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Abstract. Hepatocellular carcinoma (HCC) is more frequently 
observed and aggressive in men compared with women. 
Increasing evidence demonstrates that the sex disparity 
appears to be mediated by the stimulatory effects of andro-
gens and the protective effects of estrogen in the development 
and progression of HCC. In the past few decades, studies on 
the sex difference of HCC mainly focused on the effect of 
sex hormones on the transactivation of hepatitis B virus X 
protein and the release of inflammatory cytokines, and these 
studies have further intensified in recent years. Sex hormones 
are also involved in genetic alterations and DNA damage 
repair in hepatocytes through binding to their specific cellular 
receptors and affecting the corresponding signaling pathways. 
Furthermore, the theory of sex chromosomes participating in 
HCC has been considered. The present review discussed the 
recent advances in the molecular mechanisms of sex disparity 
in HCC, with the aim of improving the understanding of 
the underlying critical factors and exploring more effective 
methods for the prevention and treatment of HCC.
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1. Introduction

Hepatocellular carcinoma (HCC) is the most common 
primary malignant tumor of the liver and the second most 
common cause of cancer‑associated mortality worldwide (1). 
The associated risk factors for HCC have been established 
and include viral hepatitis, alcohol consumption, nonalcoholic 
steatohepatitis, genetic metabolic diseases and environmental 
exposure (2,3). However, comparative studies and data have 
identified that a marked feature of HCC is that males have 
a higher incidence and worse prognosis compared with 
females in low‑ and high‑incidence areas (4). The American 
Cancer Society estimated the numbers of new liver cancer 
cases that occurred in the United States in 2017 to be 40,710 
(29,200 males and 11,510 females), with 28,920 mortalities 
(19,610 males and 9,310 females) (5). In China the most recent 
statistics indicate an incidence rate of 466,100 (343,700 males 
and 122,300 females), with 422,100 mortalities (310,600 males 
and 111,500 in females) (6). The sex disparity of HCC has 
demonstrated that the ratio of estrogen and testosterone levels 
may be associated with the initiation and progression of 
HCC, suggesting that active estrogen‑ and androgen‑mediated 
signaling pathways may regulate the risk of HCC (7,8). In recent 
years, increasing attention has been focused on the genetic 
alterations of sex chromosomes, which may be responsible 
for the sex disparity in HCC (9‑11). Considerable efforts have 
been exerted in exploring the molecular mechanisms involved 
in the sex disparity in HCC (7‑9). The current article reviewed 
the molecular mechanisms underlying the involvement of the 
sex hormones, including androgens and estrogens and their 
corresponding receptors, as well as of the sex chromosomes in 
the pathogenesis of HCC.

2. Estrogen may serve an inhibitory role in sex disparity 
in HCC via miRNAs, DNA repair and obesity associated 
pathways

In contrast to the tumor‑promoting activity of the androgens, the 
preventive and inhibitory effects of estrogen have been epide-
miologically demonstrated by studies revealing an increased 
incidence of HCC following the menopause (12‑14). This is 
consistent with animal studies in which treatment with estrogen 
decreased the incidence and metastasis of HCC, and ovariec-
tomy increased susceptibility to HCC in female mice (15). In 
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past studies, chronic inflammation was a major contributor to 
tumorigenesis and estrogen modulated inflammatory tumor 
microenvironment via suppression of pro‑inflammatory cyto-
kines  (16‑20). In addition, the metabolism of 17β‑estradiol 
(E2) is involved in the sex disparity in HCC. Overexpression 
of liver‑specific cytochrome P450 1A2 (CYP1A2) markedly 
contributed to the inhibitory effect in HCC cells by converting 
E2 to the cytotoxic 2‑methoxyestradiol (21,22).

However, in addition to the frequently reported molecular 
mechanisms underlining the role of estrogen in the gender 
disparity of HCC, recent studies have proposed that estrogen 
may serve an inhibitory role in sex disparity of HCC via micro 
RNA, DNA repair and obesity associated pathways (23‑25).

