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Abstract. The radiosensitizing effect of 5‑aminolevulinic 
acid (5‑ALA) has been demonstrated in glioma and mela-
noma in a number of studies. Enhancing the radiosensitivity 
of colorectal cancer may improve survival rates and lessen 
adverse effects. The present study assessed the radiosensi-
tizing effect of 5‑ALA in colorectal cancer using the human 
colon cancer cell line HT29 in  vitro and in  vivo. In  vitro, 
cells were pretreated with 5‑ALA and exposed to ionizing 
radiation. Cells pretreated with or without 5‑ALA were 
compared using a colony formation assay. In vivo, HT29 cells 
were implanted into mice subcutaneously and subsequently 
exposed to ionizing radiation. 5‑ALA was administrated by 
intraperitoneal injection. Subcutaneous tumors treated with or 
without 5‑ALA were compared. Single‑dose and multi‑dose 
irradiations were applied both in  vitro and in  vivo. Cells 
exposed to multi‑dose irradiation and pretreated with 5‑ALA 
in vitro had a significantly lower surviving fraction compared 
with cells without 5‑ALA pretreatment. Following multi‑dose 
irradiation in  vivo, the volume of the subcutaneous tumors 
treated with 5‑ALA was significantly lower compared with 
that of tumors without treatment. These results suggest that 
radiotherapy with 5‑ALA may enhance the therapeutic effect 
in colon cancer.

Introduction

In 2016, colorectal cancer was the second most common 
cancer type and the third most common cause of cancer‑asso-

ciated mortality worldwide  (1). In Japan, due to changes in 
lifestyles, the incidence and mortality rates of colorectal 
cancer are increasing annually. In 2010, the incidence rate of 
colorectal cancer was second to gastric cancer, and in 2013, its 
mortality rate was second to lung cancer, in Japan (2). Despite 
advances in diagnostic techniques and the increasing preva-
lence of screening programs, surgical resection with lymph 
node dissection remains the most common curative therapy 
for colorectal cancer  (3). The types of radiotherapy  (RT) 
used for colorectal cancer are adjuvant and palliative 
RT  (3). Adjuvant RT is used to prevent postoperative recur-
rence following surgery and reduce the tumor volume to 
enable preservation of the anal sphincter prior to surgery in 
locally advanced rectal cancer (4,5). Palliative RT is used to 
relieve the symptoms and prolong the lives of patients with 
unresectable or recurrent colorectal cancer, who have symp-
tomatic lesions  (6,7). However, curative RT has not yet been 
established, and it is controversial whether RT for colorectal 
cancer improves the survival rate (8‑13). One reason for this 
may be the low radiosensitivity of colorectal cancer (14). RT 
has certain adverse effects in patients with colorectal cancer, 
including skin (pain, erythema, epilation, desquamation, 
edema, ulceration, hemorrhage and necrosis), gastrointestinal 
(nausea, diarrhea, abdominal or rectal discomfort, abdominal 
or rectal pain, mucous or blood discharge, ileus, obstruction, 
fistula and perforation), genitourinary (frequent urination, 
nocturia, dysuria, bladder spasm, hematuria and bladder 
obstruction), neurological (pain and a feeling of discomfort 
in the legs or gluteal region) and other adverse effects (15,16). 
In particular, late adverse effects, including anal dysfunc-
tion, bowel dysfunction and sexual dysfunction, depend on 
the radiation dose fraction size  (8). The majority of adverse 
effects should lessen over time; however, certain adverse 
effects may continue after completing treatments, which 
often makes the continuation of treatments after radiotherapy 
difficult (5,8,11,17,18). The present study considers that a new 
RT for colorectal cancer is necessary, which has equivalent 
effectiveness to conventional RT but involves lower doses 
of radiation. In addition, enhancing the radiosensitivity of 
colorectal cancer may improve survival rates and lessen 
adverse effects. 5‑aminolevulinic acid (5‑ALA) is a natural 
amino acid that is biosynthesized in the mitochondria of 

