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Abstract. The aim of the present study was to analyze lung 
adenocarcinoma‑associated microarray data and identify 
potentially crucial genes. The gene expression profiles were 
downloaded from the Gene Expression Omnibus database and 
6 datasets, of which 2 were discarded and 4 were retained, were 
preprocessed using packages in the R computing language. 
Subsequently, Gene Set Enrichment Analysis (GSEA) and 
meta‑analysis was used to screen the common pathways and 
differentially expressed genes at the transcriptional level. The 
genes detected from GSEA through The Cancer Genome Atlas 
databases were subsequently examined, and the crucial genes 
by survival data were identified. Pathways of the crucial genes 
were obtained using the Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathway of the online website Database for 
Annotation, Visualization and Integrated Discovery (DAVID) 
tool, and the pathways of crucial genes that were upregulated 
or downregulated were matched using the Venn method to 
identify the common crucial pathways. Furthermore, on the 
basis of the common crucial pathways, key genes that are 
closely associated with the development and progression of 
lung adenocarcinoma were identified with the KEGG pathway 
of DAVID. Additional information was obtained through Gene 
Ontology annotation. A total of two key pathways, including 
cell cycle and DNA replication, as well as 12 key genes [DNA 
polymerase δ subunit 2, DNA replication licensing factor 

MCM4, MCM6, mitotic checkpoint serine/threonine‑protein 
kinase BUB1, BUB1β, mitotic spindle assembly checkpoint 
protein MAD2A, dual specificity protein kinase TTK, 
M‑phase inducer phosphatase 1, cell division control protein 
45 homolog, cyclin‑dependent kinase inhibitor 1C, pituitary 
tumor‑transforming gene 1 protein and polo‑like kinase 1] 
were identified. These key pathways and genes may be studied 
in future studies involving gene transfection/knockdown, 
which may provide insights into the prognosis of lung adeno-
carcinoma. Additional studies are required to confirm their 
biological function.

Introduction

Lung cancer is the leading cause of cancer‑associated mortality 
among men and the second leading cause among women 
worldwide  (1). The vast majority of lung cancer cases are 
non‑small cell lung cancer (NSCLC), comprising 80‑85% of 
cases (2), among which adenocarcinoma is the most common 
histological type (~50% of all NSCLCs) (3). However, despite 
continuous clinical research from 1975 onwards, the overall 
5‑year survival rate of patients with NSCLC has only improved 
from 14 to 18% (4). Therefore, although previous studies have 
focused on genes associated with lung adenocarcinoma, the 
genetic molecular mechanism underlying the development of 
this type of cancer remains to be elucidated.

Studies investigating lung adenocarcinoma‑associated 
genes may improve the prognosis, diagnosis and treatment of 
lung adenocarcinoma. With the developments in the field of 
biotechnology, the expression levels of thousands of genes can 
be detected simultaneously by microarray, providing a record 
of the RNA transcriptional levels in the tissues being studied, 
further facilitating the study of lung adenocarcinoma (5). All 
microarray datasets used in the present study are available 
from the Gene Expression Omnibus (GEO) public database 
at the National Center for Biotechnology Information  (6). 
However, the large volume of data must be preprocessed and 
converted into a smaller set of genes, which exhibit meaningful 
biological differences between the control and test systems. 
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Analyzing such a huge amount of information from micro-
array datasets to identify molecular pathways and key genes 
deregulated in lung adenocarcinoma is extremely challenging. 
Subramanian et al (7) addressed this problem by describing a 
method, referred to as Gene Set Enrichment Analysis (GSEA), 
to reveal significant differences in expression between normal 
and patient samples. GSEA is a test for groups of genes rather 
than a single gene. However, the sample capacity, the difference 
of platforms and the standardization may affect the statistical 
results, and the meta‑analysis may also make a difference. 
Meta‑analysis of microarray data may be an improved method 
of dealing with poor reproducibility and reliability (8,9). These 
two methods were utilized to select significant genes for Gene 
Ontology (GO) annotation and identify the genes involved in 
the molecular mechanism underlying lung adenocarcinoma 
development. These observations highlight the importance of 
improving our understanding of the etiology of lung adeno-
carcinoma, as well as the molecular changes underlying this 
disease.