Estrogen receptors. With different intracellular expression 
patterns in the nucleus, cytoplasm or membrane, estrogen is 
involved in various cellular processes including proliferation, 
survival, apoptosis and differentiation through the estrogen 
receptors (ERs) (26). ERα and ERβ, two forms of ERs, share 
significant structural homology and ligand binding properties, 
and yet function very differently. As in breast cancer, aberrant 
increases in ER gene expression have been reported in liver 
tumors compared with normal or non‑tumorous liver in patients 
with HCC (27). ERα‑mediated inhibition of nuclear factor‑κB 
binding activity is a pivotal event in the process of inhibiting 
tumor formation (28). A previous study suggested that the 
malignant behavior of HCC cells is markedly suppressed by 
treatment with E2 through the E2/ERβ/mitogen‑activated 
protein kinase (MAPK) pathway‑mediated increase of the 
nucleotide‑binding domain, leucine‑rich‑containing family, 
pyrin domain‑containing‑3 inflammasome (29). ERα trans-
fection effectively promotes the upregulation of estrogen to 
protein tyrosine phosphatase receptor type O (PTPRO) in HCC 
cell lines and it is positively correlated with the expression of 
ERα and PTPRO in liver tissues (30). It has also been identi-
fied that estrogen functions as a suppressor of macrophage 
alternative activation and tumor progression by preventing 
ERβ‑adenosine triphosphate 5J interaction, thus inhibiting the 
Janus kinase 1/signal transducer and activator of transcription 
6 signaling pathway (Fig. 1) (31). Other studies revealed that ER 
inhibited the proliferation and invasion of human HCC cells 
by decreasing the transcription of metastatic tumor antigen 1 
and peroxisome proliferator activated receptor γ (32,33).

MicroRNAs (miRNAs). miRNAs are small noncoding RNAs 
of ~20 nucleotides that bind to conserved 3'‑untranslated 
region sequences of their target mRNAs and induce the 
inhibition of their translation (34). Thereby miRNAs regulate 
gene transcription and expression to modulate important 
physiological functions (35,36). miRNAs serve a vital role 
in numerous pathological events and in the cell response to 
various stresses  (35). In the hepatocarcinogenic process, 
numerous miRNAs show abnormal expression in HCC 
tissues compared with paired adjacent nontumorous tissues. 
Therefore, miRNAs are recognized as a group of host genetic 
factors associated with hepatocarcinogenesis  (36‑38). The 
cross‑linking of some miRNAs with ER is involved in the sex 
difference in HCC. Zheng et al (22) concluded the correlation 
between some miRNAs and sex disparity in HCC, including 
miR‑23a, miR‑545 and miR‑221. Other miRNAs associated 

with sex disparity in HCC will be discussed in the current 
review (Fig.  1). miR‑21 exhibits reduced mRNA binding 
and silencing activity in healthy mouse liver, but its expres-
sion is significantly elevated in HCC (39). Teng et al  (23) 
reported that dehydroepiandrosterone, a precursor for adrenal 
androgen biosynthesis, activates ERβ and androgen recep-
tors and increases miR‑21 transcription. On the contrary, E2 
inhibits miR‑21 expression via ERα (23). The role of circu-
lating miR‑22, as an independent prognostic marker of poor 
clinical outcome, has been demonstrated by Cox regression 
analysis (40). Jiang et al (41) demonstrated that overexpression 
of miR‑22 in male tumor‑adjacent tissue was associated with 
downregulated ERα expression by targeting its 3'‑untranslated 
region. miR‑22 suppresses ER transcription and attenuates the 
protective effect of estrogen, eventually increasing interleukin 
(IL)‑1α expression. The persistently high level of IL‑1α may 
lead to compensatory proliferation and tumorigenesis (41). 
In addition, by comparing the expression pattern of miRNAs 
between male and female patients with HCC, miR‑18a was 
identified to be increased in female HCCs. Furthermore, 
miR‑18a targets the estrogen receptor 1 gene, which encodes 
the ERα protein, and prevents translation of ER, preferentially 
blocking the protective effects of estrogen and promoting the 
development of HCC in women (42). In addition, elevated p53 
promotes miR‑18a processing to decrease the expression level 
of ERα in female patients with HCC, thereby suppressing the 
tumor‑protective function of the estrogen pathway (43). The 
production of estrogen is associated with steroidogenesis path-
ways, including steroidogenesis enzymes (44). However, to the 
best of our knowledge, there have been no reports regarding the 
interaction of miRNAs with steroidogenesis genes involved in 
sex disparity in HCC.

DNA damage repair. Genetic alterations and genomic 
instability, possibly resulting from unrepaired DNA lesions, 
are increasingly recognized as a common feature of human 
HCC (45,46). In particular, next‑generation sequencing tech-
nologies have revealed numerous genetic alterations, including 
recurrently mutated genes and dysregulated signaling path-
ways in HCC (45). Therefore, timely repair of DNA damage is 
necessary. However, whether DNA damage repair is involved 
in the sex disparity in HCC is largely unclear. The potential 
association between estrogen and genomic instability is worth 
exploring. Previous studies have reported the development 
of HCC from the aspects of DNA damage repair‑associated 
genes, including poly (ADP‑ribose) polymerase (PARP1), 
transcription factor IIH (TFIIH) and nicotinamide adenine 
dinucleotide (NADC) (47‑49), which were associated with 
estrogen signaling pathways  (49‑51). The present review 
explored the roles of these DNA repair associated genes in the 
sex disparity of HCC (Fig. 2).

