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Abstract. The purpose of this study was to identify potential 
molecular markers of lung squamous cell carcinoma (LUSC). 
Three datasets containing LUSC mRNA sequencing data 
were downloaded from the Gene Expression Omnibus, The 
Cancer Genome Atlas and the Gene Expression Profiling 
Interactive Analysis databases. These datasets were used to 
identify significantly differentially expressed genes (DEGs) in 
LUSC. A protein‑protein interaction network of the DEGs was 
constructed followed by Gene Ontology, Kyoto Encyclopedia 
of Genes and Genomes and overall survival analyses of the 
DEGs. A total of 37 DEGs between LUSC and normal tissues 
were identified, including 26 downregulated genes and 11 
upregulated genes. Biological Process enrichment analysis 
revealed that the DEGs were mainly enriched in ‘cell adhesion’, 
‘cell‑matrix adhesion’, ‘anatomical structure morphogenesis’, 
‘ECM‑receptor interaction’ and ‘focal adhesion’. Overall 
survival analysis demonstrated that transcription factor 21, 
α-2-macroglobulin, acyl-CoA synthetase long chain family 
member 5, integrin subunit β8, meiotic nuclear divisions 1 and 
secretoglobin family 1A member 1 were significantly associ-
ated with the occurrence and development of lung cancer, and 
these genes were selected as hub genes. The results obtained 
in the present study may aid the elucidation of the molecular 
mechanisms involved in the development of LUSC and may 
provide potential targets for LUSC treatment.

Introduction

Lung cancer is the leading cause of cancer-associated mortality 
worldwide (1). There are two main histological types of lung 
cancer: Small cell lung cancer and non-small cell lung cancer 

(NSCLC). The latter is further subdivided into lung adenocar-
cinoma (LUAD), lung squamous cell carcinoma (LUSC) and 
large cell lung cancer. The incidence and mortality rate of 
LUSC are high, with >400,000 new cases occurring worldwide 
each year (2). Novel therapeutic agents for the treatment of 
lung cancer have been developed, including bevacizumab and 
epidermal growth factor receptor (EGFR) tyrosine kinase, ALK 
receptor tyrosine kinase (ALK) and CD274 molecule inhibi-
tors (3). However, these agents are not effective for the treatment 
of LUSC, which accounts for ~25% of NSCLC cases (4). The 
elucidation of the molecular mechanisms underlying the devel-
opment of LUSC may aid in the identification of new treatment 
strategies. Microarray technology and bioinformatics analysis 
have emerged as powerful tools for the study of different types 
of cancer and may facilitate the discovery of novel biomarkers 
and potential therapeutic targets (5,6). However, the high false 
positive rate of single microarray analysis may confound 
results (7). The current study analyzed three datasets containing 
LUSC mRNA sequencing data downloaded from the Gene 
Expression Omnibus (GEO; www.ncbi.nlm.nih.gov/geo), 
the Cancer Genome Atlas (TCGA; www.cancergenome.nih.
gov) and the Gene Expression Profiling Interactive Analysis 
(GEPIA; http://gepia.cancer-pku.cn) databases. Genes in the 
intersection of the three datasets were regarded as significantly 
differentially expressed genes (DEGs). Subsequently, Gene 
Ontology (GO; http://geneontology.org), Kyoto Encyclopedia 
of Genes and Genomes (KEGG; http://david.ncifcrf.gov), 
protein-protein interaction network (PPI) and overall survival 
analyses of DEGs were performed. Receiver operating char-
acteristic (ROC) curves were generated to identify genes of 
potential diagnostic and therapeutic value for LUSC. A total of 
37 DEGs were screened, of which six were selected as the hub 
genes. These hub genes were significant for LUSC prognosis 
and may be candidate biomarkers for lung cancer.