Materials and methods

Data collection. All research datasets were selected from 
GEO (www.ncbi.nlm.nih.gov/geo/), using ‘lung neoplasms’ as 
the medical subheading search term and setting the study type 
to ‘expression profiling by array’, then limiting the species to 
‘human’. A total of 168 sets of genome‑wide expression micro-
array data associated with lung neoplasms were identified. The 
studies that met all the following criteria are listed in Table I: 
i) Data on the expression of genome‑wide RNA; ii)  valid 
complete microarray raw data or standardized data; iii) data 
providing a comparison between lung adenocarcinoma patients 
with normal controls; iv) data containing ≥6 samples; v) raw 
data expressed as CEL files; and vi) the studied organism was 
Homo sapiens. A total of 6 gene expression datasets met all 
the selection criteria; however, two of the datasets, GSE43458 
and GSE19188, presented problems with exporting the data 
or lacked a correspondence between normal and pathological 
tissues, respectively, and were therefore discarded. Thus, four 
datasets were retained containing data on 132 lung adenocar-
cinomas and 132 normal.

GSEA. GSEA primarily analyzes microarray data, using 
genomic and genetic sequencing to detect significant biolog-
ical differences in microarray datasets (10). In the present 
study, differentially expressed genes and common crucial 
pathways between lung adenocarcinoma patients and normal 
controls from microarray data were identified by GSEA. 
Computing and general statistical analysis were processed 
in the R computing language http://www.R‑project.org/ (11). 
The datasets were normalized and the intensity of the log10 
probe set was calculated using the Robust Multichip averaging 
algorithm with bio‑conductors (12). The selected differen-
tially expressed genes were required to have been mapped 
to an explicit Kyoto Encyclopedia of Genes and Genomes 
(KEGG; www.genome.jp/kegg/) pathway of the Database for 
Annotation, Visualization and Integrated Discovery (DAVID; 
david.abcc.ncifcrf.gov/) for further analysis using the Venn and 
meta‑analysis methods (13). Pathway analysis of each dataset 
was performed independently. The variability was measured 
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in the interquartile range (IQR) and a cut‑off was set in order 
to foreclose IQR values <0.5 for all the remaining genes. If one 
gene was targeted in multiple probe sets, the probe set with 
the greatest variability was retained. In addition, genes in each 
pathway were subjected to statistical analysis system (SAS), 
and each pathway's P‑value was obtained in the permutation 
test with 1000x. P<0.05 was considered to indicate a statisti-
cally significant difference.

Meta‑analysis. A meta‑analysis was performed in order to 
obtain the significantly differentially expressed genes from 
the genes included in each dataset mentioned above. The 
meta‑analysis was conducted in SAS 9.4 (SAS Institute, Inc., 
Cary, NC, USA). Then, the χ2 value of each gene was calcu-
lated based on the formula according to Brown (14):

A cut‑off was set in order to foreclose χ2 values <0.05 for all 
the remaining genes, which were used to obtain the pathways 

of the KEGG from DAVID Bioinformatics Resources 6.7; k is 
the number of datasets.

The Cancer Genome Atlas (TCGA) database. TCGA is a 
coordinated and comprehensive method for promoting our 
understanding of the molecular mechanisms underlying 
cancer development. Additional information on lung adeno-
carcinoma‑associated genes identified through clinical data in 
GSEA may be obtained. The P'‑value (P‑value in TCGA) was 
adjusted to <0.05. A total of 2,494 significantly differentially 
expressed genes were obtained. Subsequently, 610 differen-
tially expressed genes from the meta‑analysis were matched 
with the 2,494 genes from TCGA by the Venn method, which 
allowed crucial genes to be filtered out according to the 
survival data.

Gene annotation of DAVID. Crucial genes were entered into 
DAVID, selecting the official gene symbol as ‘select identifier’ 
and gene list as ‘list type’ in the upload. A species limit of humans 
was set in the list and background. Selecting the functional anno-
tation tool and entering the option of pathways, crucial common 
pathways of crucial genes were obtained by the KEGG pathway 
of DAVID and their numbers in the KEGG database.