Radiosensitizing effect of 5‑aminolevulinic acid 
in colorectal cancer in vitro and in vivo

KAZUTO YAMADA*,  YASUTOSHI MURAYAMA*,  YOSUKE KAMADA,   
TOMOHIRO ARITA,  TOSHIYUKI KOSUGA,  HIROTAKA KONISHI,  RYO MORIMURA, 

ATSUSHI SHIOZAKI,  YOSHIAKI KURIU,  HISASHI IKOMA,  TAKESHI KUBOTA,   
MASAYOSHI NAKANISHI,  HITOSHI FUJIWARA,  KAZUMA OKAMOTO  and  EIGO OTSUJI

Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602‑8566, Japan

Received July 29, 2018;  Accepted March 6, 2019

DOI:  10.3892/ol.2019.10198

Correspondence to: Dr Yasutoshi Murayama, Division of Digestive 
Surgery, Department of Surgery, Kyoto Prefectural University of 
Medicine, 465 Kajii‑cho, Kamigyo‑ku, Kyoto 602‑8566, Japan
E‑mail: murayama@koto.kpu‑m.ac.jp

*Contributed equally

Key words: 5‑aminolevulinic acid, protoporphyrin IX, colorectal 
cancer, radiotherapy, radiosensitizing effect, radiosensitivity



YAMADA et al:  RADIOSENSITIZING EFFECT OF 5-ALA IN CRC 5133

animals. 5‑ALA is an important precursor of heme and is 
synthesized from glycine and succinyl CoA by mitochondrial 
aminolevulinic acid synthase in animal cells  (19). In tumor 
cells, exogenous administration of 5‑ALA induces high 
accumulation of protoporphyrin IX  (PpIX) resulting from 
high expression of peptide transporter 1 and low expression of 
ATP‑binding cassette sub‑family G member 2  (20,21). PpIX 
is used as a photosensitizer in photodynamic diagnosis (PDD) 
and photodynamic therapy  (PDT) for various types of 
cancer (19,20,22‑24). Hematoporphyrin derivatives (HpD) and 
photofrin are used in PDT, and their effectiveness has been 
demonstrated in several cancer types (25‑27). Previous studies 
have reported that HpD and photofrin also act as significant 
radiosensitizers  (28,29). Although the radiosensitizing effect 
of 5‑ALA is controversial, it has been demonstrated in glioma 
and melanoma by numerous studies (30‑33). The mechanisms 
remain unclear; however, a previous study has reported that 
the initial reactive oxygen species (ROS) generated from water 
radiolysis and delayed production of ROS in mitochondria 
following ionizing irradiation enhance radiosensitivity  (33). 
The present study assessed the radiosensitizing effects of 
5‑ALA in colorectal cancer in  vitro and in  vivo using the 
human colorectal cell line HT29.

Materials and methods

Chemicals. 5‑ALA was purchased from SBI Pharmaceuticals 
Co., Ltd., (Tokyo, Japan) and other chemicals [McCoy's 
5A medium, phosphate‑buffered saline (PBS), fetal bovine 
serum  (FBS), trypsin/EDTA solution, antibiotics and anes-
thetic] were purchased from Wako Pure Chemical Industries, 
Ltd., (Osaka, Japan). 5‑ALA was dissolved in fresh McCoy's 5A 
medium at a concentration of 1 mM for in vitro experiments. 
For the in vivo experiments, 50 mg 5‑ALA was dissolved in 
1  ml PBS and then the solution (0.1  ml) was administered 
by intraperitoneal injection. Details of each experiment are 
described in the following paragraphs.

