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Abstract. Interest in cancer metabolism has increased in 
recent years. The pentose phosphate pathway (PPP) is a major 
glucose catabolism pathway that directs glucose flux to its 
oxidative branch and leads to the production of a reduced form 
of nicotinamide adenine dinucleotide phosphate and nucleic 
acid. The PPP serves a vital role in regulating cancer cell 
growth and involves many enzymes. The aim of the present 
review was to describe the recent discoveries associated with 
the deregulatory mechanisms of the PPP and glycolysis in 
malignant tumors, particularly in hepatocellular carcinoma, 
breast and lung cancer.
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1. Introduction

Metabolic adaptations are closely associated with alterations 
in cellular behavior. In the past 20 years, there has been a 
growing interest in cancer metabolism, particularly on glucose 
metabolism (1). Cancer cells are able to reprogram their energy 
metabolism to meet the increased biogenetic demands required 
for their rapid and uncontrolled growth (2). Cells from normal 
tissues mainly generate adenosine 5'‑triphosphate (ATP) 
through the mitochondrial oxidative phosphorylation. In these 
cells, glucose is transformed to pyruvate through glycolysis, 
and most pyruvate enters mitochondrial oxidative metabolism 
for efficient energy generation (3). However, most cancer cells 
consume glucose through glycolysis, even in the presence of 
sufficient oxygen; this phenomenon is called the Warburg 
effect, which leads to the production of pyruvate and lactate as 
final metabolites (4). This enhanced aerobic glycolysis allows 
cancer cells to better proliferate by generating sufficient 
amounts of ATP and other biomolecules, including nucleo-
tides, amino acids and fatty acids (5).

The pentose phosphate pathway (PPP), also known as the 
phosphogluconate pathway or the hexose monophosphate shunt, 
is a metabolic pathway parallel to glycolysis, and represents the 
first committed step of glucose metabolism (6). The PPP serves 
a pivotal role in supporting cancer cell survival and growth 
by generating pentose phosphate for nucleic acid synthesis 
and providing nicotinamide‑adenine dinucleotide phosphate 
(NADPH), which is needed for fatty acid synthesis and cell 
survival under stress conditions (7). Previous studies indicate 
that PPP flux can be directly or indirectly modulated in cancer 
cells, in order to improve cell survival and proliferation (2,7). 
Therefore, the regulatory network of PPP flux represents an 
important metabolic adaptation in a number of environmental 
contexts in human malignancies, including cancer.
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2. Glucose in the PPP

The PPP occurs in the cytosol and comprises two irrevers-
ible oxidative reactions followed by a series of reversible 
interconversions (Fig. 1). The PPP is thus divided into two 
biochemical branches: An oxidative and a non‑oxidative 
branch. The oxidative branch converts glucose 6‑phosphate 
(G6P) into ribulose‑5‑phosphate (Ru5P), CO2 and NADPH (8). 
NADPH is vital to maintain the reduction‑oxidation (redox) 
balance under stress conditions and allows cells to proliferate 
rapidly (9). The non‑oxidative branch yields the glycolytic 
intermediates fructose 6‑phosphate (F6P), glyceraldehyde 
3‑phosphate (G3P) and sedoheptulose sugars, resulting in 
the production of sugar phosphate precursors for amino acid 
synthesis and ribose‑5‑phosphate (R5P), which is essential for 
nucleic acid synthesis (10).

Role of glucose 6‑phosphate dehydrogenase (G6PD) in the 
PPP. The PPP is primarily regulated during the G6PD reaction. 
G6PD catalyzes the irreversible oxidation of G6P into 6‑phos-
phogluconolactone in a rate‑limiting step; the first molecule of 
NADPH is generated during this reaction (11). G6PD acts as a 
‘gatekeeper’ of this pathway and is therefore the rate‑limiting 
enzyme in the PPP. Subsequently, G6PD activity not only 
determines the flux partitioning between glycolysis and PPP, 
but also reflects the oxidative PPP flux (12). G6PD is overex-
pressed in cancer cells, and Ju et al (13) demonstrated that the 
elevated expression of G6PD is predictive of poor survival of 
patients with cancer, indicating that G6PD may serve a vital 
role in tumorigenesis. There are two cellular isomers of G6PD, 
a dimer and a tetramer; the dimer stability has been demon-
strated to have an important role in vivo (14). High pH and 
ionic strength are beneficial for the dimer synthesis, whereas 
low pH generates a shift toward the tetramer synthesis (15).

