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Abstract. Medulloblastoma (MB) is the most common 
malignant brain tumor in children. The aim of the present 
study was to predict biomarkers and reveal their potential 
molecular mechanisms in MB. The gene expression profiles 
of GSE35493, GSE50161, GSE74195 and GSE86574 were 
downloaded from the Gene Expression Omnibus (GEO) 
database. Using the Limma package in R, a total of 1,006 
overlapped differentially expressed genes (DEGs) with the 
cut‑off criteria of P<0.05 and |log2fold‑change (FC)|>1 were 
identified between MB and normal samples, including 540 
upregulated and 466 downregulated genes. Furthermore, 
the Gene Ontology (GO) and the Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathway enrichment analysis 
were also performed using the Database for Annotation, 
Visualization and Integrated Discovery (DAVID) online tool 
to analyze functional and pathway enrichment. The Search 
Tool for Retrieval of Interacting Genes database was subse-
quently used to construct a protein‑protein interaction (PPI) 
network and the network was visualized in Cytoscape. The 
top 11 hub genes, including CDK1, CCNB1, CCNB2, PLK1, 
CDC20, MAD2L1, AURKB, CENPE, TOP2A, KIF2C and 
PCNA, were identified from the PPI network. The survival 

curves for hub genes in the dataset GSE85217 predicted the 
association between the genes and survival of patients with 
MB. The top 3 modules were identified by the Molecular 
Complex Detection plugin. The results indicated that the 
pathways of DEGs in module 1 were primarily enriched in 
cell cycle, progesterone‑mediated oocyte maturation and 
oocyte meiosis; and the most significant functional pathways 
in modules 2 and 3 were primarily enriched in mismatch 
repair and ubiquitin‑mediated proteolysis, respectively. 
These results may help elucidate the pathogenesis and design 
novel treatments for MB.

Introduction

Medulloblastoma (MB) is the most common solid tumor in 
children, comprising 15‑20% of pediatric central nervous 
system tumors (1,2). MB may occur at all ages, however its 
peak incidence is between 4 and 7 years  (3). In 2016, the 
World Health Organization classified MB into four subtypes, 
including WNT‑activated, SHH‑activated, group  3 and 
group 4, by combining molecular profiling with histology (4). 
In addition, as these tumors occur in the posterior fossa, 
clinical symptoms are often too vague for accurate and prompt 
diagnosis (5). The therapeutic options include maximal safe 
surgical resection, radiation and chemotherapy (3). However, 
cerebellar mutism may occur in >25% of the cases following 
maximal surgical resection in patients with high‑risk MB; 
recovering patients may still experience dysarthria and neuro-
cognitive dysfunction (6). In addition, adjuvant chemotherapy 
and radiotherapy may lead to hearing loss and the development 
of secondary tumors (6). The main cause of mortality in MB is 
metastatic disease, which is unresectable (7). Although multi-
modal therapy significantly improves the prognosis of MB, 
approximately one‑third of the patients eventually succumb to 
the disease (3). Therefore, further research on the underlying 
molecular mechanisms is imperative, in order to design more 
efficient and precise treatment strategies to improve patient 
survival.

With the completion of the Human Genome Project, 
molecular diagnosis and therapy have become available in 
clinical practice, which is helpful for improving the accuracy 
and efficacy of diagnosis and treatment  (4). Using bioin-
formatics and microarray analysis, it is possible to further 
examine the underlying gene characteristics and molecular 
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mechanisms involved in the proliferation, invasion and metas-
tasis of MB (8,9). For example, mitotic kinases and WEE1 
G2 checkpoint kinase were identified as rational therapeutic 
targets for MB by performing an integrated genomic analysis 
using structural and functional methods (10).

In the present study, 4  databases with 115  samples of 
MB and normal tissues were downloaded from the Gene 
Expression Omnibus (GEO) database. Following screening 
of differentially expressed genes (DEGs) though package 
Limma in R, Gene Ontology (GO) and Kyoto Encyclopedia 
of Genes and Genomes (KEGG) analyses were performed to 
analyze the potential functional and pathway enrichment, and 
a protein‑protein interaction (PPI) network was subsequently 
constructed using the Search Tool for Retrieval of Interacting 
Genes (STRING) database and visualized with Cytoscape 
software, in order to identify biomarkers and examine the 
potential underlying molecular mechanisms in MB. Therefore, 
the results of the present study may improve our understanding 
of MB, identify potential biomarkers and indicate methods of 
diagnosis and treatment for future research.