Figure 1. Volcano plot of four datasets to determine the significantly differentially expressed genes. Genes outside of the middle of the two vertical were 
considered to be significantly differentially expressed. The further the position of the gene from the vertical line, the larger the difference in expression. FC, 
fold‑change.
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Identification of significant common pathways and key genes. 
As the significant common pathways serve an important role 
in the pathogenesis of lung adenocarcinoma, identifying 
significant common pathways was also attempted. Crucial 
common pathways were matched with upregulated and 
downregulated pathways by the Venn method to identify 
significant common pathways. Key genes serving impor-
tant roles in significant common pathways were obtained. 
Furthermore, in order to gain an improved insight into the 
key genes, the Blast2GO software (version 1.9; /david.ncifcrf.
gov/) was used to annotate all 12 key genes. A preliminary 
understanding of the association between key genes was also 
provided by the String website (http://string‑db.org). The term 
‘lung adenocarcinoma’ and organism ‘Homosapiens’ were 
used to search and obtain clinical data of 221 patients from 
TCGA. Furthermore, the data was analyzed by single factor 
Cox regression analysis, setting the minimum time 0.1 and 
the maximum time as 10, and the year as the time unit. From 
the results of the Cox regression analysis, the Kaplan‑Meier 
curves were plotted and patients were organized into either 
high or low risk.

Results

GSEA analysis. Based on the criteria mentioned above, six 
datasets were obtained of which four were retained containing 
132 lung adenocarcinomas and 132 normal tissues. The GSEA 
method was performed independently on the four datasets, and 
common pathways and differentially expressed genes were 
screened out from the four datasets. Detailed information 
on the analysis results is presented in Table I. A volcano plot 
(Fig. 1) was used to initially screen the genes in a crude manner. 
Genes present outside of the two vertical lines were considered 
to be the differentially expressed genes of each database. The 
distance a gene was from the vertical line indicated the degree 
of difference in expression of that gene.

Meta‑analysis. Meta‑analysis is a tool that can help obtain 
significantly differentially expressed genes from GSEA 
analysis  (15). The SAS was used to calculate the P‑value 
for each gene. In addition, the gene probe platform was 
downloaded from the GEO database so that the gene probe 
number could be translated into the gene name, and the gene 

Table II. Details of the upregulated (n=78) and downregulated (n=20) common crucial pathways.