The tumor suppressor p53 binds to G6PD and inhibits the 
formation of the active dimer and suppresses NADPH produc-
tion, glucose consumption and biosynthesis, which results in 
inhibition of the PPP (16). Polo‑like kinase 1 (Plk1) is a key 
regulator of cell mitosis and enhances PPP flux and macro-
molecule biosynthesis through the direct phosphorylation of 
G6PD to promote the formation of G6PD active dimer. This 
is an essential feature of Plk1 as a promoter of cancer cell 
cycle progression and growth (17). In addition, glycosylation 
activates G6PD activity, and modification of G6PD with an 
O‑linked β‑N‑acetylglucosamine sugar increases the glucose 
flux to the PPP (18). Mammalian target of rapamycin complex 
1 upregulates the transcriptional and the post‑transcriptional 
expression of G6PD to activate PPP (19). p21‑activated kinase 
4 increases G6PD activity by enhancing Mdm2‑mediated p53 
ubiquitination and degradation (20). Furthermore, suppression 
of G6PD lowers glutathione levels, decreases NADPH produc-
tion, reduces the capacity to scavenge reactive oxygen species 
(ROS) and enhances the oxaliplatin‑induced apoptosis through 
ROS‑mediated damage in vitro (13). These results indicate that 
G6PD may be a potential prognostic biomarker and represent a 
promising target in cancer therapy.

Role of 6‑phosphogluconate dehydrogenase (6PGD) in the 
PPP. The 6‑phosphogluconolactone hydrolase irreversibly 
hydrolyzes 6‑phosphogluconolactone into 6‑phosphogluconate 

(6PG). 6PG is then oxidatively decarboxylated by 6PGD, 
leading to the synthesis of Ru5P, CO2 and a second molecule 
of NADPH. Upregulation of 6PGD activity has been identi-
fied in various types of cancer, including breast, acute myeloid 
leukemia (AML), ovarian and lung cancers (21‑23).

The enzyme 6PGD is commonly activated in human 
cancer cells after lysine acetylation, which promotes NADP+ 
binding to 6PGD and the formation of active dimers of 
6PGD (24). In this pathway, activated 6PGD enhances the 
oxidative phase of PPP, and nucleotide or RNA biosynthesis. 
This reaction serves a role in maintaining intracellular Ru5P 
at a physiological level that is sufficient to fulfill the metabolic 
requirements of rapidly growing cancer cells (25). In addition, 
3‑phosphoglycerate (3‑PG) directly binds to the active site of 
6PGD and competes with its substrate, 6PG, to inhibit 6PGD. 
Furthermore, the glycolytic enzyme phosphoglycerate mutase 
1 (PGAM1) controls intracellular levels of 3‑PG (26). A recent 
study reported that attenuation of PGAM1 results in abnormal 
accumulation of 3‑PG, which inhibits 6PGD and subsequently 
suppresses the oxidative PPP and anabolic biosynthesis. Malic 
enzyme forms a physiological hetero‑oligomer with 6PGD, 
which increases 6PGD activity (27).

Roles of ribose‑5‑phosphate isomerase (RPI) and ribu‑
lose‑5‑phosphate epimerase (RPE) in the PPP. The enzyme 
RPI converts Ru5P into R5P, and the enzyme RPE converts 
Ru5P into xylulose‑5‑phosphate (Xu5P). It has been demon-
strated that ribose‑5‑phosphate isomerase A (RPIA) regulates 
cancer growth and tumorigenesis (28). In addition, RPIA is 
significantly overexpressed in colorectal cancer and hepatocel-
lular carcinoma (HCC) (29,30). RPIA also activates β‑catenin 
by entering the nucleus to form a complex with adenomatous 
polyposis coli and β‑catenin, thus modulating cell prolifera-
tion and oncogenicity (29).