Materials and methods

Microarray data. The GEO is an international public repository 
that stores and freely distributes microarray, second-generation 
sequencing and other forms of high-throughput functional 
genomic datasets (8). TCGA is a large-scale cancer genome 
project that provides researchers with multidimensional maps of 
the key genomic changes and clinicopathological information 
in 33 types of cancer (9). GEPIA is a newly developed inter-
active web server for analyzing RNA sequencing expression 
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data based on 9,736 tumors and 8,587 normal samples from the 
TCGA and Genotype-Tissue Expression databases. The gene 
expression dataset GSE31552 (10) was downloaded from GEO 
and included 25 nontumor tissues and 25 tumor tissues. The 
GPL6244 Affymetrix Human Gene 1.0 ST Array (Affymetrix; 
Thermo Fisher Scientific, Inc., Waltham, MA, USA) was used. 
The TCGA dataset was derived from the ‘Protein‑coding 
Transcripts’ of LUSC in the Cancer RNA‑Seq Nexus (CRN; 
http://syslab4.nchu.edu.tw) database (11) and included 63 
cancer samples and 51 normal samples. The GEPIA dataset 
was downloaded from the GEPIA online database including 
486 cancer samples and 338 normal samples.

Data preprocessing and differential expression analysis. 
The original data were transformed into expression 
data using the affy package (http://www.bioconductor.
org/packages/release/bioc/html/affy.html) in R (version 3.5.3; 
http://cran.r-project.org/bin/windows/base/rpatched.html) (12). 
Missing data were estimated with weighted K‑nearest neighbors 
method (13), and all the expression profiles were normal-
ized by the median normalization method (14). The t-test 
method of the limma package (http://master.bioconductor.
org/packages/release/bioc/html/limma.html) in R was used 
to identify DEGs between LUSC and normal controls. In 
order to filter the DEGs of each dataset, set cut off criteria for 
each dataset. For GSE31552, DEGs were identified at P<0.05 
and |log2FC|>1, where FC is fold change; For the TCGA 
and GEPIA datasets, DEGs were identified at P<0.05 and 
|log2FC|>2. Each probe name of GSE31552 was converted 
into a gene name using the hugene10sttranscriptcluster.db 
package (http://bioconductor.org/packages/release/data/annota-
tion/html/hugene10sttranscriptcluster.db.html) in R and the 
corresponding platform file. The Spearman's correlation test 
was used to cluster the samples and to calculate the correlation 
coefficients between the samples, the results were subsequently 
visualized using pheatmap package (http://www.bioconductor.
org/packages/release/bioc/html/heatmaps.html) in R. To verify 
the rationality of the DEGs of GSE31552, draw the volcano plot 
using ggplot2 package in R (http://cran.r-project.org/web/pack-
ages/ggplot2). Heatmaps of the DEGs (based on |log2FC|) were 
generated using the heatmap.2 package (http://www.rdocumen-
tation.org/packages/gplots/versions/3.0.1.1/topics/heatmap.2) in 
R to present the DEGs in each sample.

Screening and analysis of DEGs. Significant DEGs between 
LUSC and normal samples were screened using FunRich 
(version 3.1.3), which is an open‑access standalone functional 
enrichment and interaction network analysis tool (15). A PPI 
network of DEGs was constructed using the Gene MANIA 
database (http://www.genemania.org). The Gene MANIA 
database is a useful tool for generating hypotheses about 
gene function, analyzing gene lists, prioritizing functionally 
analyzed genes and reporting weights (16). Subsequently, 
a hierarchical clustering of DEGs was constructed using 
an online analysis database of University of California, 
Santa Cruz Xena (UCSC Xena 2.0; http://xena.ucsc.
edu/welcome-to-ucsc-xena) (17).

Functional enrichment analysis. GO is a common tool 
for annotating genes and their products (18). KEGG is a 

knowledge base for the systematic analysis of gene functions in 
terms of networks of genes and molecules (19). The Database 
for Annotation, Visualization and Integrated Discovery 6.8 
(DAVID 6.8; http://david.ncifcrf.gov) (20) is a comprehensive 
database providing a complete set of functional annotation 
information of genes and proteins from which researchers can 
extract biological information. To analyze the DEGs at the 
functional level, GO and KEGG pathway enrichment analyses 
were performed using the DAVID online tool to obtain the 
enriched biological processes and pathways. P<0.05 was 
considered to indicate a statistically significant difference.