Poly (ADP‑ribose) polymerase (PARP) 1. PARP1, a well‑known 
DNA‑binding enzyme, has a potential role in DNA repair, 
especially in triggering the base‑excision repair process in the 
early stage of oxidative DNA damage repair (52). PARP1 is also 
involved in a variety of other biological processes, including 
transcriptional regulation, apoptosis, mitosis and protein 
degradation (53). The hepatitis B virus (HBV) core promoter 
region binds to PARP1 and inhibits the DNA repair capacity of 
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PARP1, potentially disrupting host DNA damage repair (54). 
PARP‑1 is downregulated in HBV‑infected patients compared 
with uninfected controls (55). It has been reported that the 
physical interaction of hepatitis B virus X protein (HBX) and 
PARP1 accelerated DNA damage by inhibiting recruitment 
of the DNA repair complex to damaged DNA sites, which 
lead to hepatocarcinogenesis (47). In breast tissue, there is a 
positive association between PARP1 and ER expression (50). 
However, there are few studies on the association between ER 
and PARP1 in HCC, and this merits further exploration.

Transcription factor IIH. Research implies that HBX impedes 
the DNA repair process via its physical interactions with 

the helical components of TFIIH, including excision repair 
cross‑complementing rodent repair deficiency, complementa-
tion groups 2 and 3 proteins (56). TFIIH is a multiprotein 
complex of 10 polypeptides and has clearly been shown to 
be an integral component of the DNA repair pathway (57,58). 
Lee et al (59) reported the interaction of HBX with a prob-
able cellular repair protein UV‑damaged DNA‑binding 
protein, which acts as an essential factor in HBV‑associated 
hepatocarcinogenesis. General transcription factor IIH subunit 
(GTF2H) is located on 5q13.2 and encodes the 44‑kDa RNA 
polymerase II TFIIH protein subunit 2 that interacts with other 
TFIIH subunits in the nucleotide excision repair pathway. 
Zhao et al (48) identified 30 (36.1%) of 83 HCC cases with 
loss of heterogeneity at 5q13.2, in which the tumor‑associated 
gene GTF2H2 was present. GTF2H2 is an estrogen signaling 
pathway gene in breast cancer and is downregulated by lute-
olin (51). Therefore, the sex disparity in HCC partly attributed 
to GTF2H2 is increasingly plausible.

Nicotinamide adenine dinucleotide (NADC). In the early stage 
of many types of cancer, including HCC, oncogene activation 
induces replication stress, resulting in DNA damage and chro-
mosomal instability and acceleration of tumor development. 
Tummala et al (49) reported that increasing NAD+ concentra-
tion is a critical mechanism in the prevention of HCC. They 
described that unconventional prefoldin RPB5 interactor 
(URI) inhibits the aryl hydrocarbon receptor (AhR) and 
ER‑mediated transcription of enzymes implicated in NAD+ 
metabolism and synthesis, which causes DNA damage in 
the early stages of tumorigenesis (49). Djouder (60) proposed 
boosting NAD+ as a strategy to prevent and cure HCC and 
revealed that the activation of AhR and ER was beneficial in 
HCC. Tummala et al (49) reported that AhR and ER could 
reverse URI‑induced transcription of L‑tryptophan/kynurenine 
catabolism and reduce the expression of tryptophan 2,3‑dioxy-
genase through establishing AhR and ER knockout mice and 
conducting experiments in which AhR and ER were depleted 
in HepG2 cells.

Figure 2. Estrogen may serve an inhibitory role in sex disparity in hepa-
tocellular carcinoma via DNA repair. ER, estrogen receptor; E2, estradiol; 
PARP1, poly (ADP‑ribose) polymerase 1; GTF2H2, general transcription 
factor IIH subunit 2; BER, base‑excision repair; NER, nucleotide excision 
repair; URI, unconventional prefoldin RPB5 interactor; NADC, nicotin-
amide adenine dinucleotide; HBV, hepatitis B virus; Bap, benzo(a)pyrene; 
AFB1, aflatoxin B1; Os, oxidative stress markers.