Regulation	 Pathway

Downregulated	 ‘N‑Glycan biosynthesis’, ‘mismatch repair’, ‘cellular tumor antigen p53 signaling pathway’, ‘amino sugar
	 and nucleotide sugar metabolism’, ‘aminoacyl‑transferRNA biosynthesis’, ‘pyrimidine metabolism’,
	 ‘drug metabolism‑other enzymes’, ‘ribosome biogenesis in eukaryotes’, ‘RNA transport’, ‘glycosphingolipid
	 biosynthesis‑lacto and neolacto series’, ‘base excision repair’, ‘cell cycle’, ‘protein export’, ‘alanine’,
	 ‘aspartate and glutamate metabolism’, ‘proteasome’, ‘fructose and mannose metabolism’, ‘pentose
	 phosphate pathway’, ‘DNA replication’, ‘Parkinson’s disease’, ‘homologous recombination’
Upregulated	 ‘Type I diabetes mellitus’, ‘vascular smooth muscle contraction’, ‘gap junction’, ‘leukocyte transendothelial 
	 migration’, ‘leukocyte transendothelial migration’, ‘janus kinase‑signal transducer and activator of
	 transcription signaling pathway’, ‘osteoclast differentiation’, ‘ATP‑binding cassette transporters’, 
	 ‘mitogen‑activated protein kinase signaling pathway’, ‘basal cell carcinoma’, ‘viral myocarditis’, 
	 ‘metabolism of xenobiotics by cytochrome P450’, ‘tryptophan metabolism’, ‘B cell receptor signaling
	 pathway’, ‘hypertrophic cardiomyopathy’, ‘drug metabolism‑cytochrome P450’, ‘fatty acid degradation’,
	 ‘neuroactive ligand‑receptor interaction’, ‘regulation of actin cytoskeleton’, ‘dorso‑ventral axis formation’,
	 ‘neurotrophin signaling pathway’, ‘salivary secretion’, ‘hematopoietic cell lineage’, ‘prion diseases’,
	 ‘cell adhesion molecules’, ‘inositol phosphate metabolism’, ‘peroxisome proliferator‑activated receptor
	 signaling pathway’, ‘intestinal immune network for IgA production’, ‘carbohydrate digestion and
	 absorption’, ‘phagosome’, ‘chronic myeloid leukemia’, ‘long‑term potentiation’, ‘natural killer cell 
	 mediated cytotoxicity’, ‘aldosterone‑regulated sodium reabsorption’, ‘tight junction’, ‘phosphatidylinositol
	 signaling system’, ‘acute myeloid leukemia’, ‘African trypanosomiasis’, ‘bile secretion’, 
	 ‘calcium signaling pathway’, ‘adipocytokine signaling pathway’, ‘allograft rejection’, ‘type II diabetes
	 mellitus’, ‘progonadoliberin‑1 signaling pathway’, ‘vascular endothelial growth factor signaling
	 pathway’, ‘complement and coagulation cascades’, ‘graft‑vs.‑host disease’, ‘melanogenesis’, ‘rheumatoid
	 arthritis’, ‘malaria’, ‘T cell receptor signaling pathway’, ‘Fcε RI signaling pathway’, ‘autoimmune thyroid
	 disease’, ‘gastric acid secretion’, ‘arachidonic acid metabolism’, ‘cytokine‑cytokine receptor interaction’,
	 ‘soluble vesicle‑fusing ATPase attachment protein receptor interactions in vesicular transport’, ‘insulin
	 signaling pathway’, ‘proximal tubule bicarbonate reclamation’, ‘vasopressin‑regulated water reabsorption’, 
	 ‘long‑term depression’, ‘toxoplasmosis’, ‘asthma’, ‘transforming growth factor‑β signaling pathway’, 
	 ‘Fcγ R‑mediated phagocytosis’, ‘dilated cardiomyopathy’, ‘histidine metabolism’, ‘epithelial cell 
	 signaling in Helicobacter pylori infection’, ‘pancreatic secretion’, ‘endocytosis’, ‘nucleotide‑binding 
	 oligomerization domain‑like receptor signaling pathway’, ‘cytosolic DNA‑sensing pathway’, ‘chemokine
	  signaling pathway’, ‘wingless/integrated signaling pathway’, ‘hedgehog signaling pathway’, ‘chagas disease 
	 (American trypanosomiasis)’, ‘apoptosis’, ‘leishmaniasis’, ‘Staphylococcus aureus infection’
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names were entered into SAS version 9.42 software for total 
analysis. A total of 610 significant differentially expressed 
genes were obtained (data not shown). The common pathways, 
including 78 upregulated and 20 downregulated pathways, 
were also identified. The names of the common pathways are 
listed in Table II.

TCGA database. The clinical data and expression profiles of 
lung adenocarcinoma in TCGA database were downloaded. 
Cox regression analysis was used, and P'‑value (P‑value in 
TCGA) was adjusted to <0.05. A total of 2,494 significant 
differentially expressed genes were obtained. Subsequently, 
610 differentially expressed genes from the meta‑analysis 
were matched with the 2,494 genes from TCGA by the Venn 
method (Fig. 2); 100 common genes exhibited statistically 
significant differences in expression and were considered to 
affect survival prognosis. The names, P'‑value and P‑value of 
the 100 common genes are presented in Table III.

Results of significant common pathways and key genes. The 
official gene symbols of 100 crucial genes were imported into the 
functional annotation tool of DAVID and five crucial pathways 
were obtained by KEGG, which is a distinct pathway analysis 
tool. A total of 78 upregulated and 20 downregulated pathways 
were screened out by the Venn method among common path-
ways obtained from GSEA (Table II). A total of five pathways 
were matched with 78 upregulated and 20 downregulated path-
ways by the Venn method, and two significant pathways were 
identified: Cell cycle (Fig. 3) and DNA replication (Fig. 4). In 
addition, the genes from the KEGG database were also identi-
fied to serve crucial roles in two significant common pathways, 
presented in Figs. 3 and 4. According to the two significant 
pathways, 12 key genes were obtained [DNA polymerase δ 
subunit 2 (POLD2), DNA replication licensing factor MCM4, 
MCM6, mitotic checkpoint serine/threonine‑protein kinase 
BUB1 (BUB1), BUB1β, mitotic spindle assembly checkpoint 
protein MAD2A (MAD2L1), dual specificity protein kinase 
TTK, M‑phase inducer phosphatase 1 (CDC25A), cell division 
control protein 45 homolog (CDC45), cyclin‑dependent kinase 
inhibitor 1C (CDKN1C), pituitary tumor‑transforming gene 1 
protein (PTTG1) and polo‑like kinase 1 (PLK1)] from KEGG 
of DAVID. Subsequently, 12 key genes were mapped in the 