Roles of transketolase (TKT) and transaldolase (TALDO) in 
the PPP. TKT and TALDO are two enzymes that convert R5P 
and Xu5P, and the gluconeogenetic intermediates G3P and F6P. 
TKT and TALDO are responsible for complex interconversion 
reactions within the non‑oxidative PPP (10). TKT converts 
excess R5P into G3P and F6P through a number of reactions, 
G3P is metabolized alongside further steps of glycolysis, and 
F6P is converted into G6P that re‑enters the oxidative PPP to 
generate additional NADPH (31). Elevated TKT expression 
levels were reported in lung cancer cells, breast cancer cells 
and prostate cancer cells (21,22).

TKT expression is closely regulated by the nuclear factor, 
erythroid 2‑like 2 (NRF2)/Kelch‑like ECH‑associated protein 
1/BTB and CNC homolog 1 oxidative stress sensor pathway in 
various types of cancer (32). For example, exposure to ultraviolet 
A increases cancer proliferation by upregulating intracellular 
concentrations of TKT in melanoma (33). In addition, fructose 
stimulates TKT activity and is preferentially used over glucose 
to generate nucleic acids via the non‑oxidative PPP (34). Higher 
vertebrates obtain transketolase‑like 1 (TKTL1) by genome 
duplication and exon skipping (35,36). TKTL1 upregulation 
is a general phenomenon in epithelial malignancies, ocular 
adnexal tumors, malignant pleural effusion and other types of 
cancer (37‑39). TKTL1 is therefore considered a novel tumor 
marker and a potential good target in cancer treatment (40).
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TALDO catalyzes the reversible transfer of a three‑carbon 
unit between various sugar phosphates (from ketose to aldose 
sugar phosphates) (10). A previous study has revealed that 
TALDO is significantly overexpressed in gastric adenocar-
cinoma (41). Furthermore, its expression is associated with 
metastatic behavior in HCC (42). In addition, a combination 
of arginine and ascorbic acid decreases intracellular NADPH 
levels by reducing TALDO activity in the PPP (43).

3. Glucose breakdown through glycolysis influencing PPP

Numerous regulatory pathways for tumor cells exist within the 
PPP, and most reactions in glycolysis are crucial to maintain 
tumor cell function. Since PPP and glycolysis are metabolically 
linked for sharing the common intermediate G6P, the increased 
glycolysis during reperfusion concomitantly led to decreased 
PPP rate (44). The conversion of glucose to pyruvate occurs in 
two stages (Fig. 2). In the first stage, phosphorylated forms of 
pyruvate intermediates are synthesized, leading to ATP synthesis. 
Hexokinase (HK) phosphorylates glucose into G6P, and phospho-
fructokinase‑1 (PFK1) catalyzes the conversion of F6P to fructose 
1,6‑bisphosphate. In the subsequent stage, ATP is generated by 
substrate‑level phosphorylation and metabolism of glucose. The 
final step of glycolysis is catalyzed by the pyruvate kinase (PK) 
enzyme that leads to the synthesis of pyruvate and ATP. In cancer 
cells, the glycolytic reaction generates a ‘bottleneck’ effect by 
increasing the upstream part of the glycolytic flux up to PK and 
decreasing the glycolytic flux from PK downward (45).

Role of HK in the conversion of glucose by glycolysis in the 
PPP. HK catalyzes glucose phosphorylation, which is one 
of the regulatory reactions of glycolysis. To maintain the 
Warburg effect, cancer cells upregulate HK. Four isoforms 
of HK exist (HK1‑HK4). HK2, which may be in a soluble 
form in the cytoplasm or bound to the mitochondrial outer 
membrane, has a glucose affinity 100‑fold higher than HK1, 
HK3 and HK4 (46). In addition, the expression of HK1 may be 
sufficient for normal cell metabolism. However, the acceler-
ated anabolic metabolism in cancer cells demands a robust 

HK activity. Therefore, the induction of HK2 expression is 
required. Overall, HK2 is elevated in cancer cells, promotes 
glycolysis and inhibits mitochondrial‑mediated apoptosis (47).

