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Abstract. The purpose of the present study was to inves-
tigate the value of contrast‑enhanced magnetic resonance 
imaging (CE‑MRI) texture analysis for preoperatively predicting 
microvascular invasion (MVI) in hepatocellular carcinoma 
(HCC). Accordingly, a retrospective study of 142 patients with 
pathologically confirmed HCC was performed. The patients 
were divided into two cohorts: The training cohort (n=99) 
and the validation cohort (n=43), including the MVI‑positive 

group (n=53) and MVI‑negative group (n=89). On the basis of 
three‑dimensional texture analysis, 58 features were extracted 
from the preoperative CE‑MR images of arterial‑phase (AP) 
and portal‑venous‑phase (PP). The t‑test or Kruskal‑Wallis test, 
univariate logistic regression analysis and Pearson correlation 
were applied for feature reduction. Clinical‑radiological features 
were also analyzed. Multivariate logistic regression analysis 
was used to build the texture model and combined model with 
clinical‑radiological features. The MVI‑predictive perfor-
mance of the models was evaluated using receiver operating 
characteristic (ROC) analysis and presented using nomogram. 
Among the clinical features, a significant difference was found 
in maximum tumor diameter (P=0.002), tumor differentiation 
(P=0.026) and α‑fetoprotein level (P=0.025) between the two 
groups in the training cohort. Four MR texture features in AP 
and five in PP images were identified through feature reduc-
tion. On ROC analysis, the AP texture model showed better 
diagnostic performance than did the PP model in the validation 
cohort, with an area under the curve (AUC) of 0.773 vs. 0.623, 
sensitivity of 0.750 vs. 0.500, and specificity of 0.815 vs. 0.926. 
Together with the clinical features, the combined model of AP 
improved the AUC, sensitivity and specificity to 0.810, 0.811 
and 0.790, respectively, which was demonstrated in nomogram. 
To conclude, model‑based texture analysis of CE‑MRI could 
predict MVI in HCC preoperatively and noninvasively, and the 
AP image shows better predictive efficiency than PP image. 
The combined model of AP with clinical‑radiological features 
could improve MVI prediction ability.

Introduction

Hepatocellular carcinoma (HCC) is the sixth most common 
malignant tumor and the second leading cause of tumor 
mortality worldwide  (1,2), and in 2015, its incidence and 
mortality in China ranked the fourth and third, respec-
tively (3). Surgical resection or liver transplantation has been 
performed for patients with early stage HCC, and is potentially 
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curative (4). However, the high postoperative recurrence of 
HCC remains a common problem (5).

In recent years, many clinical studies have shown that 
microvascular invasion (MVI) is a significant risk factor for 
the high rate of recurrence and poor prognosis, and could 
provide information on which to base clinical treatment (6‑8). 
A previous study indicated that the incidence of MVI ranged 
from 15.0 to 57.1% (8). However, no widely recognized defini-
tion of MVI is currently available. The commonly accepted 
histopathological features of MVI include the presence of 
tumor cells in the portal veins, in large capsular vessels or in 
vascular spaces lined by endothelial cells (8,9). As demonstrated 
in a previous study, a wide resection surgical margin (SM) 
(58% with SM ≥10 mm vs. 29% with SM <10 mm) may prolong 
the disease‑free survival rate (58 vs. 29%) (10). Unfortunately, 
MVI can only be detected after postoperative histopathological 
examination of the whole surgical specimen, and therefore 
cannot be used for prediction of treatment benefit. If MVI status 
could be predicted preoperatively and noninvasively, appro-
priate treatment could be selected to improve the prognosis.

Recently, a number of studies reported that certain clinical 
features and morphological characteristics detected on imaging 
examination could predict the MVI status, including the tumor 
size, tumor margin, capsule formation and dynamic enhancing 
pattern  (10‑12). However, clinical and traditional imaging 
features were more subjective, lacked quantitative indexes and 
always showed inter‑observer differences, thereby leading to 
poor reliability of the results that were largely affected by the 
experience level of the radiologist. Functional imaging modali-
ties, including diffusion‑weighted imaging, diffusion kurtosis 
imaging and positron emission tomography‑computed tomog-
raphy (PET‑CT), do not have good predictive power because 
of their instability and lack of reproducibility (13,14). Thus, 
the current preoperative prediction of MVI based on imaging 
signs and/or examinations has limitations, mainly the lack of 
specificity and practicability. Therefore, developing a method 
to accurately and quantitatively predict the MVI status of HCC 
preoperatively is of great clinical significance.