Cell lines and animals. The human colorectal cancer cell 
line HT29 was purchased from the American Type Culture 
Collection (Manassas, VA, USA). These cells were grown in 
McCoy's 5A medium with 10% FBS, 100 U/ml penicillin and 
100 µg/ml streptomycin at 37˚C in a humidified atmosphere 
with 5% CO2. A total of 24 6‑week‑old female BALB/c mice 
(16‑21  g body weight) were used in the present study. The 
mice were housed in plastic cages with stainless steel grid 
tops in an air‑conditioned environment at 23±1˚C and a rela-
tive humidity of 50±5%, with a 12‑h light/dark cycle. All mice 
were provided with food and water ad  libitum. The animal 
protocols were approved by the Ethics Committee of Kyoto 
Prefectural University of Medicine (Kyoto, Japan).

Evaluation of the response of cells to irradiation in  vitro. 
HT29  cells were seeded at 200  cells per well in six‑well 
culture plates and incubated at 37˚C for 24 h. For cells in the 
RT+5‑ALA group in the single‑dose experiments, the medium 
was replaced with fresh medium containing 1  mM 5‑ALA. 
After 4  h, at 37˚C, the medium was replaced with fresh 
culture medium. Control cells and cells of the RT only groups 
were subjected to the same procedure, but without 5‑ALA 

treatment. In the RT and RT+5‑ALA groups, cells were irradi-
ated using an X‑ray irradiator (M‑150WE; SOFTEX Co., Ltd., 
Ebina, Japan) and exposed to 1 Gy ionizing radiation. In the 
multi‑dose irradiation experiments, the RT+5‑ALA group was 
subjected to the same procedure as the single‑dose experi-
ments and exposed to 0.3 Gy radiation on the first day. The 
following day, cells were treated with 5‑ALA at 37˚C for 4 h 
and then exposed to 0.3 Gy radiation again. These procedures 
were performed for 3  consecutive days (total radiation dose 
= 0.9 Gy). In the RT only groups, cells were subjected to the 
same procedure, but without 5‑ALA treatment. At 10  days 
after the first irradiation, the cells were evaluated by a colony 
formation assay. Cells were fixed with 4% paraformaldehyde 
for 20  min and stained with Giemsa for 30  min at room 
temperature. The stained cells were observed under a Nikon 
7S‑100  light microscope (Nikon Corporation, Tokyo, Japan) 
at a magnification of x40‑100. Only colonies containing 
≥50 cells were scored. The surviving fraction was calculated 
using the following formula: Surviving fraction = the number 
of colonies / the number of seeded cells prior to treatment.

Evaluation of the response of subcutaneous tumors to irradi‑
ation in vivo. Mice were subcutaneously injected with 2.5x106 
HT29 cells in 0.1 ml PBS. Once the subcutaneous tumors had 
grown to a diameter of 3 mm (defined as day 1), the mice were 
randomly divided into two groups for single‑dose irradiation 
experiments and four groups for multi‑dose irradiation experi-
ments, and subjected to the following procedures. Single‑dose 
irradiation experiments included an ionizing irradiation group 
(RT group; n=2) and ionizing irradiation with 5‑ALA group 
(RT+5‑ALA group; n=6). For single‑dose irradiation, the 
mice were divided into the RT and the RT+5‑ALA groups 
only, as comparison between the control and 5‑ALA groups 
was performed in the multi‑dose irradiation experiment. In 
the RT group, 0.1 ml PBS was administered by intraperitoneal 
injection. The RT+5‑ALA group received an intraperitoneal 
injection of 5  mg 5‑ALA at 4  h before irradiation. Both 
groups were irradiated at a dose of 1 Gy on day 1. Mice were 
covered with a lead shield, except for the tumor regions, to 
avoid excessive radiation exposure. Multi‑dose irradiation 
experiments included a control group (n=3), 5‑ALA adminis-
tration group (5‑ALA group; n=3), ionizing irradiation group 
(RT group: n=5), and ionizing irradiation with 5‑ALA admin-
istration group (RT+5‑ALA group; n=5). In the control and 
RT groups, 0.1 ml PBS was administered by intraperitoneal 
injection. The control group received no further treatment. 
The RT and RT+5‑ALA groups were irradiated at a dose of 
3 Gy/day on day s 1, 3, 5, 8 and 10. Mice were covered in the 
same manner as for the single‑dose irradiation experiments. 
The 5‑ALA and RT+5‑ALA groups received an intraperito-
neal injection of 5 mg 5‑ALA. For these two groups, 5‑ALA 
was administered at 4 h before irradiation on every day that 
the mice were irradiated. The tumor volume was calculated 
every 2‑3  days according to the following formula: Tumor 
volume = the shortest diameter2 x the largest diameter x 0.5. 
The tumor specimens were removed and their final weight 
was measured on day 20.