Hub gene selection and analysis. Overall survival analyses of 
DEGs were performed using GEPIA (21) and Kaplan‑Meier 
plotter (version 2018.11.04; http://www.kmplot.com) (22). Genes 
with significant differences for the prognosis of LUSC were 
selected as hub genes (P<0.05). Analyzed the expression of Hub 
genes in different subtypes of lung cancer and different stages of 
LUSC based on GEPIA online analysis database (21). To under-
stand the diagnostic value of the hub genes, ROC curves were 
plotted using the pROC package (pROC_1.12.1; http://master.
bioconductor.org/packages/release/bioc/html/pROC.html) in R 
based on the GEO dataset. Through comprehensive analysis of 
Hub genes survival analysis, Hub gene expression in different 
lung cancer subtypes and LUSC stages, ROC curve of Hub 
genes and literature search. Firstly, six genes closely related 
to the survival of LUSC patients were screened using survival 
analysis of Hub genes. The expression of these six genes was 
validated with LUSC stages and in patients with LUAD and 
LUSC. The diagnostic efficacy of ROC was also evaluated, 
and the three methods revealed that secretoglobin family 1A 
member 1 (SCGB1A1) was closely related to survival and stages, 
and the diagnostic efficiency of SCB1A1 ROC was the highest 
among the screened genes. Therefore, SCB1A1 was selected as 
the target gene. The expression of SCGB1A1 in different LUSC 
cell lines based on The Cancer Cell Line Encyclopedia (CCLE; 
http://portals.broadinstitute.org/ccle) database was plotted 
using GraphPad Prism (version 7; GraphPad Software, Inc., 
La Jolla, CA, USA) (23). The Human Protein Atlas (Version 
18.1; www.proteinatlas.org) (24) was used to show the expres-
sion of SCGB1A1 in different tissues. The Oncomine database 
(Version 4.5; https://www.oncomine.org) (25) was used to 
analyze Okayama (http://www.ncbi.nlm.nih.gov/geo/query/acc.
cgi?acc=GSE31210) and Beer datasets (26) to identify the 
associations between SCGB1A1 and EGFR mutation status, 
echinoderm microtubule associated protein‑like 4 (EML4) and 
anaplastic lymphoma kinase (ALK) gene fusion, expression of 
TP53 and smoking status.

Results

Data preprocessing. Following the evaluation of missing data 
and normalization, the expression profiling data were plotted 
(Fig. 1A). The similar levels of data points indicate high consis-
tency showing high accuracy of classification and comparison. 
The baseline level of Samples Clustering Analysis (Fig. 1B) 
revealed that the sample sources were reliable. For dataset 
GSE31552, a total of 1,712 DEGs were identified at P<0.05 and 
|log2FC|>1, and the rationality of the values was verified by 
volcano plots (Fig. 1C), in which red dots represent upregulated 
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genes, green dots represent downregulated genes, and black dots 
represent unchanged genes. Hierarchical clustering analysis 
revealed that the gene expression patterns of the DEGs were 
similar among the array data of GSE31522 (Fig. 1D), indicating 
that the molecular changes in LUSC are consistent and may 
represent a novel genetic signature in LUSC.

Identification of DEGs in LUSC. Following standardization 
of the microarray results, DEGs (2,162 in GSE31552; 1,842 
in TCGA database; and 1,691 in the GEPIA database) were 
identified. The three datasets shared 37 genes that were 
considered to be significant DEGs between LUSC and normal 
tissues (Fig. 2A). These genes included 26 downregulated and 
11 upregulated genes.

KEGG and GO enrichment analyses of DEGs. To analyze 
the biological classifications of the DEGs, DAVID was used 
for functional and pathway enrichment analysis. The identi-
fied GO terms and pathways are presented in Table I. The GO 
terms enriched by DEGs were mainly associated with ‘cell 
adhesion’, ‘cell‑matrix adhesion’ and ‘anatomical structure 
morphogenesis’, whereas the pathways enriched for DEGs were 
associated with ‘ECM‑receptor interaction’ and ‘focal adhesion’.