Texture analysis is a widely used image post‑processing 
technique that extracts quantitative features from radiological 
images to explore the correlation between these features and 
clinical or histological factors (15,16). Texture analysis enables 
noninvasive assessment of tumor heterogeneity and provides 
indirect information on the tumor microenvironment that cannot 
be obtained with the naked eye (17). More recently, texture 
analysis has been demonstrated to reveal tumor aggressiveness, 
thus potentially helping predict the risk of disease progression 
or recurrence and the response to treatment in many studies; 
this has also enabled its application in CT, magnetic resonance 
imaging (MRI) and PET‑CT studies (18‑21). Several studies 
have also adopted texture analysis for the differential diagnosis 
of liver nodules, treatment response evaluation of HCC and 
prognosis prediction (22,23). In addition, model‑based texture 
analysis has been applied to improve diagnostic efficiency, 
which could assist clinicians in making treatment decisions (24).

In particular, contrast‑enhanced MRI  (CE‑MRI) is 
generally used for the diagnosis, treatment evaluation, prog-
nosis estimation, as well as MVI prediction of HCC (12). 
However, no reports to date have documented the use of 
texture analysis for MVI prediction of HCC, and none 

have documented the role of CE‑MRI texture analysis in 
predicting MVI.

The purpose of the present study was to explore the value of 
CE‑MRI texture analysis in preoperatively predicting the MVI 
status of HCC and determining the diagnostic performance to 
guide the clinician in choosing appropriate treatment options.

Materials and methods

Patient selection. The Independent Ethics Committee of 
the Cancer Hospital, Chinese Academy of Medical Sciences 
(Beijing, China) approved the current retrospective study and 
waived the requirement for informed patient consent. Between 
January 2014 and December 2016, a total of 282 patients with 
HCC underwent liver MRI examination confirmed by post-
operative pathological examinations. The inclusion criteria 
were as follows: i) Single tumor with a maximum diameter 
<5.0 cm, no large vessel invasion and no distant metastasis; ii) 
underwent radical resection; iii) primary HCC and MVI status 
confirmed by surgical pathological examination; iv)  no 
other antitumor treatment received before MRI examination 
and operation; and v) no apparent artifact that may affect 
imaging analysis. Fig. 1 shows the patient selection flowchart. 
Consequently, 142 patients were enrolled in the present study 
and were divided into the MVI‑positive (MP) group (n=53) and 
the MVI‑negative (MN) group (n=89). Next, these 142 patients 
were divided into two cohorts, including the training cohort 
with 99 patients who underwent MRI examination between 
January 2014 and January 2016, and the validation cohort 
with 43 patients who underwent MRI examination between 
February 2016 and December 2016. The mean time interval 
between MRI and surgery was 15 days (range, 7‑35 days).

Clinicopathological data. The pathological diagnostic 
criteria for MVI adopted in this study were reported by 
Rodríguez‑Perálvarez et al (8), namely the presence of tumor 
emboli in a portal vein, hepatic vein or a large capsule vessel, 
but not a small bile duct of the surrounded hepatic tissue, as 
shown in Fig. 2A. Clinical and pathological data collected for 
analysis included sex, age at diagnosis, α‑fetoprotein (AFP) 
level (≤7, 7‑400 or >400 ng/ml), tumor location (left, right or 
caudate lobe), hepatitis B surface antigen (HBsAg) status (posi-
tive or negative), hepatitis C antibody (HCV‑Ab) and histologic 
differentiation (well, moderate or poor). The threshold values 
chosen for AFP were based on the normal ranges and diagnostic 
value for HCC used at Cancer Hospital, Chinese Academy of 
Medical Sciences and Peking Union Medical College.