Figure 2. Venn diagram of common crucial genes differentially expressed 
in the meta‑analysis and in TCGA database. TCGA, The Cancer Genome 
Atlas; Meta R, meta‑analysis; Survival R, genes associated with survival in 
the TCGA database.

Table III. Common crucial genes significantly differentially 
expressed in the meta‑analysis and in The Cancer Genome 
Atlas database.

Gene name	 P‑value	 P'‑value

ARRB2	 2.58x10‑6	 1.51x10‑3

IL6R	 4.99x10‑4	 7.62x10‑3

HPGDS	 3.90x10‑4	 3.54x10‑2

NR3C2	 1.09x10‑4	 4.38x10‑2

ALG8	 5.36x10‑13	 4.62x10‑2

ACSL4	 8.73x10‑3	 1.85x10‑2

BDNF	 1.69x10‑12	 1.12x10‑4

ADRB2	 <1.00x10‑16	 4.52x10‑2

FGF2	 1.22x10‑15	 7.90x10‑4

MCM6	 7.92x10‑8	 3.87x10‑2

NCF4	 6.27x10‑3	 3.67x10‑2

AURKA	 3.05x10‑12	 1.28x10‑2

IL20RA	 6.67x10‑4	 2.64x10‑2

TACC3	 9.2x10‑8	 1.12x10‑2

COL4A6	 1.06x10‑3	 4.05x10‑3

KAT2B	 5.24x10‑12	 4.19x10‑2

SEMA3A	 2.88x10‑2	 2.11x10‑3

SGCG	 <1.00x10‑16	 2.94x10‑2

ELOVL6	 3.63x10‑2	 1.60x10‑3

ABLIM3	 6.65x10‑14	 1.04x10‑3

GALNT3	 1.78x10‑5	 1.24x10‑3

HK3	 6.49x10‑10	 3.88x10‑2

PSMD12	 1.48x10‑3	 1.64x10‑2

FMO3	 1.87x10‑6	 6.75x10‑3

LCP2	 7.39x10‑4	 1.88x10‑2

HYAL1	 1.44x10‑13	 2.49x10‑3

PPARG	 1.56x10‑10	 2.01x10‑2

BUB1	 1.86x10‑11	 4.65x10‑2

BUB1B	 1.55x10‑13	 2.55x10‑2

F12	 1.47x10‑8	 2.13x10‑2

COL4A5	 9.88x10‑5	 3.38x10‑3

MAD2L1	 1.14x10‑10	 1.02x10‑2

TYMS	 1.45x10‑14	 7.92x10‑4

CSGALNACT1	 8.60x10‑5	 6.00x10‑4

IL10RA	 1.27x10‑4	 4.15x10‑2

CDC25A	 4.83x10‑6	 5.68x10‑3

CKS1B	 8.27x10‑10	 3.26x10‑2

P2RY13	 5.11x10‑7	 1.14x10‑3

CDKN1C	 5.84x10‑12	 3.24x10‑2

YKT6	 1.80x10‑7	 3.08x10‑2

FGR	 <1.00x10‑16	 4.18x10‑2

BTK	 5.23x10‑6	 2.36x10‑3

GTSE1	 4.07x10‑9	 8.18x10‑3

TLR7	 1.76x10‑2	 9.61x10‑4

PRKCH	 1.32x10‑14	 1.56x10‑2

CHPT1	 3.34x10‑7	 3.64x10‑2

LEF1	 1.43x10‑3	 3.32x10‑2

P4HA2	 2.48x10‑2	 2.71x10‑2
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String database to explore associations among them (Fig. 5), 
and MCM4 was identified to serve an important role in their 
interactions. GO annotation was applied to detect common 
pathways (Fig. 6) of biological process, cellular components 
and molecular function. Furthermore, the Kaplan‑Meier 
curves (Fig. 7) of 12 key genes were obtained and demon-
strated that patients in the high‑risk group had poorer survival 
when compared with patients in the low‑risk group.