Statistic analysis. Differences in tumor volume among the 
groups were analyzed using one‑way analysis of variance 
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(ANOVA) and a Dunnett's multiple comparisons test. 
Differences in tumor weight and cell viability among the 
groups were analyzed using a non parametric Mann‑Whitney 
U test. P<0.05 was considered to indicate a statistically 
significant difference.

Results

Radiosensitizing effect of 5‑ALA in the HT29 cell line in vitro. 
First, the radiosensitizing effect of 5‑ALA in single‑dose 
irradiation was evaluated. The surviving fraction of HT29 
cells was compared using a colony formation assay. No 
significant difference was identified in the response of HT29 
cells to single‑dose irradiation between the RT group (n=3) 
and RT+5‑ALA group (n=3) (P=0.210; Fig. 1A). Subsequently, 
the radiosensitizing effect in multi‑dose irradiation was 
evaluated. In contrast to single‑dose irradiation, a signifi-
cant difference was identified in the response to multi‑dose 
irradiation between the RT group (n=3) and RT+5‑ALA 
group (n=3) (P=0.049; Fig. 1B). This result demonstrated that 
5‑ALA enhances the radiosensitivity of the HT29 cell line to 
multi‑dose irradiation.

Radiosensitizing effect of 5‑ALA in HT29 tumor‑bearing mice 
in vivo. The HT29 subcutaneous tumor model was used to 
evaluate tumor suppression by RT in the presence of 5‑ALA. 
Both single‑dose and multi‑dose irradiations were applied. In 
the single‑dose irradiation experiment, the tumor size of the 
RT+5‑ALA group was larger compared with that of the RT 
group at day 21 (Fig. 2A). In the multi‑dose irradiation experi-
ment, significant differences were revealed between the four 
groups at day  3 (P=0.0126), 8  (P=0.0482), 13  (P=0.0060), 

15  (P=0.0102), 17  (P=0.0148) and 20  (P=0.0031) using 
ANOVA. With Dunnett's test, significant differences were iden-
tified between the control group and RT+5‑ALA group at day 
8  (P=0.0290), 10  (P=0.0365), 13  (P=0.0057), 15  (P=0.0088), 
17  (P=0.0163) and 20  (P=0.0178). Finally, the subcutaneous 
tumors were removed and weighed. Although there was no 
significant difference in the tumor weights of the RT+5‑ALA 
and the RT groups, the tumor weight in the RT+5‑ALA group 
tended to be lower compared with that in the RT group (Fig. 3).

Discussion

Current RT for colorectal cancer can reduce the tumor 
size (4); however, there are certain adverse effects specific to 
the disease. These adverse effects often lower patient quality 
of life and make the continuation of treatment prior to RT 
difficult  (5,8,11,17,18). A new RT approach for colorectal 
cancer is desirable, involving more effective tumor suppres-
sion with lower doses of radiation. PDT and PDD are based 
on excitation of a photosensitizer administered systemically 
or topically by light of a specific wavelength corresponding 
to the absorption peak of the photosensitizer (19,20). PDT and 
PDD are widely used for treatment of various cancer types 
(e.g., malignant glioma, bladder cancer, lung cancer, skin 
cancer, esophageal cancer and cholangiocarcinoma) due to 
their high selectivity for targeted tumors and non‑invasive-
ness  (19,20,22‑27). Previous studies have demonstrated that 
HpD, photofrin, and 5‑ALA are suitable photosensitizers 
for PDT and PDD of several types of cancer (e.g., malignant 
glioma, bladder cancer, lung cancer, skin cancer, esophageal 
cancer and cholangiocarcinoma)  (19,20,22‑27). However, 
there are certain side effects associated with these modalities. 