MR image acquisition. The patients fasted for 6‑8 h to empty 
the gastrointestinal tract before undergoing MRI examination. 
All of the MR images were acquired using a 3.0‑T body MRI 
system (Discovery MR750 3.0T, GE Medical Systems) equipped 
with an 8‑channel phased‑array body coil. The CE‑MRI acquisi-
tions were performed with multiphase 3D spoiled gradient echo 
liver acceleration volume acquisition (LAVA) sequence, with the 
following scanning parameters: Repetition time, 2.9 msec; echo 
time, 1.3 msec; flip angle, 12 ;̊ field of view, 36‑42x36‑42 cm; 
matrix, 512x512; section thickness, 4 mm; gap, 0 mm; and number 
of sections,  36‑40. Gadodiamide (Omniscan  0.5  mmol/ml; 
GE Healthcare) at a standard dose (0.2 ml/kg) was injected as a 
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bolus through the peripheral veins by using an automatic pump 
injector at the rate of 3.0 ml/sec, and followed immediately by 20 ml 
of a 0.9% sterile saline solution injection. The contrast‑enhanced 
dynamic images were acquired at 15‑20 sec (arterial phase, AP), 
50‑55 sec (portal venous phase, PP) and 85‑90 sec (delayed phase) 
after contrast‑agent injection by using the LAVA sequence.

MRI feature analysis. The basic MRI features included the 
maximum tumor diameter (MTD) (measured by the maximum 
diameter on the maximum axial section in PP MR image), liver 
background (cirrhosis or noncirrhosis), tumor encapsulation 
(peripheral rim of smooth hyperenhancement in PP image), 
fast wash‑in (hyperenhancement of the tumor in the AP), fast 
wash‑out (hypoenhancement of the tumor in the PP) and tumor 
necrosis (unenhanced areas). The features for each patient were 
independently evaluated and recorded in a blinded manner by two 
radiologists with 5 (YJZ) and 3 years (BF) of experience in the 
interpretation of abdominal MRI to ensure diagnostic accuracy. 
When a disagreement occurred between the two  reviewers 
during evaluation, a joint review was performed, and consensus 
data were used for further statistical analysis.

Tumor imaging segmentation and texture analysis. All the 
MR images were retrieved from the picture archiving and 
communication system and transferred to a personal computer 
in the Digital Imaging and Communications in Medicine 
format. The same two radiologists reviewed and processed the 
images in a random patient order by using an in‑house devel-
oped software, Omni‑kinetics (version 2.0.10; GE Healthcare 

Life Sciences), to obtain texture features. A 3D volume of 
interest (VOI) of the tumor was manually contoured by the 
two readers, slightly along the borders of the tumor to include 
the entire approximated tumor volume.

After generating the VOI, a total of 58 texture features were 
automatically extracted from the AP and PP images using the 
Omni‑kinetics software. The texture features could be divided 
into four categories: i) 29 histogram features, ii) 8 gray‑level 
co‑occurrence matrix (GLCM) features, iii) 11 Haralick features, 
and iv) 10 run‑length matrix (RLM) features. A detailed list of 
the features included in the present study is presented in Table I. 
Fig. 2B shows the diagram of texture analysis.

Statistical analysis and feature reduction. The Kolmogorov‑
Smirnov test was used to determine whether the distribution 
of all the features was normal, and Levene's test was used for 
identifying the homogeneity of variance. For the clinical‑radio-
logical features, a two‑tailed unpaired independent t‑test was 
used to compare continuous variables with normal distribution 
between the MP and MN groups. Categorical variables were 
compared using the χ2 test or Fisher's exact test.

For texture features, first, an independent t‑test or 
Kruskal‑Wallis test was applied one by one. Features with 
significant differences (P<0.05) were further analyzed by 
univariate logistic regression analysis. Features in the univar-
iate logistic regression analysis with P<0.05 were selected. 
Finally, to eliminate redundant features, Pearson correlation 
analysis was conducted to remove features with high correla-
tion (r>0.90), which were not considered in the subsequent 

Figure 1. Diagram showing the recruitment of the study population and exclusion criteria. HCC, hepatocellular carcinoma; MRI, magnetic resonance imaging; 
MVI, microvascular invasion.
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analysis. Features that remained after adjusting for redundancy 
were entered into model building.

All statistical analyses were performed using R software 
(version 3.4.1; R Foundation for Statistical Computing), with 
a two‑tailed probability value. P<0.05 was considered to 
indicate a statistically significant difference.