Figure 1. Estrogen serves an inhibitory role in the sex disparity in hepatocellular carcinoma by regulating inflammation and miRNAs. ERα, estrogen receptor α; 
ERβ, estrogen receptor β; E2, estradiol; NF‑κB, nuclear factor‑κB; C/EBP β, enhancer‑binding protein β; IL‑6, interleukin‑6; PTPRO, protein tyrosine phos-
phatase receptor type O; STAT3, signal transducer and activator of transcription 3; MMP‑9, matrix metalloproteinase‑9; MAPK, mitogen‑activated protein 
kinase; ATP5J, Adenosine triphosphate 5J; JAK1, Janus kinase 1; STAT6, signal transducer and activator of transcription 6; miR‑21, microRNA‑21; miR‑22, 
microRNA‑22; miR‑18a, microRNA‑18a; Bcl‑2, B‑cell lymphoma 2.
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Obesity. Unhealthy lifestyles including smoking and alcohol 
consumption are more prevalent among males compared with 
females, and are also speculated to be susceptibility factors for 
sex disparity of HCC (61). Obesity is a significant risk factor for 
certain types of cancer, including HCC (61,62). Park et al (63) 
described that both dietary and genetic obesity enhance the 
inflammation‑dependent increase in IL‑6 and tumor necrosis 
factor expression and promote liver inflammation and tumori-
genesis. Leptin, a 16 kD protein hormone secreted by white 
adipose tissue, participates in the regulation of numerous 
physiological functions including atherosclerosis and carcino-
genesis (64). Abnormal regulation of leptin‑signaling serves 
a crucial role in obesity‑associated liver cancer  (64,65). 
Shen and Shi (25) investigated the function of E2 in opposing 
oncogenic actions of leptin in HepG2 cells, which are poor 
host cells for supporting the replication of HBV or hepa-
titis C virus. The researchers used small interfering‑RNAs 
specific for ER‑α, ER‑β and G protein‑coupled ER (GPER) 
to verify that E2 decreased activation of the leptin‑signaling 
pathway through its receptors (25). E2 enhanced the activity 
of extracellular signal‑regulated kinase via activation of 
ER‑α and GPER and upregulated p38/MAPK via activation 
of ERβ. These responses reversed leptin‑induced alterations, 
eventually inhibiting cell proliferation and stimulating cell 
apoptosis (25).

3. Androgen/AR serves a role in promoting sex disparity 
in HCC

Androgens are male hormones that have been increasingly 
reported in male‑predominant HCC (66,67). They are mainly 
involved in various physiological and pathological activities 
by combining with androgen receptors (ARs)  (68,69). A 
study by Wu et al (70) identified that overexpression of ARs 
enhanced HCC cell growth and invasion in vitro, and HCC 
initiation in  vivo. Previous studies have reported higher 
androgen levels and more active androgen response elements 
(AREs) in liver tumor tissues, compared with control 

tissues (8,71). Further investigation revealed that when male 
mice with AR knockout were induced by diethylnitrosamine 
(DEN), fewer tumors formed compared with wild‑type 
mice  (72). Androgen binding directly to AREs in the 
enhancer I of HBV genes activated the androgen‑signaling 
pathway and increased the rate of HBV‑induced hepato-
carcinogenesis (8,73). AR binding to ARE of the cell cycle 
related kinase promoter region controls activation of the 
β‑catenin/T‑cell factor signaling pathway, and has been iden-
tified as a major carcinogenic event and described in animal 
models and up to 90% of HCC cases (74). Ligand‑stimulated 
AR upregulated miR‑216a, resulting in tumorigenesis, 
and AR and miR‑216a were concordantly over‑expressed 
in clinical specimens (38). Both activity and secretion of 
aromatase, an enzyme which converts androgens to estro-
gens, was markedly increased in human HCC tissues and 
HepG2 cells (75,76). This contradicts the protective effect 
of estrogen and promoting effect of androgen, and further 
studies are required to verify this observation.

4. Sex chromosomes are involved in sex disparity in HCC

Previous studies have revealed that genetic alterations of chro-
mosomes X and Y are frequently observed in patients with 
HCC, including chromosome‑specific gene change, oncogene 
and/or tumor suppressor gene expression and structural rear-
rangements of chromosomes  (9,11,77). This indicates that 
genes located on sex chromosomes may be responsible for 
HCC (78,79).