The induction of HK2 expression by oncogenic Ras is crucial 
for accelerated ribonucleotide synthesis (48). Bcl‑2‑associated 
athanogene (BAG)‑3, a member of the BAG cochaperone family 
that comprises six BAGs (BAG1‑BAG6), increases HK2 expres-
sion by interacting with HK2 mRNA (49). Hypoxia‑inducible 
factor (HIF)‑1α induces the expression of the glycolytic enzyme 
HK2. The sustained expression of the oncogene forms of the 
human papillomavirus E6 and E7 is vital to maintain HK2 
expression levels by upregulating the pro‑oncogene MYC and 
downregulating microRNA (miR)‑143‑3p (50). In AML, an 
internal tandem duplication mutation in the Fms‑like tyrosine 
kinase 3 gene upregulates the level of mitochondrial HK2, causing 
a significant increase in aerobic glycolysis; therefore, leukemic 
cells become highly dependent on glycolysis, which increases 
their sensitivity to the pharmacological inhibition of glycolytic 
activity (51). In addition, the histone‑lysine N‑methyltransferase 
NSD2 is recruited to and methylates HK2 promoters  (52). 
NSD2‑driven tamoxifen‑resistant cancers exhibit an enhanced 
PPP activity, elevated NADPH production and reduced ROS 
levels. For example, treatment of ovarian cancer xenografted 
mice with the HK2 inhibitor 3‑bromopyruvate attenuates tumor 
growth and confers a survival advantage (53).

Role of phosphofructokinase in the conversion of glucose by 
glycolysis in the PPP. PFK1 irreversibly phosphorylates F6P 
into fructose‑1,6‑bisphosphate. This reaction is a crucial and a 
rate‑limiting step in glycolysis. It has been demonstrated that 
PFK1 activity is increased in cancer cell lines, and expression 
of PFK1 is upregulated in breast and liver cancers (54,55). In 
addition, PFK1 is regulated by ATP and F6P substrates (56).

In response to hypoxia, O‑GlcNAcylation suppresses PFK1 
activity and redirects glucose towards the PPP, which provides 
an advantage for cancer cell growth (57). A Krüppel‑associated 
box‑type zinc‑finger protein named p53 inhibitor of TIGAR 
activation (PITA) is a selective regulator of p53, and PITA 
transgenic mice exhibit increased PFK1 activity and elevated 

Figure 1. PPP. G6PD converts glucose‑6‑phosphate into 6‑phosphogluconolactone. 6‑Phosphogluconolactone then converted to Ru5P by 6PGD. Ru5P 
undergoes isomerization by RPI or RPE to generate ribose‑5‑phosphate or xylulose‑5‑phosphate, respectively. In the non‑oxidative reactions of PPP, TKT 
and TALDO are responsible for relatively complex interconversion reactions. Curved arrows indicate that G6PD, 6PGD, RPI, TKT and TALDO are over-
expressed in cancer cells. 6PGD, 6‑phosphogluconate dehydrogenase; G6PD, glucose 6‑phosphate dehydrogenase; PPP, pentose phosphate pathway; RPE, 
ribulose‑5‑phosphate epimerase; RPI, ribose 5‑phosphate isomerase; Ru5P, ribulose‑5‑phosphate; TALDO, transaldolase; TKT, transketolase.
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glycolytic rate (58). The PFK1 platelet isoform (PFKP), the 
predominant PFK1 isoform, is overexpressed in human 
glioblastoma cells and promotes aerobic glycolysis and brain 
cancer cell proliferation (59). In addition, the loss of phospha-
tase and tensin homolog (PTEN) and activation of epidermal 
growth factor receptor (EGFR)‑dependent phosphoinositide 
3‑kinase cause AKT activation, which in turn increases PFKP 
stability (59). In leukemic cells, the cyclin D3‑cyclin depen-
dent kinase 6 (CDK6) phosphorylates PFKP and suppresses 
its activity (60), thus shifting the glucose‑derived carbon into 
the PPP. Through this mechanism, cyclin D3‑CDK6 enhances 
NADPH production to neutralize ROS. Snail1, which is a key 
transcriptional repressor of epithelial‑mesenchymal transition 
(EMT), represses PFKP, leading to the glucose flux switch 
to PPP and the generation of NADPH (61). In addition, heme 
oxygenase‑1/carbon monoxide reduces methylation of 6‑phos-
phofructo‑2‑kinase/fructose‑2,6‑bisphosphatase 3 (PFKFB3) 
in cancer cells, thus redirecting glucose from the glycolysis 
pathway to the PPP, ensuring cancer cell resistance against 
oxidative stress (62). The dynamic regulation of PFKP enhances 
the survival of cancer cells undergoing metabolic stress and 
therefore increases their ability to metastasize in vivo.