Figure 1. Surviving fraction after single‑dose and multi‑dose radiations in vitro. (A) In the single‑dose radiation experiment, the RT+5‑ALA group tended to 
have a lower surviving fraction compared with that in the RT group; however, there was no significant difference. (B) In the multi‑dose radiation experiment, 
the RT+5‑ALA group had a significantly lower surviving fraction compared with that in the RT group. Data are presented as the mean ± standard deviation 
(n=3). *P<0.05. RT, radiotherapy; 5‑ALA, 5‑aminolevulinic acid.
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The main side effect is phototoxicity. The administration of 
a photosensitizer results in increased sensitivity of the skin 
and eyes of the patients to sunlight and bright indoor light 
for several weeks. Thus, the patient has to avoid exposure 
to bright light for a long period until the photosensitizer is 
metabolized in their body (34‑36). HpD and photofrin require 

~6 weeks of photosensitivity precautions (34‑36). By contrast, 
PpIX synthesized from 5‑ALA is cleared from the body 
within 24‑48 h after systemic ALA administration (20). This 
is one of the main advantages of 5‑ALA. HpD and photofrin 
have been demonstrated to act as radiosensitizers in previous 
studies  (28,29). Photofrin has been reported to enhance 
radiosensitivity in human bladder cancer and human glioblas-
toma cell lines, but not in a colorectal cancer cell line  (14). 
In general, ionizing radiation damages living cells via two 
mechanisms, namely by direct and indirect reactions. In the 
direct reaction, radiation is absorbed into the cells and affects 
DNA directly. In the indirect reaction, radiation induces 
water radiolysis and generates ROS, including superoxide, 
hydroxyl radicals and hydrogen peroxide, which damage DNA 
and cell organelles  (37,38). Previous studies have reported 
that 5‑ALA‑induced PpIX serves an important role in the 
production of ROS  (31,33). The radiosensitivity induced by 
HpD and photofrin is caused by higher intracellular concen-
trations of porphyrin compounds relative to 5‑ALA‑induced 
PpIX  (39). Another study demonstrated that ionizing irra-
diation dose not decrease the quantity of 5‑ALA‑induced 
PpIX. Therefore, ionizing radiation does not influence the 
synthesis of 5‑ALA‑induced PpIX  (33). Previous studies 
have demonstrated the radiosensitizing effects of 5‑ALA in 
glioma and melanoma (30‑33). Certain studies have reported 
that delayed production of ROS in mitochondria following 
ionizing irradiation, in addition to the initial ROS generated 
by water radiolysis, enhances radiosensitivity (33,40,41). The 
present study assessed the effects of 5‑ALA in colorectal 
cancer using the human HT29 colorectal cancer cell line. To 
the best of our knowledge, this is the first study to demon-
strate the possibility of the radiosensitivity of colorectal 
cancer as a result of 5‑ALA both in vitro and in vivo. It was 
identified that 5‑ALA radiosensitized HT29 cells following 
multi‑dose irradiation but not single‑dose irradiation. This 

Figure 3. Tumor weights following treatment. No significant difference was 
identified in the tumor weights of the RT+5‑ALA (n=5) and RT groups (n=5); 
however, the tumor weight in the RT+5‑ALA group was markedly lower 
compared with that in the RT group  (P=0.45). Data are presented as the 
mean ± standard deviation. RT, radiotherapy; 5‑ALA, 5‑aminolevulinic acid.