Model development. Multivariate logistic regression analysis 
was applied for model building. First, the texture model was 
built on the basis of the features selected from a previous step 
by directly entering. The texture signature score (Texscore), 
which reflected the overall texture features, was calculated 
for each patient using the texture model. To involve both 

Figure 2. Schematic diagram showing the MVI diagnosis based on pathological examination, prediction using texture analysis and their relationship. (A) Tumor 
cells could be found in the small vessels near the primary tumor lesion (black arrow). (B) The process of texture analysis includes image segmentation, feature 
extraction, statistical analysis and model building. MVI, microvascular invasion; GLCM, gray‑level co‑occurrence matrix; RLM, run‑length matrix.

Table I. List of 58 texture analysis parameters.

Texture type	 Texture parameters

Histogram	 MinIntensity, MaxIntensity, MedianIntensity, MeanValue, stdDeviation, Variance, VolumeCount, 
	 VoxelValueSum, RMS, Range, MeanDeviation, RelativeDeviation, MinLocation, MaxLocation,
	 Skewness, kurtosis, uniformity, Energy, Entropy, FrequencySize, MPP, UPP, Quantile5, Quantile10,
	 Quantile25, Quantile50, Quantile75, Quantile90, Quantile95
GLCM	 GlcmTotalFrequency, GlcmEnergy, GlcmEntropy, Inertia, Correlation, InverseDifferenceMoment, 
	 ClusterShade, ClusterProminence
Haralick	 HaralickCorrelation, HaraEntropy, AngularSecondMoment, contrast, HaraVariance, sumAverage, 
	 sumVariance, sumEntropy, differenceVariance, differenceEntropy, inverseDifferenceMoment
RLM	 ShortRunEmphasis, LongRunEmphasis, GreyLevelNonuniformity, RunLengthNonuniformity, 
	 LowGreyLevelRunEmphasis, HighGreyLevelRunEmphasis, ShortRunLowGreyLevelEmphasis,
	 ShortRunHighGreyLevelEmphasis, LongRunLowGreyLevelEmphasis, LongRunHighGreyLevelEmphasis

RMS, Root mean square; GLCM, gray‑level co‑occurrence matrix; MPP, mean value of positive pixels; UPP, uniformity of distribution of 
positive gray‑level pixel values; RLM, run‑length matrix.
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Table II. The clinical and radiological characteristics of patients in the training and validation cohorts.

A, Clinical characteristics

	 Training cohort (n=99)	 Validation cohort (n=43)
	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ 
Characteristic	 MP (n=37)	 MN (n=62)	 P‑valuea	 MP (n=16)	 MN (n=27)	 P‑valuea	 P‑valueb

Sex			   0.931c	 		  0.723c	 0.805c

  Male	 32	 54		  15	 23		
  Female	   5	   8		    1	   4		
Mean age ± SD, years	 57.49±9.56	 56.45±9.71	 0.607e	 55.88±8.63	 55.41±8.00	 0.858e	 0.456e

AFP, ng/ml			   0.025c	 		  0.038c	 0.715c

  ≤7	   9	 32		    5	 16		
  7‑400	 17	 20		    5	   9		
  >400	 11	 10		    6	   2		
Location			   0.561c	 		  0.372c	 0.581c

  Right	 31	 49		  10	 23		
  Left	   6	 13		    6	   4		
HBsAg			   0.325c	 		  0.614c	 0.668c

  Positive	 26	 49		  12	 22		
  Negative	 11	 13		    4	   5		
HCV‑Ab			   1.000c	 		  1.000d	 0.989c

  Positive	   1	   3		    0	   1		
  Negative	 36	 59		  16	 26		
Differentiation			   0.026c	 		  0.034d	 0.565c

  Well	   2	   3		    0	   4		
  Moderate	 19	 47		    9	 20		
  Poor	 16	 12		    7	   3		

B, Radiological characteristics

	 Training cohort (n=99)	 Validation cohort (n=43)
	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ 
Characteristic	 MP (n=37)	 MN (n=62)	 P‑valuea	 MP (n=16)	 MN (n=27)	 P‑valuea	 P‑valueb

