.951 0.100‑38.174  1.000

aP<0.001. CI, confidence interval; SNP, single nucleotide polymorphism; OR, odds ratio. 

Table V. Patients and NES p.A1199P.

Comparison CC GC+GG OR 95% CI P‑value

Sex (%)  
  Male 1,182 (53.6) 43 (1.9)
  Female 945 (42.8) 36 (1.6) 0.955 0.608‑1.499 0.841
Drinking habit (%)  
  Drinker 674 (34.0) 27 (1.4)
  Non‑drinker 1,240 (62.6) 41 (2.1) 1.212 0.739‑1.988 0.447
Smoking habit (%)  
  Smoker 1,023 (50.4) 38 (1.9)
  Non‑smoker 936 (46.1) 33 (1.6) 1.054 0.655‑1.695 0.829
BMI (%)  
  BMI ≥25  948 (43.4) 36 (1.6)
  BMI <25 1,159 (53.0) 43 (2.0) 1.024 0.652‑1.608 0.919

OR, odds ratio of GC+GG to CC; NES, nestin; CI, confidence interval; BMI, body mass index. 

Table VI. Pancreatic intraepithelial neoplasia and NES p.A1199P.

Variable Type + (%) ‑ (%) OR 95% CI P‑value

PanIN‑1A CC 1,137( 51.6) 990 (44.9)
 GC+GG 42 (1.9) 36 (1.6) 1.016  0.646‑1.597  0.646
PanIN‑1B CC 911 (41.3) 1,216 (55.1)
 GC+GG 31 (1.4) 47 (2.1) 0.880  0.555‑1.397 0.595
PanIN‑2 CC 255 (11.6) 1,870 (84.9)
 GC+GG 7 (0.3) 71 (3.2) 0.723  0.329‑1.590 0.673
PanIN‑3 CC 29 (1.3) 2,096 (95.1)
 GC+GG 2 (0.1) 76 (3.4) 1.901  0.446‑8.130 0.672
Low grade PanIN CC 1,174 (53.2) 953 (43.2)
 GC+GG 43 (2.0) 35 (1.6) 0.997  0.633‑1.570 0.666
PanIN and cancer CC 1,189 (53.9) 938 (42.5)
 GC+GG 44 (2.0) 34 (1.5) 1.020  0.647‑1.610  0.672
PanIN‑3 and cancer  CC 72 (3.3) 2,054 (93.2)
 GC+GG 8 (0.4) 70 (3.2) 3.215  1.493‑6.944  0.007a

aP<0.01. Cancer indicates pancreatic invasive ductal carcinoma. Low grade PanIN includes PanIN‑1 and ‑2. NES, nestin; PanIN, pancreatic 
intraepithelial neoplasia; OR, odds ratio of GC+GG to CC; CI, confidence interval. 



MATSUDA et al:  PANCREATIC CANCER AND NESTIN MISSENSE VARIATION4652

populations, SNPs of NR5A2 have shown a significant 
association with PDAC (46,47). Previously, we have reported 
that six SNPs (rs7016880, rs10096633, rs10503669, rs12678919, 
rs17482753, and rs328) that associated with blood lipid levels 
were associated with the risk for pancreatic cancer in the same 
cohort (24).

In the present study, we focused on SNPs of NES in 
autopsied patients, because NES plays important roles in 
many processes in various organ neoplasms as well as tissue 
regeneration. A previous report has shown that SNPs of NES 
(rs11582300 and rs3748570) were associated with early‑onset 
coronary heart diseases in Irish people (48). The present 
study is the first report to clarify the relationship between 
SNPs of NES and various malignancies. Amino acid 1199 
of NES is conserved in various mammals including primates 
and pigs, and is located in the tail lesion of NES (Fig. 1). The 
tail lesion polymerizes with other IF proteins, and regulates 
cell morphology, migration, and mitosis. In the present study, 
we did not find any association between clinicopathological 
characteristics of pancreatic cancer patients and NES 
p.A1199P. Pancreatic exocrine progenitor cells of mice express 
NES protein (49), and pancreatic cancer might originate from 
pancreatic exocrine progenitor cells. These data suggest that 
NES p.A1199P might influence carcinogenesis steps in the 
pancreas. We need biological studies and a larger cohort study 
to clarify molecular mechanisms of NES p.A1199P.

The present study has several limitations. The average age of 
our patients is much higher than that observed in most patients 
with pancreatic cancer as previously reported (24). Japan is expe-
riencing a ‘super‑aging’ society. PDAC is projected to surpass 
breast, prostate, and colorectal cancers to become the second 
leading cause of cancer‑related deaths by 2030 in the U.S (50). 
In this context, it is definitely important to identify the charac-
teristics of age‑related pancreatic carcinogenesis. Furthermore, 
the power of statistical analysis in the present study was 48.6% 
between presence of pancreatic cancer and NES p.A1199P. We 
need further analysis using large scale different cohort.

In conclusion, we found that missense variations of NES 
appear to affect pancreatic carcinogenesis in Japanese patients 
by an undetermined mechanism.
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