Discussion

Although lung adenocarcinoma is the most common primary 
lung neoplasm  (16), its causes and underlying molecular 
mechanisms have not been fully elucidated  (17). Previous 
studies primarily focused on a single factor that may lead to 
the development of lung adenocarcinoma (18,19); however, 
a single theory cannot provide a detailed explanation for all 
the different cases of lung adenocarcinoma. Global analysis, 
which includes metabolome, transcriptome, proteome 
and genome, collectively referred to as ‘omics’ after the 
completion of the Human Genome Project (20), enabled the 
description of the genome‑wide molecular mechanisms of 
lung adenocarcinoma and revealed disease‑specific molecular 
markers and biomarkers for its diagnosis, classification and 
prognosis (21). Furthermore, microarray technology serves 
an important role in numerous studies based on genomics 
and post‑genomics (22). In addition, microarray technology 
provides the basis for obtaining significantly differentially 
expressed genes and crucial common pathways.

A large number of genes are considered to be associated 
with lung adenocarcinoma  (23); however, it is difficult to 
determine which genes are the most relevant. Previous studies 
have generally investigated one gene or conducted only a 
single research method (24‑26). However, these studies may 
overlook the key genes and crucial common pathways. In 
addition, there are certain limitations regarding studies of a 
single gene chip analysis. For example, it may not take into 
consideration differences in expression levels among different 
samples, which may cause various significant genes and key 
genes to go undetected (27). Therefore, in the present study, 
four groups of datasets containing samples of normal and 
cancerous biological states were selected based on the GSEA 
method, in order to avoid the deviation from the number of 
samples. Analysis of these datasets is expected to more accu-
rately identify the significantly differentially expressed genes 
and common pathways.

GSEA and meta‑analysis were used simultaneously to 
analyze four datasets in order to obtain the crucial genes and 
significant common pathways in lung adenocarcinoma. The 
main function of GSEA was to indicate differentially expressed 
genes extracted from samples (number of samples ≥6). In 
addition, 610  significantly differentially expressed genes 
were obtained using the R software and meta‑analysis, 
and 78 upregulated and 20 downregulated pathways were 
identified by the Venn method. The reasoning for selecting 
meta‑analysis to identify the significantly differentially 
expressed genes rather than overlap of samples were as follows: 
Since the sample size was small, genes that were not common 
to the four gene sets may have been overlooked, and a simple 
comparison was additionally performed where a strict cut‑off 

Table III. Continued.