MTD, cm	 3.82±0.88	 3.21±0.94	 0.002e	 3.75±0.80	 2.92±0.62	 <0.001e	 0.231e

Background liver			   0.690c	 		  0.358c	 0.553c

  Noncirrhosis	 14	 21		    3	 10		
  Cirrhosis	 23	 41		  13	 17		
Tumor encapsulation			   0.805c	 		  0.362c	 0.534c

  Absent	 11	 17		    2	   8		
  Present	 26	 45		  14	 19		
Fast wash‑in			   0.292c	 		  0.929c	 0.742c

  Yes	 30	 55		  14	 22		
  No	   7	   7		    2	   5		
Fast wash‑out			   0.409c	 		  0.534c	 0.720c

  Yes	 24	 35		  11	 16		
  No	 13	 27		    5	 11		
Tumor necrosis			   0.638c	 		  0.372c	 0.668c

  Absent	 29	 46		  11	 23		
  Present	   8	 16		    5	   4		

MP, microvascular invasion‑positive; MN, microvascular invasion‑negative; AFP, α‑fetoprotein; HBsAg, hepatitis  B surface antigen; 
MTD, maximum tumor diameter; HCV‑Ab, hepatitis C antibody. aMP vs. MN; bTraining cohort vs. validation cohort; cP‑values calculated 
using the χ2 test; dP‑values calculated using Fisher's exact test; eP‑values calculated using the independent t‑test.
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texture features and clinical‑radiological features to improve 
performance, the combined model was built on the basis of 
the Texscore as well as other significant clinical‑radiological 
features in both AP and PP.

Receiver operating characteristic (ROC) analysis and the 
nomogram plot of the model. The performance of the texture 
and combined models was analyzed both in the training and 
validation cohorts by using a ROC curve quantified by the area 
under the curve (AUC), sensitivity, specificity and overall accu-
racy (ACC). The cutoff point was calculated at the maximized 
value of the Youden index (sensitivity + specificity‑1)  (25). 
Nomogram of the combined model was formulated in order to 
visualize model efficiency.

Results

Clinical and radiological features. Of the 142 patients enrolled 
in the study, 124 patients were male and 18 were female. 
Median age was 57 years (range, 34‑80 years). The results 

revealed that MTD (P=0.002), serum AFP level (P=0.025) 
and tumor differentiation (P=0.026) showed significant differ-
ences between the MP and MN groups in the training cohort. 
The MP group had greater MTD than did the MN group 
(3.82±0.88 vs. 3.21±0.94 cm), and also tended to have a higher 
serum AFP level and lower tumor differentiation. This result 
was also confirmed in the validation cohort. The characteristics 
of the training and validation cohorts showed no significant 
differences (all P>0.05). The detailed clinical and radiological 
features of the patients in the training and validation cohorts 
are listed in Table II.

Texture feature reduction. First, the Kruskal‑Wallis test 
revealed that 19 texture features in AP and 18 in PP showed 
significant differences (all P<0.05) between the MP and 
MN groups. In the univariate logistic regression analysis, 
10 texture features in AP and 12 in PP showed a potential 
predictive value (P<0.05) to discriminate between the MP and 
MN groups. Detailed results of the univariate logistic regres-
sion analysis are demonstrated in Table III. Finally, a Pearson 

Table III. Univariate logistic regression analysis of the clinical and texture features to predict the microvascular invasion status 
in the training cohort.

	 OR
	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
	 95% CI
	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
Feature	 Value	 Lower	 Upper	 P‑value