PPI network construction and module analysis. The PPI 
network of DEGs constructed using Gene MANIA (Fig. 2B) 
revealed the co-expression, genetic interactions and physical 
interactions among the DEGs and predicted genes. Red circles 
represent DEGs obtained by the above data set intersection; 

Figure 1. Data preprocessing and differential expression analysis. (A) A box‑plot of standardized expression data of normal and LUSC tissues. The red 
symbols denote normal samples, and the blue symbols represent patients with LUSC. The red diamond in each frame represents the average level of gene 
expression in each sample. (B) Heatmap of the common DEGs between LUSC tissues and normal controls in the GSE31552 dataset. Blue represents 
downregulation and red represents upregulation. The normal groups were significantly separated from the LUSC groups, indicating that the sample source 
data are reliable. (C) Volcano plot used to verify the rationality of the P-values and corresponding fold changes of the expression data. The red circles denote 
upregulation, and the green symbols denote downregulation. (D) A hierarchical clustering diagram of the DEGs. Blue represents downregulation and red 
represents upregulation. LUSC, lung squamous cell carcinoma; DEGs, differentially expressed genes; down, downregulated genes; up, upregulated genes; 
not, not differentially expressed.
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green circles represent predicted genes obtained from the 
above DEGs through the plug‑in Gene MANIA. Dense 
networks indicated that DEGs were closely related to each 
other. In the hierarchical clustering plot (Fig. 2C), the DEGs 
distinguished the LUSC samples from the normal samples.

Screening for hub genes. To ensure the accuracy of the 
analyses, overall survival analysis of the DGEs was performed 
using GEPIA and Kaplan‑Meier plotters. Genes were selected 
if they are meaningful (P<0.05) in both analyses. Six hub genes 
were ultimately selected based on their significant effects on 

survival (Fig. 3). The survival curves indicated that integrin 
subunit β8 (ITGB8) and SCGB1A1 were positively associated 
with overall survival, whereas TCF21, A2M, ACSL5 and 
meiotic nuclear divisions 1 (MND1) were negatively associ-
ated with overall survival. The hub genes and their functions 
are presented in Table II.

Hub gene analysis. Six genes were identified as hub genes and 
had significant effects on survival. The expression levels of the 
hub genes in different subtypes of NSCLC and different stages 
of LUSC were analyzed (Fig. 4). Compared with healthy 

Figure 2. Venn diagram, PPI network and hierarchical clustering of significant DEGs. (A) Venn diagram drawn in FunRich (version 3.1.3). A total of 37 
common significant DEGs were obtained. (B) PPI network of DEGs constructed using Gene MANIA. Red circles present DEGs and green circles present 
predicted genes. The size of the circle represents the level of connectivity. Purple lines represent co-expression, green lines represent genetic interactions 
and pink lines represent physical interactions. (C) Hierarchical clustering of DEGs was performed using the UCSC Xena database. Upregulation of genes is 
indicated by red and downregulation of genes is indicated by blue. The expression of DEGs in different grades and different sample types is presented (Note: 
TMPRSSIIE gene is not included in the lung cancer dataset of UCSC Xena database). PPI, protein‑protein interactions; GEPIA, Gene Expression Profiling 
Interactive Analysis; TCGA, The Cancer Genome Atlas; LUSC, lung squamous cell carcinoma; DEGs, differentially expressed genes; UCSC, University of 
California, Santa Cruz.
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controls, TCF21, A2M and SCGB1A1 were downregulated 
in LUSC and LUAD, ITGB8 and MND1 were upregulated in 
LUAD and LUSC, and ACSL5 was downregulated in LUSC 
and upregulated in LUAD. In addition, expression of TCF21, 
ITGB8, MND1 and SCGB1A1 was significantly different 

among different stages of LUSC. SCGB1A1 was closely 
associated with LUSC stage [Pr(>F)=8.06x10‑7]. ROC curves 
revealed that the hub genes had a good diagnostic value 
for LUSC [area under the curve (AUC)>0.7], particularly 
SCGB1A1 (AUC=0.922; Fig. 5A).