Gene name	 P‑value	 P'‑value

PPAT	 1.12x10‑8	 2.57x10‑2

VIPR1	 <1.00x10‑16	 1.61x10‑2

SLK	 8.67x10‑12	 1.86x10‑2

HCK	 1.40x10‑9	 1.48x10‑2

GPD1L	 5.28x10‑4	 6.20x10‑4

ARHGEF4	 2.27x10‑7	 4.02x10‑3

GSTM5	 4.37x10‑13	 1.74x10‑2

CD4	 9.53x10‑3	 2.11x10‑2

AOC3	 <1.00x10‑16	 2.02x10‑2

FUT1	 2.48x10‑9	 4.87x10‑2

VCL	 2.84x10‑3	 3.22x10‑2

TTK	 3.15x10‑11	 3.84x10‑2

BIRC5	 2.20x10‑14	 1.78x10‑2

ASAP2	 2.56x10‑2	 1.16x10‑3

VPS37B	 4.54x10‑4	 2.07x10‑2

CDC45	 7.5x10‑10	 2.05x10‑2

CX3CR1	 1.58x10‑7	 6.33x10‑3

DOCK2	 8.47x10‑6	 2.69x10‑2

OAS3	 1.31x10‑2	 1.06x10‑2

UBE2S	 4.02x10‑4	 2.89x10‑3

ALG3	 2.76x10‑11	 3.51x10‑2

ADCY9	 4.62x10‑6	 7.66x10‑3

F2RL1	 1.48x10‑9	 1.82x10‑3

POLD2	 3.77x10‑8	 4.31x10‑2

PTTG1	 1.2x10‑11	 6.39x10‑3

STIP1	 1.68x10‑3	 2.46x10‑2

FZD4	 <1.00x10‑16	 1.01x10‑2

DPYSL2	 3.77x10‑15	 1.52x10‑2

BLM	 1.16x10‑3	 1.54x10‑2

ATP6V1B2	 1.85x10‑3	 1.03x10‑2

ARHGEF6	 9.99x10‑15	 5.74x10‑3

CSF2RB	 6.37x10‑7	 3.03x10‑2

NUP37	 1.58x10‑3	 2.57x10‑2

MTHFD1	 4.28x10‑5	 6.66x10‑3

P2RY14	 2.22x10‑16	 1.78x10‑2

MCM4	 8.75x10‑12	 7.57x10‑3

WDR3	 1.19x10‑5	 9.23x10‑3

CD33	 3.15x10‑3	 7.13x10‑3

VEGFC	 1.35x10‑3	 1.0x10‑2

ATP1A2	 1.86x10‑10	 3.05x10‑2

HMMR	 2.15x10‑13	 1.03x10‑3

C6	 1.97x10‑2	 4.86x10‑2

PPP2R5A	 6.32x10‑6	 2.85x10‑2

GRIA1	 <1.00x10‑16	 1.89x10‑2

HACD1	 2.03x10‑8	 6.72x10‑3

PTPN6	 3.57x10‑4	 8.81x10‑3

HGF	 1.02x10‑5	 1.49x10‑2

PLK1	 6.12x10‑7	 2.47x10‑5

DAPK2	 5.99x10‑13	 2.27x10‑2

TUBB6	 1.03x10‑8	 3.66x10‑4

ADIPOR2	 2.87x10‑11	 5.48x10‑4

HCLS1	 5.48x10‑4	 3.01x10‑2
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Figure 3. Cell cycle pathways from the Kyoto Encyclopedia of Genes and Genomes database. Genes with red stars are considered to be differentially expressed. 
Corresponding P‑values are presented in Table III.

Figure 4. DNA replication pathway from the Kyoto Encyclopedia of Genes and Genomes database. Genes with red stars are considered to be differentially 
expressed. Corresponding P‑values are presented in Table III. GAP, GTPase‑activating protein; SSB, ribosome‑associated molecular chaperone SSB; RFC, 
replication factor C subunit; MCM, DNA replication licensing factor MCM; RPA, replication protein A; FEN, Flap endonuclease 1.
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for significance was not used, possibly introducing a statistical 
bias. Therefore, meta‑analysis was deemed to be an improved 
approach to decrease deviations.

A total of 610 significantly differentially expressed genes 
were matched with lung adenocarcinoma‑associated genes in 
the TCGA database and 100 crucial genes were obtained. To 

Figure 5. A gene network of the 12 key genes identified from the String database. POLD2, DNA polymerase δ subunit 2; MCM, DNA replication licensing 
factor MCM; BUB1, mitotic checkpoint serine/threonine‑protein kinase BUB1; MAD2L1, mitotic spindle assembly checkpoint protein MAD2A; TTK, dual 
specificity protein kinase TTK; CDC25A, M‑phase inducer phosphatase 1; CDC45, cell division control protein 45 homolog, CDKN1C, cyclin‑dependent 
kinase inhibitor 1C; PTTG1, pituitary tumor‑transforming gene 1 protein; PLK1, polo‑like kinase 1. Nodes, network nodes represent proteins. Splice isoforms 
or post‑translational modifications are collapsed, i.e., each node represents all protein‑coding gene loci; edges, edges represent protein‑protein associations, 
associations are meant to be specific and meaningful, i.e., proteins jointly contribute to a shared function although this does not necessarily mean they are 
physically binding to each other.

Figure 6. Gene Ontology annotation of the 100 common crucially differentially expressed genes.
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identify genes closely associated with lung adenocarcinoma, 
the common pathways of 100 genes were overlapped with 
78 upregulated and 20 downregulated pathways by the Venn 
method, and two crucial pathways were filtered out: Cell cycle 
and DNA replication. In addition, 12 key genes (POLD2, 
MCM4, MCM6, BUB1B, BUB1, MAD2L1, TTK, CDC25A, 
CDC45, CDKN1C, PTTG1 and PLK1) were identified through 
the KEGG pathway database when their roles in cell cycle 
and DNA replication were examined. Blast2GO separated all 
key genes into three groups: i) biological process; ii) cellular 
components; and iii) molecular function. These genes may 
be closely associated with tumor development, in which a 
proportion of the genes confer an increased susceptibility to 
lung adenocarcinoma. Future experiments are required to 
verify specific associations between these findings and lung 
adenocarcinoma.