Materials and methods

Microarray data. In the present study, the gene expression 
profiles of GSE35493 (11), GSE50161 (12), GSE74195 (13) 
and GSE86574 (https://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GSE86574) were downloaded from the GEO 
database (http://www.ncbi.nlm.nih.gov/geo/). A total of 115 
samples, including 78 MB and 37 normal samples, had been 
hybridized on the Affymetrix Human Genome U133 Plus 2.0 
Array (HG‑U133_Plus_2) on the GPL570 platform. GSE35493 
included 17 MB and 9 normal samples, GSE50161 included 
22 MB and 13 normal samples, GSE74195 included 23 MB 
and 5 normal samples, and GSE86574 included 16 MB and 
10 normal samples. GSE85217 from the GPL22286 platform 
included 613 MB samples.

Identification of DEGs. The raw data in CEL files were 
transformed into gene symbols based on the downloaded 
platform annotation files. The data were preprocessed, 
including background correction, normalization and summa-
rization, via R 3.4.1 software (https://www.r‑project.org/) (14). 
Following robust multiarray average normalization, Limma 
in R package (version 3.26.9) was used to screen DEGs (15). 
The genes meeting the cut‑off criteria of adjusted P<0.05 and 
|log2fold‑change (FC)|>1 were selected as the DEGs.

Functional and pathway enrichment analysis. After acquiring 
the DEGs, GO enrichment analysis and KEGG pathway 
enrichment analysis were performed through DAVID (https://
david.ncifcrf.gov/) online tool to identify functional catego-
ries of DEGs (16). GO analysis of DEGs included biological 
process (BP), molecular function (MF) and cell component 
(CC). In addition, the terms with P<0.05 were considered to 
indicate a statistically significant difference.

Construction of the PPI network and selection of modules. 
To identify hub genes and screen modules, the DEGs were 
uploaded to STRING (version 10.5; http://www.string‑db.org/) 
to analyze and set up the PPI network (17). Subsequently, the 

network was visualized in Cytoscape (version 3.5.1; www.
cytoscape.org)  (18). The Cytoscape software was applied 
to search for hub genes with CytoHubba, a plugin to hub an 
object from complex networks, and modules with Molecular 
Complex Detection (MCODE)  (19,20). Furthermore, hub 
genes in selected modules were analyzed via DAVID to 
examine pathway enrichment.

Survival analysis. To assess the association between hub 
genes and survival, 613 MB samples with clinical data from 
GSE85217 were selected and survival curves were drawn by 
recruiting the survival package in R.

Results

Identification of DEGs. Basing on the cut‑off criteria of 
P<0.05 and |log2fold‑change (FC)|>1, a total of 6,305, 4,185, 
2,506 and 4,253 DEGs between MB and normal samples 
were screened from GSE35493, GSE50161, GSE74195 and 
GSE86574, respectively. DEGs from GSE35493 included 
5,242 upregulated and 1,063 downregulated genes. DEGs 
from GSE50161 included 3,025  upregulated and 1,160 
downregulated genes. DEGs from GSE74195 included 1,315 
upregulated and 1,191 downregulated genes. DEGs from 
GSE86574 included 2,772 upregulated and 1,481 downregu-
lated genes. In addition, a total of 1,006 mutual DEGs were 
screened, among those 4 datasets, by performing a Venn 
diagram analysis (Fig. 1), where 540 were upregulated and 
466 were downregulated.

Functional and pathway enrichment analysis. Submitting 
1,006 mutual DEGs to DAVID provided further insight into 
the function of these DEGs and the molecular mechanisms 
implicated in MB. The top 10 significant terms of each GO 
category (Table I) and the top 10 terms of KEGG category 
(Table II) were selected. The GO analysis results demonstrated 
that overlapped DEGs were significantly associated with 
cell division, mitotic nuclear division and chemical synaptic 
transmission in the BP category; cell junction, condensed 
chromosome kinetochore and postsynaptic membrane in the 

Figure 1. Venn diagram of differentially expressed genes among the 4 datasets.
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CC category; and protein binding, microtubule binding and 
chromatin binding in the MF category (P<0.05) (Table  I). 
In addition, the enriched KEGG pathway analysis results 
primarily included cell cycle, DNA replication and retrograde 
endocannabinoid signaling (Table II).