Role of PK in the conversion of glucose by glycolysis in the 
PPP. PK converts phosphoenolpyruvate into pyruvate during 
the third irreversible reaction of glycolysis; thus, PK serves an 
important role in the control of metabolism in cancer cells. The 
ratio between the active and inactive forms of PK in cancer 
cells determines whether glucose is used for OXPHOS or for 
PPP to support cell growth (63). Low pyruvate kinase activity 
increases glucose influx into PPP for biosynthesis while high 
pyruvate kinase activity increases OXPHOS and decreases 
glucose influx into PPP  (64). PK possesses two isoforms 
generated by alternative splicing of PK named M1 and M2, of 
which expressions are location and time dependent: The pyru-
vate kinase M2 isoform (PKM2) is preferentially expressed 
in cancer cells, where complex regulation of its activity is 
essential for the control of cellular metabolism (65).

Upon glucose starvation, cellular levels of succinylamino-
imidazole‑carboxamide riboside, an intermediate of the de novo 
purine nucleotide synthesis pathway, are increased. This leads 
to the stimulation of PKM2 activity in cancer cells, which alters 
cellular energy level, glucose uptake and lactate generation (66). 
Following EGFR activation, PKM2 binds and phosphorylates 
histone H3 at T11. PKM2‑dependent histone H3 modification 
contributes to EGF‑induced cyclin D1 and c‑MYC expression, 
tumor cell proliferation, cell cycle progression and brain tumori-
genesis (67). In human lung cancer cells, the marked increase 
in intracellular ROS leads to the inhibition of the glycolytic 
enzyme PKM2 by oxidation of Cys358, which requires the 
transfer of glucose flux into the PPP, stimulating redox potential 
and ROS detoxification (68). In addition, PKM2 gene transcrip-
tion is activated by HIF‑1 by direct interaction with the HIF‑1α 
subunit (69). Serine binds to and activates human PKM2, and the 
PKM2 activity in cells after depletion of serine is reduced. This 
reduction in PKM2 activity switches the cells into a fuel‑saving 
mode in which more pyruvate is transferred to mitochondria to 
support cell proliferation (70).

4. PPP in malignant tumors

HCC is one of the most common cancers worldwide (71). Breast 
cancer is the second most common cancer in the world, with 1.7 
million new cases diagnosed annually (72). Lung cancer is the 
leading cause of cancer‑associated mortality worldwide (73). 
One of the main features of these three malignancies is the 
alteration of glucose metabolism. Improved understanding of 
this metabolic alteration may therefore serve to optimize strat-
egies for the prevention, early diagnosis and treatment of HCC, 
breast and lung cancer. In addition, a thorough understanding 
of cancer cell metabolism may provide potential novel thera-
peutic strategies for various types of cancer.