Figure 3. Overall survival analysis. (A‑C) Overall survival analyses were performed using the GEPIA online platform and (D‑F) Kaplan‑Meier plotter online 
platform. The solid line represents the survival curve and the dotted line represents the 95% confidence interval. Log‑rank P<0.05 was considered to indicate 
a statistically significant difference. Patients with expression above the median are indicated by red lines, and patients with expression below the median 
are indicated by (A‑C) blue lines or (D‑F) black lines. (A) TCF21 was negatively associated with the overall survival of patients with LUSC; (B) A2M was 
negatively associated with the overall survival of patients with LUSC; (C) ACSL5 was negatively associated with the overall survival of patients with LUSC; 
(D) ITGB8 was positively correlated with the overall survival of patients with LUSC; (E) MND1 was negatively associated with the overall survival of patients 
with LUSC; (F) SCGB1A1 was positively correlated with the overall survival of patients with LUSC. TCF21, transcription factor 21; A2M, α-2-macroglobulin; 
ACSL5, acyl‑CoA synthetase long chain family member 5; ITGB8, integrin subunit beta 8; SCGB1A1, secretoglobin family 1A member 1; MND1, meiotic 
nuclear divisions 1; HR, hazard ratio; TMP, transcripts per million; LUSC, lung squamous cell carcinoma.

Table I. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis of differentially expressed 
genes in lung squamous cell carcinoma samples.

Term No. enriched genes P-value

GO:0007155 ‘cell adhesion’ 7 0.0003
GO:0007160 ‘cell‑matrix adhesion’ 3 0.0151
GO:0009653 ‘anatomical structure morphogenesis’ 3 0.0157
GO:0048333 ‘mesodermal cell differentiation’ 2 0.0227
GO:0031581 ‘hemidesmosome assembly’ 2 0.0247
GO:0030301 ‘cholesterol transport’ 2 0.0329
GO:2000811 ‘negative regulation of anoikis’ 2 0.0348
GO:0019915 ‘lipid storage’ 2 0.0489
hsa04512 ‘ECM‑receptor interaction’ 4 0.0014
hsa04510 ‘focal adhesion’ 4 0.0153
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In summary, downregulation of SCGB1A1 was signifi-
cantly associated with overall survival of LUSC patients 
(log‑rank P=0.011; Fig. 3F), and SCGB1A1 downregulation was 
significantly associated with LUSC stages [Pr(>F)=8.06x10‑7; 
Fig. 4C]. Additionally, ROC curve analysis demonstrated that 
SCGB1A1 had high diagnostic value (AUC=0.922). Thus, 
SCGB1A1 was screened as a target gene for LUSC. Further 
analysis based on GEPIA Database revealed that SCGB1A1 
expression was lower in LUSC compared with normal lung 
tissue (Fig. 5C). The Human Protein Atlas database analysis 
demonstrated that SCGB1A1 was overexpressed in normal 
lung tissues compared with other tissues (Fig. 5D). The expres-
sion of SCGB1A1 in lung cancer cell lines was analyzed using 
the CCLE online platform; the results revealed that SCGBA1 
was downregulated in the majority lung cancer cell lines 
(Fig. 5B). Oncomine analysis of Okayama and Beer datasets 
revealed that lower mRNA levels of SCGB1A1 were associ-
ated with EGFR mutation, EML4‑ALK fusion, expression of 
TP53 and smoking (Fig. 6A‑D).

Discussion

Lung cancer is a leading cause of cancer-associated mortality 
worldwide (1). The five-year relative survival rate of lung 
cancer is lower than the corresponding rates of breast cancer, 
colon cancer and kidney cancer (27). This low rate is partly 
due to a late-stage diagnosis in >50% of cases (28). Although 
chemotherapy and improvements in supportive care have 
improved overall survival and quality of life, the prognosis 
of patients with advanced NSCLC remains poor (27). 
Individualized targeted therapies for lung cancer are being 
investigated, and progress has been applied to the clinic (29), 
including in TP53, EGFR, KRAS proto‑oncogene, GTPase, 
EML4‑ALK rearrangement and MET signal transduction 
targeted therapies (30). The majority of these treatments are 
effective in LUAD and no front‑line targeted therapies are 
currently clinically available for LUSC (31,32). Therefore, 
effective diagnostic and therapeutic markers are required 
for LUSC. Microarray technology may allow the identifica-
tion of the genetic changes implicated in LUSC and is an 
effective method for identifying new biomarkers in other 
diseases, such as vascular diseases (33) and oral squamous cell 
carcinoma (34).