Module screening from the PPI network. Among the 4 
datasets, the overlapped 1,006 DEGs were analyzed with 
the PPI network via STRING, and interaction with a score 
>0.9 was subsequently obtained in the following analysis. 
Furthermore, the hub genes with degrees >44 were screened 
out based on CytoHubba. In total, 11 nodes were screened 
out as hub genes, including CDK1 (degree=90), CCNB1 
(degree=68), CCNB2 (degree=60), PLK1 (degree=60), 
CDC20 (degree=57), MAD2L1 (degree=53), AURKB 
(degree=50), CENPE (degree=46), TOP2A (degree=45), 
KIF2C (degree=45) and PCNA (degree=45; Fig. 2A). Among 
the 11  hub genes, the node with the highest degree (90) 
was CDK1. Additionally, four heat maps of the expression 

of 11 hub genes in GSE35493, GSE50161, GSE74195 and 
GSE86574 are presented in Fig. 3.

Furthermore, following MCODE analysis, 7 modules 
were identified to be available and the top 3 significant 
modules are presented in Fig. 2B‑D. Furthermore, the top 3 
pathways in each module are listed in Table III. Module 1 had 
29 nodes, 404 edges and the highest score (score=28.857). In 
this module, the top 3 enriched KEGG pathways were cell 
cycle, progesterone‑mediated oocyte maturation, and oocyte 
meiosis. In addition, module 2 (score=11.6) had 31 nodes and 
174 edges, and the pathways were primarily associated with 
mismatch repair, DNA replication and nucleotide excision 
repair. Module 3 (score=10) had 10 nodes and 45 edges, which 
were significantly enriched in ubiquitin‑mediated proteolysis 
(P<0.05; Table III).

Survival analysis. The survival curves for hub genes in the 
dataset GSE85217 are presented in Fig. 4. The expressions 
of CCNB1 (P=0.03108), CCNB2 (P=0.00336), CDC20 

Table I. Top 10 significant GO terms of BP, MF and CC.