PPP in HCC. Elevated expression of G6PD is associated with 
HCC metastases and poor prognosis of patients with HCC, 
and G6PD knockdown inhibits the proliferation, migration 

Figure 2. Glycolysis. Glycolysis consists of two stages, the first stage consuming ATP and the second stage generating ATP. There are three crucial reactions in 
tumor cells. First, HK catalyzes the conversion of glucose to glucose‑6‑phosphate. Second, fructose‑6‑phosphate is converted into fructose 1,6‑bisphosphate 
by PFK1, and fructose 1,6‑bisphosphate is converted into fructose 2,6‑bisphosphate by PFK2. Third, phosphoenolpyruvate is converted into pyruvate by PK. 
Curved arrows indicate that HK, PFK1 and PK are overexpressed in cancer cells. HK, hexokinase; PK, pyruvate kinase; PFK, phosphofructokinase.
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and invasion of HCC cell lines in vitro (74). In addition, G6PD 
promotes HCC cell migration and invasion by activating the 
signal transduction and activator of transcription 3 (STAT3) 
pathway to induce EMT (74). The transcription factor NRF2 
is required for G6PD induction, and miR‑1 is involved in its 
activation (75). BAG directly interacts with G6PD to suppress 
the PPP flux, DNA synthesis and HCC cell growth  (76). 
Furthermore, PTEN binds to G6PD to prevent formation of 
the active G6PD dimer, which subsequently inhibits the PPP. 
However, the AKT coactivator T cel1 leukemia/lymphoma 
protein IA promotes G6PD activity and increases G6PD 
pre‑mRNA splicing and protein expression (77). Inhibitor of 
differentiation and DNA binding‑1 (ID1), regulates c‑MYC 
through Wnt/β‑catenin pathway activation to promote G6PD 
promoter transcription and activate the PPP (78), which confers 
to HCC cells an oxaliplatin chemoresistance (79). In addition, 
ID1 activates the PPP to increase NADPH production and 
reduce intracellular ROS levels, thus promoting chemotherapy 
resistance in HCC.

Numerous key enzymes from the glycolysis pathway are 
involved in the carcinogenesis of HCC. The major distinction 
between HCC cells and normal hepatocytes is the difference 
in enzymes that catalyze the first step of glucose metabolism. 
In normal hepatocytes, this step is catalyzed by glucokinase, 
whereas this enzyme is lacking in HCC cells and is replaced 
by HK2 (80). The long non‑coding RNA taurine upregulated 
gene 1 (TUG1) controls cell migration and glycolysis by regu-
lating the p21/miR‑455‑3p axis, which affects HK2 stability 
during translation but not transcription  (81). In addition, 
miR‑125a overexpression significantly decreases HK2 protein 
level in HCC cells, which indicates that miR‑125a directly 
targets HK2  (82). In addition, overexpression of STAT3 
upregulates HK2 mRNA and HK2 protein expression (83). 
Furthermore, hypomethylation in the HK2 promoter CpG 
island (CGI) N‑shore region increases HK2 expression, and 
hypermethylation in the HK2‑CGI suppresses HK2 expres-
sion by inhibiting the interaction between a hypoxia response 
element and HIF‑1α (84).

PPP in breast cancer. G6PD is closely associated with 
molecular subtypes of breast cancer, and its upregulation is a 
negative prognostic factor in breast cancer (85,86). It has been 
demonstrated that G6PD silencing increases the glycolytic 
flux, reduces lipid synthesis and increases glutamine uptake in 
breast cancer cells, whereas TKT silencing reduces glycolysis 
flux (31). Overexpression of NSD2 in breast cancer induces 
cancer resistance to tamoxifen by upregulating G6PD and 
HK2 expression, which enhances PPP flux (52). In addition, 
G6PD expression and activity are continuously unregulated 
in breast cancer cells, and it has been reported that G6PD 
inhibition leads to an increase in 5'‑AMP‑activated protein 
kinase (AMPK) signaling, a decrease in lipid biosynthesis and 
the inhibition of breast cancer cell growth and survival (21). 
Furthermore, TKT expression is associated with tumor size 
in the 4T1/BALB/c syngeneic model, and high TKT levels are 
associated with poor survival (87).