The present study analyzed three datasets, including 
GSE31552, and TCGA and GEPIA datasets, and revealed 
DEGs between LUSC and normal tissues. A total of 37 
DEGs were identified, including 26 downregulated genes 
and 11 upregulated genes. To understand the functions and 
associations of these DEGs, GO and KEGG analyses were 
performed. The DEGs were mainly enriched in ‘cell adhesion’, 
‘cell‑matrix adhesion’, ‘anatomical structure morphogenesis’, 
whereas KEGG pathway enrichment was mainly concentrated 
in ‘ECM‑receptor interaction’ and ‘focal adhesion’. Previous 
studies have reported that cell adhesion, cell-matrix adhe-
sion and anoikis are closely associated with tumorigenesis 
and development (35‑37). Additionally, studies of anatomical 
structure and morphogenesis have revealed cholesterol levels 
to be associated with tumor metastasis and invasion (38‑40). 
These studies indicated that DEGs may be closely related to the 
occurrence, development, metastasis and invasion of tumors. 
The pathways of ECM‑receptor interaction and focal adhesion 
are important mediators of cell adhesion, growth, prolifera-
tion, survival, angiogenesis and migration (41,42). The results 
obtained in the aforementioned studies are consistent with the 
results obtained in the current study. The enriched modules 
and pathways identified in the current study may have genetic 
effects on LUSC and the identified genes may interact within 
a network.

Survival analysis was performed using the DEGs and 
six genes with significant impacts on overall survival were 
identified as hub genes. SCGB1A1, also known as the Clara 
cell secretory protein (43,44), had a good diagnostic value for 
LUSC (AUC=0.922) and was significantly associated with 
poor overall survival and tumor stage. Previous studies have 
demonstrated that SCGB1A1 demonstrated anti‑inflamma-
tory, immunomodulatory and antitoxin properties (45-49). 
SCGB1A1 mRNA expression is abundant throughout the 
airway (50), however, its expression level is very low in lung 
tumors (51), which is consistent with the results obtained in the 
current study. Expression levels of SCGB1A1 are decreased 
in diffuse goblet cell hyperplasia and squamous metaplasia, 
whereas alveolar expression is elevated in alveolar cell bron-
chitis (52). SCGB1A1 knockout mice are more susceptible to 
lung injury (by bacterial or viral infection, ozone and cigarette 
smoke) or sensitization, exhibit increased inflammation and 
remodeling reactions, have more frequent lung tumors, and 

Table II. Function of the hub genes (GeneCards; https://www.genecards.org).

Gene  Gene name Function 

TCF21 Transcription factor 21 RNA polymerase II transcription factor activity,
  sequence‑specific DNA binding
A2M α‑2‑Macroglobulin Tumor cell adhesion, migration and growth
ACSL5 Acyl-CoA synthetase long chain family member 5 Pro-apoptotic sensing of enterocytes
ITGB8 Integrin subunit β8 Cell-adhesion to extra cellular matrix or to other cells
MND1 Myeloid cell nuclear differentiation antigen Meiosis and recombination
SCGB1A1 Secretoglobin family 1A member 1 Inhibition of phospholipase A2 and arachidonic acid
  release, prostaglandin D2 receptor antagonism in the lung

AA, arachidonic acid.
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have a stronger T-helper 2-directed immune response compared 
with control mice (53). In the present study, SCGB1A1 was 
associated with tumor stage, EGFR mutation, ALK gene 
fusion and smoking history. A previous study has revealed 
that EGFR tyrosine kinase inhibitors have the same effect on 

the prognosis of patients with LUSC as chemotherapy, with 
fewer complications and higher quality of life (54). Therefore, 
SCGB1A1 may serve a protective role in lung tissue. Inducing 
SCGB1A1 expression may inhibit the expression of c‑MYC 
and C-RAF, which may further inhibit the metastasis of 