Category	 Term	 Description	 Count	 P‑value

BP	 GO:0051301	 Cell division	 77	 1.54x10‑27

BP	 GO:0007067	 Mitotic nuclear division	 55	 6.14x10‑20

BP	 GO:0007268	 Chemical synaptic transmission	 45	 1.47x10‑13

BP	 GO:0000082	 G1/S transition of mitotic cell cycle	 28	 1.02x10‑12

BP	 GO:0007062	 Sister chromatid cohesion	 27	 8.76x10‑12

BP	 GO:0006260	 DNA replication	 33	 1.23x10‑11

BP	 GO:0000070	 Mitotic sister chromatid segregation	 12	 1.48x10‑08

BP	 GO:0007059	 Chromosome segregation	 18	 4.14x10‑08

BP	 GO:0000086	 G2/M transition of mitotic cell cycle	 24	 5.11x10‑07

BP	 GO:0007076	 Mitotic chromosome condensation	 8	 4.23x10‑06

CC	 GO:0030054	 Cell junction	 65	 8.14x10‑14

CC	 GO:0000777	 Condensed chromosome kinetochore	 24	 2.74x10‑11

CC	 GO:0045211	 Postsynaptic membrane	 37	 8.92x10‑11

CC	 GO:0014069	 Postsynaptic density	 34	 1.40x10‑10

CC	 GO:0005654	 Nucleoplasm	 206	 2.20x10‑09

CC	 GO:0030425	 Dendrite	 43	 3.92x10‑08

CC	 GO:0000775	 Chromosome, centromeric region	 16	 8.32x10‑08

CC	 GO:0030496	 Midbody	 24	 9.65x10‑08

CC	 GO:0043025	 Neuronal cell body	 40	 1.67x10‑07

CC	 GO:0005874	 Microtubule	 39	 3.78x10‑07

MF	 GO:0005515	 Protein binding	 531	 3.92x10‑09

MF	 GO:0008017	 Microtubule binding	 32	 7.31x10‑08

MF	 GO:0003682	 Chromatin binding	 40	 4.88x10‑05

MF	 GO:0005524	 ATP binding	 110	 7.45x10‑05

MF	 GO:0019901	 Protein kinase binding	 38	 1.00x10‑04

MF	 GO:0005201	 Extracellular matrix structural constituent	 13	 1.27x10‑04

MF	 GO:0005509	 Calcium ion binding	 60	 1.87x10‑04

MF	 GO:0017075	 Syntaxin‑1 binding	 7	 1.88x10‑04

MF	 GO:0004890	 GABA‑A receptor activity	 7	 2.63x10‑04

MF	 GO:0005219	 Ryanodine‑sensitive calcium‑release channel activity	 4	 5.07x10‑04

GO, Gene Ontology; BP, biological process; MF, molecular function; CC, cell component.
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(P=0.026), KIF2C (P=0.01622), MAD2L1 (P=0.00145), PLK1 
(P=0.00325) and TOP2A (P=0.01387) were negatively associ-
ated with patient survival time.

Discussion

Identifying the molecular mechanisms of MB, which has 
unique gene expression signatures, is of critical importance 
for targeted diagnosis and treatment (21). In the present study, 
78 MB and 37 normal samples were collected from the GEO 
database for bioinformatics analysis, aiming to identify hidden 
biomarkers and elucidate the molecular mechanisms in MB. 
A total of 1,006 mutual DEGs were screened from the four 
microarray datasets GSE35493, GSE50161, GSE74195 and 
GSE86574 using the Limma in R package.

The GO analysis results of the DEGs revealed that the 
overlapped DEGs were primarily associated with mitosis, 
including cell division, mitotic nuclear division, G1/S transi-
tion of the mitotic cell cycle, sister chromatid cohesion, sister 
chromatid segregation, chromosome segregation, G2/M 
transition of the mitotic cell cycle, and mitotic chromosome 
condensation in the BP category. In addition, Aurora kinase 
B regulates multiple stages of mitosis, and its inhibitors may 

inhibit the growth of Group 3 MBs and prolong survival (22). 
These results suggested that it may be possible to treat MB 
by regulating the key biomarkers of mitosis (23,24). In addi-
tion, it was also observed that these genes were enriched in 
cell junction, condensed chromosome kinetochore, protein 
binding, microtubule binding and chromatin binding. Certain 
RNA binding proteins, including MSI1, DDX3X and CCAR1, 
were reported to play important roles in the growth and/or 
maintenance of MB (25).

Following KEGG pathway analysis, the genes were found 
to be significantly associated with cell cycle, DNA replication, 
retrograde endocannabinoid signaling, GABAergic synapse, 
morphine addiction, nicotine addiction, dopaminergic synapse, 
circadian entrainment, mismatch repair, and p53 signaling 
pathway. A previous study reported that the defect of NEO1, 
which was necessary for cell cycle progression, arrests cells 
at the G2/M phase in MB (26). These results indicated that 
cannabinoids, morphine and nicotine, consistent with previous 
studies, were likely associated with the progression of brain 
tumors (27‑29). Therefore, these pathway analysis results may 
enable the prediction of novel therapeutic targets.

Furthermore, the top 11 hub genes, including CDK1, 
CCNB1, CCNB2, PLK1, CDC20, MAD2L1, AURKB, 

Table II. Top 10 significant Kyoto Encyclopedia of Genes and Genomes pathways.