Figure 2. Tumor size ratio after single‑dose and multi‑dose radiations in vivo. (A) In the single‑dose radiation experiment, the tumor size of the RT+5‑ALA 
group (n=6) was larger compared with that of the RT group (n=2) at day 21. (B) In the multi‑dose irradiation experiment, significant differences were identi-
fied between the control group (n=3) and RT+5‑ALA group (n=5) at day 8 (P=0.0290), 10 (P=0.0365), 13 (P=0.0057), 15 (P=0.0088), 17 (P=0.0163) and 20 
(P=0.0178). Data are presented as the mean ± standard deviation. *P<0.05 vs. control. RT, radiotherapy; 5‑ALA, 5‑aminolevulinic acid.
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result is similar to that reported in previous studies involving 
glioma cell lines  (30,32,33). Pretreatment with 5‑ALA prior 
to ionizing irradiation increased the delayed ROS production 
in the cytoplasm of glioma cells. Consequently, 5‑ALA may 
act as a radiosensitizer  (33). The current results suggest that 
radiotherapy with 5‑ALA may enhance the therapeutic effect 
in colon cancer and the possibility of reducing the dose of 
radiation.

The present study had several limitations. First, the 
molecular mechanism underlying the radiosensitizing effect 
of 5‑ALA was not investigated and the presence of increased 
intracellular ROS was not confirmed. In common with a 
previous study involving glioma, increased intracellular ROS 
may have led to the result that 5‑ALA had a radiosensitizing 
effect in the HT29 cell line  (33). However, other uncertain 
mechanisms may have contributed to the results. It has 
been reported that ROS generation is significantly higher in 
ALA‑PDT‑treated cells compared with control cells of the 
MKN‑45 human gastric cancer cell line (42). In future studies 
the molecular mechanism underlying the radiosensitizing 
effect of 5‑ALA should be investigated. Second, the RT alone 
group exhibited no radiosensitizing effect in the single‑dose 
irradiation experiment in  vivo. However, since single‑dose 
irradiation has been performed clinically for certain types 
of neoplasm (e.g., breast cancer and metastatic brain 
tumor) (43,44). It is uncertain whether single‑dose irradiation 
is not curative in colorectal cancer or whether 5‑ALA exhibits 
no effect under the conditions used in the present study. 
Fractionated irradiation is widely applied to many cancer 
types based on the difference in the reactions of tumor and 
normal tissues  (45,46) and fractionated irradiation is gener-
ally used for radiotherapy of colorectal cancer in Japan  (3). 
Clinically, colorectal cancer demonstrates radiation resistance. 
A previous study has reported that human HT29 colorectal 
cancer cells have lower radiosensitivity compared with other 
cell lines (14). The result of the single dose irradiation experi-
ment is possible in clinical practice. In the present study, the 
dose in the single dose irradiation experiment may be too low 
for tumor shrinkage. However, in the multi‑dose irradiation 
experiment, the result was improved. Further experiments 
should be performed to verify this point. Third, images of 
the tumors were not obtained and were not presented in the 
current study. Photographs of the tumors should be presented 
to demonstrate the extent that the tumor sizes were altered. 
Fourth, although a significant difference was identified in the 
tumor size ratios of the control and the RT+5‑ALA groups in 
the multi‑dose irradiation experiment, no significant differ-
ence in tumor weight was revealed between the RT group and 
the RT+5‑ALA group. A previous study has reported that a 
long interval between preoperative irradiation and surgery 
increases tumor downstaging. A long interval (6‑8  weeks) 
between preoperative radiotherapy and surgery is associated 
with a significantly improved clinical tumor response and 
pathological downstaging  (5). If observations were extended 
over a longer period, a significant difference may be identified 
between the two groups regarding tumor weight.
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