Figure 4. Box and violin plots were produced using the Gene Expression Profiling Interactive Analysis online platform. The boxplots present the expression of 
hub genes in LUSC and LUAD; red, tumor tissue; gray, normal tissue. Violin plots demonstrate the association between hub gene expression and LUSC staging. 
(Aa) TCF21 was downregulated in LUSC and LUAD; (Ab) TCF21 was associated with LUSC stages [Pr(>F)=0.0045]. (Ba) A2M was downregulated in both LUSC 
and LUAD; (Bb) A2M was not significantly different among the different stages of LUSC; (Ca) ACSL5 was downregulated in LUSC but upregulated in LUAD; 
(Cb) ACSL5 was not significantly different among the different stages of LUSC. (Da) ITGB8 was upregulated in LUAD and LUSC; ITGB8 was associated with 
stages of LUSC [Pr(>F)=0.0388] ; (Ea) MND1 was upregulated in LUAD and LUSC; MND1 was associated with stages of LUSC [Pr(>F)=0.000953] (Fa) SCGB1A1 
was downregulated in both LUSC and LUAD; SCGB1A1 was closely related to stages of LUSC [Pr(>F)=8.06x10‑7]. *P<0.01 tumor group vs. control group. LUSC, 
lung squamous cell carcinoma; LUAD, lung adenocarcinoma; TCF21, transcription factor 21; A2M, α-2-macroglobulin; ACSL5, acyl-CoA synthetase long chain 
family member 5; ITGB8, integrin subunit beta 8; SCGB1A1, secretoglobin family 1A member 1; MND1, meiotic nuclear divisions 1; T, tumor; N, normal.
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Figure 5. ROC curves of hub genes and SCGB1A1 expression in different tumors, cell lines and tissues. (A) ROC curves of hub genes were plotted based on 
the Gene Expression Omnibus dataset. The closer AUC value is to one, the higher the diagnostic value of the gene. (B) SCGB1A1 gene expression profiles 
of 20 common lung cancer cell lines based on the CCLE database. (C) Dot plot of SCGB1A1 gene expression profile across different tumor samples and 
paired normal tissues. Each dot represents sample expression; red denotes tumor samples and green denotes normal samples. (D) SCGB1A1 mRNA and 
protein expression in normal human tissues based on The Human Protein Atlas. ROC, receiver operating characteristic; SCGB1A1, secretoglobin family 1A 
member 1; MND1, meiotic nuclear divisions 1; TCF21, transcription factor 21; A2M, α-2-macroglobulin; ACSL5, acyl-CoA synthetase long chain family 
member 5; ITGB8, integrin subunit beta 8; CCLE, Cancer Cell Line Encyclopedia; GEPIA, Gene Expression Profiling Interactive Analysis; TPM, transcripts 
per million; AUC, area under the curve; T, tumor; N, normal.
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tumors (55). However, the mechanism remains unclear, and 
future studies are required to elucidate the pathways involved 
in SCGB1A1 and lung cancer.

TCF21, located on chromosome 6q23‑q24, encodes a 
basic helix-loop-helix transcription factor essential for epithe-
lial cell differentiation (56,57). It can be readily methylated 
and subsequently cause tumorigenesis (58,59). A previous 
study has indicated that hypermethylation and decreased 
expression of TCF21 are tumor‑specific and are frequently 
observed in NSCLC (60). The protein encoded by A2M is a 
protease inhibitor and cytokine transporter (61). A previous 
study has revealed that a progressive A2M deficiency may 
promote tumor development in nude mice (62). A2M regu-
lated tumor cell adhesion, migration and growth by inhibiting 
tumor-promoting signaling pathways, including the phos-
phoinositide 3‑kinase/protein kinase B (PI3K/AKT) pathway 
and mothers against decapentaplegic homolog (SMAD) and 
upregulating phosphatase and tensin homolog via downregula-
tion of microRNA-21 in vitro and in tumor xenografts (62). 
The level of A2M in human blood decreases with age (63). 
ACSL5, a mitochondria-localized enzyme that catalyzes the 
synthesis of long-chain fatty acid thioesters, is physiologically 
involved in the induction of apoptosis in intestinal cells (64). 
Studies have revealed that ACSL5 isozymes serve leading 
roles in the biosynthesis of mitochondrial cardiolipin and may 
participate in the survival of cancer cells (65‑67). ITGB8, a 