AP texture features				  
  Uniformity	 1.209x104	 6.602	 4.605x107	 0.019 
  Energy	 3.110x10121	 4.556x1019	 1.820x10229	 0.022 
  Entropy	 1.123x10‑1	 1.991x10‑2	 5.647x10‑1	 0.010 
  UPP	 3.110x10121	 4.556x1019	 1.820x10229	 0.022 
  ClusterShade	 1.000	 1.000	 1.000	 0.046 
  ClusterProminence	 1.000	 1.000	 1.000	 0.005 
  GreyLevelNonuniformity	 1.003	 1.001	 1.007	 0.023 
  LowGreyLevelRunEmphasis	 0.000	 0.000	 3.320 x10‑192	 0.034 
  ShortRunLowGreyLevelEmphasis	 0.000	 0.000	 2.140x10‑255	 0.035 
  LongRunLowGreyLevelEmphasis	 0.000	 0.000	 2.060 x10‑79	 0.036 
PP texture features				  
  MinIntensity	 9.973x10‑1	 9.947x10‑1	 9.995x10‑1	 0.025 
  VolumeCount	 1.000	 1.000	 1.000	 0.027 
  Uniformity	 1.087x10‑3	 9.070x10‑7	 6.241x10‑1	 0.044 
  FrequencySize	 1.000	 1.000	 1.000	 0.027 
  GlcmTotalFrequency	 1.000	 1.000	 1.000	 0.026 
  GlcmEntropy	 6.627x10‑1	 4.454x10‑1	 9.462x10‑1	 0.030 
  HaraEntroy	 3.266x105	 2.273x101	 1.286x1010	 0.013 
  AngularSecondMoment	 0.000	 0.000	 4.329x10‑94	 0.026 
  sumAverage	 1.301x10‑2	 2.238x10‑4	 5.748x10‑1	 0.029 
  sumEntropy	 1.896x104	 4.127	 1.996x108	 0.028 
  GreyLevelNonuniformity	 1.003	 1.001	 1.006	 0.024 
  RunLengthNonuniformity	 1.000	 1.000	 1.000	 0.025

OR, odds ratio; CI, confidence interval; UPP, uniformity of distribution of positive gray‑level pixel values; AP, arterial phase; PP, portal venous 
phase.
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correlation matrix was then calculated from the above features 
to detect highly collinear texture features (Fig.  3). After 
eliminating significant highly correlated features (defined 
as Pearson's r≥0.90), four texture features in AP, including 
uniformity, ClusterProminence, ClusterShade and LongRun
LowGreyLevelEmphasis (LRLGLE), and five in PP, including 

MinIntensity, GlcmEntropy, sumAverage, sumEntropy and 
RunLengthNonuniformity  (RLN), were retained for the 
subsequent analysis.

Multivariate logistic regression analysis and texture model 
building. Texture features identified from the above analysis 

Figure 3. Pearson correlation matrix plot for (A) 10 texture features in the arterial phase and (B) 12 texture features in the portal venous phase of the training 
cohort. Blue circles indicate positive correlation, red circles negative correlation. The larger the circle and the darker the color, the higher is the correla-
tion between two texture features. GLN, GreyLevelNonuniformity; LRLGLE, LongRunLowGreyLevelEmphasis; LGLRE, LowGreyLevelRunEmphasis; 
SRLGLE, ShortRunLowGreyLevelEmphasis; RLN, RunLengthNonuniformity; ASM, AngularSecondMoment; UPP, uniformity of distribution of positive 
gray‑level pixel values.
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in AP and PP were entered into the multivariate logistic 
regression model to build the texture predictive model. The 
detailed results of the multivariate logistic regression analysis 
are shown in Table IV.

The texture signature score (Texscore) of each patient 
in AP and PP could be calculated using the formula based 
on multivariate logistic regression model as follows: 
Texscore (AP) = 0.455+1.30 x uniformity + 0.524 x ClusterP
rominence + 0.593 x ClusterShade + 0.494 x LRLGLE; and 
Texscore (PP) = 7.310 + 0.732 x GlcmEntropy + 0.002 x sumEn-
tropy + 2.230x105  x  sumAverage + 0.999  x  MinIntensity 
+ 1.000 x RLN.

Development of the combined model. In the training 
cohort, two combined models were built to predict the MVI 
status by clinical‑radiological features and the Texscore 
generated above in AP and PP separately (Table V). In the 
combined model in AP, only the texture signature showed 
significant [odds ratio (OR), 2.552; P=0.003], but none of 
the clinical‑radiological features showed significance. In 
the combined model in PP, MTD (OR, 0.759; P=0.032) and 
AFP (OR, 1.307; P=0.027 and OR, 1.768; P=0.017) showed 
significance, but the texture signature and differentiation did 
not show significance.