A number of studies demonstrated the function of key 
genes identified in the present study and their impact on 
the pathology of other diseases: Mutation of MCM4 may 
contribute to skin cancer development by disturbing DNA 
replication  (28), POLD2 is associated with the outcome 
of ovarian carcinomas (29), BUB1B may be a therapeutic 
target for glioblastoma (30), and the DNA‑binding proper-
ties of human CDC45 reveal its function as a molecular 
wedge for DNA unwinding  (31). In additional studies on 
lung adenocarcinoma, MCM4 has been considered to affect 
the tumorigenesis of lung adenocarcinoma (32), CDC45 was 
reported to be associated with the diagnosis of lung adeno-
carcinoma (33) and TTK serves a role in the development and 
survival of lung adenocarcinoma (34). However, the number 
of studies on the effect of key genes affecting the pathology 
of lung adenocarcinoma is limited. Furthermore, our results 

Figure 7. Kaplan‑Meier survival curves of the 12 key genes identified from the String database. (A) An increase in BUB1 expression was associated with a 
significant decrease in overall survival. (B) An increase in BUB1B expression was associated with a significant decrease in overall survival. (C) An increase 
in CDC25A expression was associated with a notable decrease in overall survival. (D) An increase in CDC45 expression was associated with a significant 
decrease in overall survival. (E) The increase in CDKN1C expression is related to the decrease in overall survival rate. (F) An increase in MAD2L1 expression 
was associated with a significant decrease in overall survival. (G) An increase in MCM4 expression was associated with a notable decrease in overall survival. 
(H) An increase in MCM6 expression was associated with a decrease in overall survival. (I) An increase in PLK1 expression was associated with a significant 
decrease in overall survival. (J) An increase in POLD2 expression was associated with a significant decrease in overall survival. (K) An increase in PTTG1 
expression was associated with a decrease in overall survival. (L) An increase in TTK expression is related to the decrease in overall survival rate. POLD2, 
DNA polymerase δ subunit 2; MCM, DNA replication licensing factor MCM; BUB1, mitotic checkpoint serine/threonine‑protein kinase BUB1; MAD2L1, 
mitotic spindle assembly checkpoint protein MAD2A; TTK, dual specificity protein kinase TTK; CDC25A, M‑phase inducer phosphatase 1; CDC45, cell 
division control protein 45 homolog, CDKN1C, cyclin‑dependent kinase inhibitor 1C; PTTG1, pituitary tumor‑transforming gene 1 protein; PLK1, polo‑like 
kinase 1.
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suggest that MCM4 and MCM6 affect cell cycle and DNA 
replication, while cell cycle and DNA replication serve 
important roles in the pathogenesis of lung adenocarcinoma. 
Therefore, MCM4 and MCM6 may serve a crucial role in the 
diagnosis and treatment of lung adenocarcinoma. Studies of 
the genes implicated, in the diagnosis and treatment of this 
type of cancer are required.

In conclusion, the pathogenesis of lung adenocarci-
noma is complicated. The aim of the present study was to 
provide insight into the underlying mechanisms by focusing 
on gene sets or common pathways rather than on a single 
gene. In addition, a number of consistent biological mecha-
nisms involved in lung adenocarcinoma were identified by 
GSEA and meta‑analysis. Pathways involved in cell cycle 
and DNA replication and 12 key genes (POLD2, MCM4, 
MCM6, BUB1B, BUB1, MAD2L1, TTK, CDC25A, CDC45, 
CDKN1C, PTTG1 and PLK1) were identified as relevant. 
Follow‑up experiments are required to explore specific links 
between these data and the prognosis of lung adenocarci-
noma. In addition, new computational and bioinformatics 
tools may prove to be of value for the diagnosis and prognosis 
of lung adenocarcinoma.
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