The YAP/TEAD/p65 axis upregulates HK2 transcription, 
which promotes breast cancer cell migration. This axis may 
therefore represent a potential therapeutic target for treatment 
of metastatic breast cancer  (88). It has been reported that 

inhibition of hexokinase using 2‑deoxyglucose induces chloro-
quine‑resistance in breast cancer (89). In addition, metformin 
stimulates the glycolytic flux caused by starvation by interfering 
with HK2 activity (90). Furthermore, the AMPK‑dependent 
phosphorylation of PFKFB3 substitutes oxidative respiration 
by glycolysis, which causes inhibition of cell death and of 
antitumor efficiency of the microtubule toxin in breast cancer 
cells (91). Sonic hedgehog phosphorylates PFKFB3 to promote 
glycolysis and proliferation of breast cancer cells, which 
is mediated by smoothened and p38/MK2 (92). In addition, 
the 6‑phosphofructo‑2‑kinase/fructose‑2,6‑bisphosphatase 4 
(PFKFB4) in breast cancer cells can phosphorylate the onco-
genic steroid receptor coactivator‑3, which rapidly increases 
its transcriptional activity and promotes the glucose flux 
switch towards purine synthesis (93). Furthermore, PKM2 is 
phosphorylated at tyrosine 105 and forms oncogenic dimers 
in breast cancer cells, whereas PKM2 is largely unphosphory-
lated and forms non‑tumorigenic tetramers in non‑transformed 
MCF10A cells (94). Moreover, the intragenic DNA methyla-
tion‑mediated binding of the protein brother of regulator of 
imprinted sites on the replacement exon of PK is associated 
with cancer‑specific splicing that promotes the Warburg effect 
and thus breast cancer progression (95).

PPP in lung cancer. G6PD is overexpressed in non‑small 
cell lung carcinoma (NSCLC) (96), and the survival rate of 
patients with overexpressed G6PD protein is significantly 
poorer compared with those of patients with no G6PD 
overexpression (97). In addition, G6PD inhibition enhances 
lung cancer cell sensitivity to cisplatin by inducing oxidative 
stress (98). In addition, 6PGD promotes cisplatin resistance 
in lung cancer, through the decreased expression of miR‑206 
and miR‑613 (23). G6PD and 6PGD may therefore represent 
potential novel targets to overcome cisplatin resistance. 
Furthermore, 6PGD is required for lung tumor cell migration 
in vitro through the promotion of c‑Met phosphorylation at 
tyrosine residues (99). TKTL1 overexpression is an indepen-
dent predictor of survival in NSCLC (100). Small interfering 
RNA‑mediated silencing of 6PGD has been demonstrated to 
downregulate essential metabolic enzymes, including TKT, 
which leads to inhibition of lung cancer cell migration (101).

HK2 is essential for lung cancer cell growth in vitro and 
lung cancer tumorigenesis in vivo (102). It has been reported 
that EGFR signaling inhibition in NSCLC cells induces 
dramatic decrease in HK2 and PKM2 levels  (103,104). In 
addition, miR‑214 downregulation inhibits HK2 expression 
and NSCLC cell proliferation (105). NAD(P)H:quinone oxido-
reductase 1 increases HK2 gene expression, which enhances 
cellular glycometabolism and stimulates NSCLC cell prolif-
eration (106). PFKFB1, 2, 3 and 4 mRNAs are overexpressed 
in human lung cancers compared with corresponding normal 
tissues (107). It has been demonstrated that miR‑128 directly 
targets PFK liver type at the mRNA and protein levels in 
lung cancer cells by AKT phosphorylation inhibition (108). 
An increase in intracellular ROS leads to inhibition of the 
glycolytic enzyme PKM2 through oxidation of cysteine 358, 
which requires glucose transfer into the PPP; this phenomenon 
then stimulates ROS detoxification (68). All these enzymes 
may represent potential targets to develop novel strategies for 
diagnosis and treatment of lung cancer.
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5. Perspectives

The metabolic processes in cancer cells differ from those in 
normal cells. In malignancies, cancer cell proliferation is stimu-
lated. Elevated PPP activity in cancer cells may distinguish 
cancer cells from normal cells, and the enzymes involved in 
PPP may therefore represent novel targets for diagnosis and 
treatment of various types of cancer. The present review demon-
strated that cancer cells have acquired numerous mechanisms 
that circumvent PPP and glycolysis regulation. However, further 
investigation remains essential to discover additional mechanisms 
and identify strategies for treating hyperactive PPP signaling in 
human cancers.
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