Term	 Description	 Count	 P‑value	 Genes

hsa04110	 Cell cycle	 28	 3.95x10‑11	 E2F5, DBF4, TTK, CHEK1, PTTG1, CHEK2, CCNE2, CDC45,
				    MCM7, CDKN2C, CDK1, ESPL1, CDK6, CDC20, MCM2,
				    CDK4, MCM3, WEE1, CDC25A, MCM5, CCNB1, MAD2L1,
				    CCNB2, CCND2, PLK1, PCNA, BUB1B, ABL1
hsa03030	 DNA replication	 14	 7.26x10‑09	 MCM2, RNASEH2A, MCM3, MCM5, PRIM1, RFC3, RFC4,
				    MCM7, POLE2, RFC2, POLD1, PRIM2, PCNA, FEN1
hsa04723	 Retrograde	 22	 1.50x10‑08	 GABRD, GABRG1, GABRA2, GABRA1, GNAI3, GABRA4,
	 endocannabinoid			   GABRB2, GABRB1, GNG13, MAPK10, GRIA4, RIMS1,
	 signaling			   KCNJ3, ITPR1, SLC17A7, SLC32A1, KCNJ6, KCNJ9, GRIA1, 
				    MGLL, GNG3, GNG4
hsa04727	 GABAergic synapse	 20	 2.14x10‑08	 GABRD, GABRG1, GABRA2, GABARAPL1, GABRA1, 
				    GNAI3, SLC6A1, GABRA4, GABRB2, GABRB1, GABBR1, 
				    GNG13, GABBR2, GLS2, SLC32A1, KCNJ6, ABAT, GNG3,
				    GNG4, GAD1
hsa05032	 Morphine addiction	 19	 3.66x10‑07	 GABRD, GABRG1, GABRA2, GNAI3, GABRA1, GABRA4, 
				    GABRB2, GABRB1, GABBR1, GNG13, GABBR2, KCNJ3, 
				    ADORA1, SLC32A1, KCNJ6, KCNJ9, PDE1A, GNG3, GNG4
hsa05033	 Nicotine addiction	 12	 2.42x10‑06	 SLC17A7, GABRD, SLC32A1, GABRG1, GABRA2, GABRA1,
				    GABRA4, GRIA1, GABRB2, GABRB1, GRIN2A, GRIA4
hsa04728	 Dopaminergic synapse	 20	 1.55x10‑05	 SCN1A, CALY, PPP2R3A, GNAI3, KIF5A, GRIN2A, GNG13,
				    MAPK10, GRIA4, KCNJ3, ITPR1, KCNJ6, KCNJ9, PPP1R1B,
				    GRIA1, CREB3L4, CAMK2B, GNG3, PPP3CA, GNG4
hsa04713	 Circadian entrainment	 16	 5.91x10‑05	 GNAI3, GRIN2A, GNG13, GRIA4, KCNJ3, ITPR1, KCNJ6,
				    KCNJ9, GRIA1, RYR3, RYR1, RYR2, CAMK2B, GUCY1B3,
				    GNG3, GNG4
hsa03430	 Mismatch repair	 8	 8.58x10‑05	 EXO1, MSH6, RFC3, RFC4, RFC2, MSH2, POLD1, PCNA
hsa04115	 p53 signaling pathway	 13	 9.34x10‑05	 CCNB1, CCNE2, CDK1, TP53I3, CCNB2, CCND2, RRM2, 
				    SIAH1, CHEK1, CDK6, CHEK2, CDK4, GTSE1
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CENPE, TOP2A, KIF2C and PCNA, were identified using 
the PPI network. It was reported that inhibiting the catalytic 
activity of CDK1 using VMY‑1‑103 may severely disrupt the 
mitotic cycle of MB cells  (24). It was previously reported 
that the combined expression of MYC, LDHB and CCNB1 
as potential prognostic biomarkers may predict survival and 
provide a more accurate basis for the targeted therapy of 

patients with MB (30). The inhibitors of PLK1, an oncogenic 
kinase that controls cell cycle and proliferation, inhibited 
mitosis in MB cells, and patients expressing high levels of 
PLK1 were considered as high‑risk. All findings indicated 
that PLK1 is a possible therapeutic target for patients with 
MB (31,32). In another study, it was reported that the expres-
sion levels of TOP2A may be a potential biomarker for 

Figure 2. PPI network and modules of DEGs in MB. (A) PPI network. (B) Module 1. (C) Module 2. (D) Module 3. The circular nodes represent DEGs. The 
edges/lines stand for the regulatory association between two nodes. The top 11 hub genes are highlighted with red circles. PPI, protein‑protein interaction; 
DEGs, differentially expressed genes; MB, medulloblastoma.
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sensitivity to etoposide in patients with MB (33). PCNA, which 
may be used to demonstrate the proliferative phase of the cell 
cycle, was significantly associated with MB grade, suggesting 
that PCNA may be a biomarker for assessing grade and the 
possibility of recurrence in MB (34).