member of the integrin β chain family, is increased in different 
types of cancer, including breast, lung, throat and stomach 
cancer (68). High expression of ITGB8 serves an important 
role in the metastasis of human lung cancer cells. When ITGB8 
is silenced, the expression of E-cadherin and cystatin B is 
increased, whereas the expression of C-X-C motif chemokine 
ligand CXCL1, CXCL2, CXCL5, matrix metalloproteinase 
(MMP)‑2 and MMP‑9 is decreased (69). Furthermore, changes 
in the cell cycle, the expression of metastasis-associated genes 
and metastatic potential may be accompanied by decreased 
tumor cell signal transduction and molecular activity (69,70). 
The products of the MND1 gene bind to PSMC3 interacting 
protein to form stable heterodimer complexes that bind to 
DNA and stimulate the activities of RAD51 recombinase and 
DNA meiotic recombinase 1, which are required for meiotic 
recombination (71). MND1 was significantly upregulated in 
ovarian cancer compared with ovarian tissue samples from 
healthy controls (72). However, to the best of our knowledge, 
MND1 upregulation has not been previously reported in 
human lung cancer.

The hub genes identified in the current study are associated 
with the occurrence and development of tumors. The involvement 
of TCF21 and ITGB8 in lung cancer has been previously docu-
mented. However, there are fewer reports of SCGB1A1, A2M, 
ACSL5 and MND1 in lung cancer. In vitro overexpression of 
TCF21 may inhibit tumor growth and chemoresistance possibly 

Figure 6. Associations between the expression of SCGB1A1 and (A) EGFR mutation, (B) EML4‑ALK gene fusion, (C) expression of TP53 and (D) smoking 
in the Okayama and Beer dataset of the Oncomine database. No value, patients without the phenotype. SCGB1A1, secretoglobin family 1A member 1; EGFR, 
epidermal growth factor receptor; EML4, microtubule associated protein‑like 4; ALK, anaplastic lymphoma kinase; IHC, immunohistochemistry.
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through the AKT signaling pathway (73,74). Upregulation 
of ITGB8 may promote the expression of tumor metastasis 
genes and enhance the invasive ability of tumor cells in LUSC 
by regulating the phosphorylation levels of mitogen-activated 
protein kinase/extracellular signal-regulated kinase and AKT. 
An increased incidence of lung injury and lung tumors was 
reported following SCGB1A1 knockout (52). A previous study 
has reported that SCGB1A1 may serve an anti‑inflammatory 
role by inhibiting phospholipase A2 (75); therefore, the down-
regulation of SCGB1A1 may lead to an imbalance of T cell 
subsets, which in turn affects the antitumor activity of serum 
peripheral blood mononuclear cells in patients with LUSC (76). 
Transcriptome analysis of A2M‑treated tumor cells, xenografts 
and mouse liver revealed that A2M modulates tumor cell adhe-
sion, migration and proliferation by inhibiting tumor-promoting 
signaling pathways, such as PI3K/AKT and SMAD, and by 
upregulating PTEN via downregulation of miR-21 in vitro and 
in tumor xenografts (77). ASCL5 is closely associated with 
cancer cell apoptosis (64). The hub genes in the current study 
were associated with poor overall survival rates, and ROC 
curves revealed high diagnostic values (AUC>0.7). The results 
obtained in the current study suggest that these genes may serve 
important roles in the occurrence and development of LUSC 
and may be used as biomarkers for the diagnosis of LUSC.

In conclusion, the purpose of the current study was to 
identify genes that may be involved in the development or 
progression of LUSC. A total of 37 DEGs were identified, 
of which 6 were identified as hub genes and may be used 
as biomarkers for the diagnosis and prognosis evaluation 
of LUSC. However, the results of this study were obtained 
through big data analysis, and validation of the results via 
animal experiments and clinical trials is required.
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