X chromosome. X‑chromosome‑coupled zinc finger protein 
is abundantly expressed in HCC cells, and is associated with 
the proliferation and survival of tumor cells (77). In addition, 
mRNA and protein levels of dosage‑sensitive sex reversal 
adrenal hypoplasia congenital critical region on X chromo-
some, gene 1 (DAX‑1), are downregulated in HCC tissues and 
cell lines (10). DAX‑1 is known for its fundamental roles in 
sex steroid‑dependent neoplasms and interacts with β‑catenin 
to attenuate its transcriptional activity (80,81). Jiang et al (10) 
first reported the role of the DAX‑1/β‑catenin molecular 
network in controlling HCC development. Furthermore, it was 
revealed that DAX‑1 is regulated by androgens (82).

Y chromosome. Due to a lack of in vivo models, the impact 
of a small number of protein‑coding genes in the Y chromo-
some remains largely unknown. Dysregulation of certain 
Y  chromosome‑specific genes, including RNA‑binding 
motif gene on the Y chromosome and testis‑specific protein 
Y‑encoded (83,84), have been identified in male HCC. Y chro-
mosome associated protein‑coding genes responsible for HCC 
are briefly illustrated in Fig. 3.

Sex‑determining region on the Y chromosome (SRY). SRY has 
been recognized as an oncogene and cancer stem cell promoter 
in male HCC in in vitro studies (85,86). Liu et al (9) reported 
overexpression of SRY in ~84% of male patients with HCC. A 
liver‑specific transgenic murine model with overexpression of 
SRY was susceptible to DEN‑induced hepatocarcinogenesis 
compared with age‑ and sex‑matched wild‑type mice (9). SRY 
activates its downstream target SOX9 and the platelet‑derived 

Figure 3. Y chromosome associated protein‑coding genes are involved 
in HCC. SRY, sex‑determining region on the Y chromosome; PDGFRα, 
platelet‑derived growth factor receptor α; PI3K, phosphoinositide 3‑kinase; 
RBMY, RNA‑binding motif gene on the Y chromosome; GSK3β, glycogen 
synthase kinase 3β; TCF, T‑cell factor; HCC, hepatocellular carcinoma.
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growth factor receptor α/phosphoinositide 3‑kinase/protein 
kinase B pathway, which stimulates the expression of 
proliferation‑associated genes MYC and cyclin D1 (CCND1), 
eventually accelerating tumorigenesis (9).

RNA binding motif protein Y‑linked (RBMY). Oncogenic 
activation of RBMY is an important factor in hepatocarcino-
genesis, and a marked increase of cytoplasmic and nuclear 
RBMY has been noted in HCC tissues (11,87). The cytoplasmic 
expression of RBMY is associated with poor prognosis and 
decreased survival rate in patients with HCC (11). Cytoplasmic 
RBMY competes with the β‑catenin destruction complex 
for binding GSK3b and enhancing the phosphorylation of 
glycogen synthase kinase 3β Ser9 residue, which eventu-
ally induces nuclear entry of β‑catenin for transcription of 
downstream oncogenes (11). The tumorigenicity of RBMY 
has also been demonstrated though its ability to induce cell 
transformation and tumor formation in nude mice, and RBMY 
transgenic mice exhibited an increased DEN‑induced liver 
cancer incidence (83).

Y chromosome loss and other genomic alterations. The 
genomic imbalances in HCC tissues have been studied mostly 
by comparative genomic hybridization (CGH) (88,89). Y chro-
mosome loss and other genomic alterations in HCC cell lines 
were analyzed by CGH and CGH array by Park et al (78). 
Park et al (78) detected the karyotypes of 21 male HCC cell 
lines and identified 18 HCC cell lines with Y chromosome loss, 
which may be responsible for the male preponderance in HCC. 
In addition, increased copy number of several genes, CCND1 
and fibroblast growth factor 3/4 at 11q13, sarcoma amplified 
sequence/cyclin‑dependent kinase 4 at 12q13, telomerase 
RNA component at 3q26, MET at 7q31, and MYC at 8q24, 
were identified in 20 primary HCC tissues (90).

5. Conclusions

HCC is characterized by an apparent sex disparity for which 
there lacks a clear mechanistic understanding. This current 
review summarized the recent research exploring the role 
of sex hormones and sex chromosomes in this process. Sex 
hormones and their receptors constitute two tumor‑promoting 
and inhibiting axes through different channels. Genetic 
alterations in sex chromosomes could also contribute to 
the underlying mechanism of the sex disparity in HCC. In 
summary, the sex disparity in HCC is attributed to multiple 
mechanisms, and the targeting of both sex hormones and sex 
chromosomes is a novel and promising therapeutic approach 
for patients with HCC.
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