However, 6 hub genes, including CCNB2, CDC20, 
MAD2L1, AURKB, CENPE and KIF2C, have yet to be 
verified, to the best of our knowledge, in MB by systematic 
searches through PubMed, there were a number of studies 
on other tumors, particularly brain tumors, including 
glioma (33‑44). It was reported that CDC20 was a critical 
regulator of tumor‑initiating cell proliferation and survival 
of glioblastoma cells (35). Combining the findings of other 
studies, CDC20 was found to play a role in cell cycle 
progression, apoptosis and brain development, and these 

findings indicated that it may be a potential novel target 
for therapeutic intervention in brain tumors, particularly 
MB  (36,37). In addition, the RNA levels of CDC20 and 
MAD2L1 were associated with glioma grade, which 
suggested a clinical benefit as a biomarker  (38). Other 
studies demonstrated that MAD2L1 was of diagnostic value 
in several tumors, including salivary duct carcinomas, 
breast cancer and acute lymphoblastic leukemia  (39‑41). 
Furthermore, CCNB2 was predicted as a tumor‑associated 
factor similar to CCNB1 (42). AURKA was reported to be 
the target of some molecule inhibitors, such as BMS‑754807 
and SIX3, aiming to inhibit diffuse intrinsic pontine glioma 
or astrocytoma (43,44). The knockdown of CENPE, which is 
highly expressed in pediatric glioma, combined with temo-
zolomide treatment, was found to lead to inhibition of glioma 

Table III. Top 10 significant KEGG pathways of the DEGs in top 3 modules.

Module	 Term	 KEGG names	 Count	 P‑value	 Genes

Module 1	 hsa04110	 Cell cycle	 8	 5.80x10‑11	 CCNB1, CDK1, CDC20, CCNB2, PLK1, 
					     BUB1B, MAD2L1, ESPL1
	 hsa04914	 Progesterone‑mediated	 5	 4.65x10‑06	 CCNB1, CDK1, PLK1, MAD2L1, CCNB2,
		  oocyte maturation			 
	 hsa04114	 Oocyte meiosis	 5	 1.14x10‑05	 CDK1, MAD2L1, PLK1, CDC20, ESPL1
Module 2	 hsa03430	 Mismatch repair	 6	 3.25x10‑10	 EXO1, RFC3, RFC4, RFC2, POLD1, PCNA
	 hsa03030	 DNA replication	 6	 3.59x10‑09	 RFC3, RFC4, POLE2, RFC2, POLD1, PCNA
	 hsa03420	 Nucleotide excision repair	 6	 1.45x10‑08	 RFC3, RFC4, POLE2, RFC2, POLD1, PCNA
Module 3	 hsa04120	 Ubiquitin mediated proteolysis	 4	 7.41x10‑05	 FBXW7, SIAH1, UBE2S, UBE2E2

KEGG, Kyoto Encyclopedia of Genes and Genomes; DEGs, differentially expressed genes.

Figure 3. Hub gene expression heat maps among the 4 databases. (A) Hub gene expression heat map of GSE35493. (B) Hub gene expression heat map of 
GSE50161. (C) Hub gene expression heat map of GSE74195. (D) Hub gene expression heat map of GSE86574. Red, upregulation; blue, downregulation.
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cell proliferation (45). KIF2C was reported to be associated 
with histopathological glioma grades, which indicated this 
gene may be a potential biomarker for prognosis in patients 
with glioma (46). Taken together, although their significance 
has yet to been confirmed, to the best of our knowledge, 
these findings suggest that the 6 hub genes may be potential 
biomarkers in the diagnosis, treatment and prognosis of MB.

In conclusion, the findings of the present study provided an 
integrated bioinformatics analysis of 1,006 overlapped DEGs 
that may be involved in the growth, recurrence and metastasis 
of MB. A total of 11 hub genes, including CDK1, CCNB1, 
CCNB2, PLK1, CDC20, MAD2L1, AURKB, CENPE, 
TOP2A, KIF2C and PCNA, were identified as novel potential 
biomarkers. These findings may provide further insight into 
the underlying molecular mechanisms and identify novel 
biomarkers for evaluating the diagnosis and prognosis, and 
advance the treatment of MB. However, further molecular 
biological research is required to confirm the clinical value of 
our findings.
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