Nomograms in AP and PP. The nomograms integrating the 
features included in the multivariate logistic regression anal-
ysis are displayed in Fig. 4, which could visualize the weight 
of different features in combined model. The concordance 
indexes of the nomograms for MVI predictions in AP and PP 
were 0.810 [95% confidence interval (CI), 0.718‑0.902] and 
0.799 (95% CI, 0.710‑0.889), respectively.

Predictive performance of MVI. For the training cohort, the 
ROC curves illustrating the predictive performance of the 
texture and combined models in predicting the MVI status 
are provided in Fig. 5. The AUC of the texture model was 
0.765 vs. 0.707 in AP and PP, respectively. The AUC of the 
combined model was 0.810 vs. 0.799 in AP and PP, respec-
tively. The AUC, ACC, sensitivity and specificity for each 
model are summarized in Table VI.

The validation cohort was used to verify the accuracy 
of the model built in the training cohort. The ROC curves 
of the texture and combined models for predicting the MVI 
status are shown in Fig. 6. The AUC of the texture model was 
0.773 vs. 0.623 in AP and PP, respectively. The AUC of the 
combined model was 0.794 vs. 0.706 in AP and PP, respec-
tively. The AUC, ACC, sensitivity and specificity for each 
model are summarized in Table VI.

Discussion

In the present study, a combined model was developed based 
on preoperative 3D CE‑MRI texture and clinical‑radiological 
features to predict MVI with a satisfactory discriminatory 
performance. The results indicated that texture analysis is 
a potentially useful adjunct for predicting MVI, and adding 
clinical‑radiological data could slightly improve the predictive 
ability. In addition, the AP texture features performed better 
than the PP texture features in MVI prediction.

The present study involved a total of 142 patients, 53 of 
which were MVI‑positive patients and 89 MVI‑negative. The 
MVI‑positive rate was consistent with the reported rate in 

Table IV. Multivariate logistic regression analysis of the texture 
parameters in predicting the microvascular invasion status in 
the arterial and portal venous phases in the training cohort.

A, Arterial phase

Feature	 OR	 P‑value

(Intercept)a	 0.455	 0.003
Uniformity	 1.301	 0.387
ClusterShade	 0.524	 0.059
ClusterProminence	 0.593	 0.262
LRLGLE	 0.494	 0.170

B, Portal venous phase

Feature	 OR	 P‑value

(Intercept)a	 7.310	 0.754
GlcmEntropy	 0.732	 0.146  
sumEntropy	 0.002	 0.474
sumAverage	 2.230e+05	 0.124
MinIntensity	 0.999	 0.563
RLN	 1.000	 0.371

aIntercept is the constant term in the logistic regression equation. 
OR, odds ratio; LRLGLE, LongRunLowGreyLevelEmphasis; RLN, 
RunLengthNonuniformity.

Table V. Multivariate logistic regression analysis of the 
combined clinical‑radiological and texture features to predict 
the microvascular invasion status in the AP and PP in the 
training cohort.

	 AP Model	 PP Model
	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ 
Features	 OR	 P‑value	 OR	 P‑value

(Intercept)a	 0.257	 0.282	‑ 3.068	 0.052
MTD, cm	 1.395	 0.242	 0.759	 0.032
Differentiation				  
  moderate vs. poor	 0.559	 0.284	‑ 0.838	 0.179
  well vs. low	 0.672	 0.747	‑ 0.697	 0.560
α‑fetoprotein, ng/ml				  
  7‑400 vs. ≤7	 1.801	 0.298	 1.307	 0.027
  >400 vs. ≤7	 3.771	 0.053	 1.768	 0.017
Texscore	 2.552	 0.003	 0.449	 0.294

aIntercept is the constant term in the logistic regression equation, and 
is not a clinical‑radiological feature. AP, arterial phase; PP,  portal 
venous phase; OR, odds ratio; MTD, maximum tumor diameter.
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the literature (8), which was approximately 30.0%. Previous 
studies have reported that the tumor size of HCC was one 
of the most important predictive factors for MVI (26,27). 
This is consistent with the results of the current study. In the 
training cohort, MTD in the MP group (3.82±0.88 cm) was 
significantly greater than that in the MN group (3.21±0.94 cm) 
(P=0.002), since tumor size is an important feature of tumor 
burden. Moreover, patients with poorer tumor histological 

differentiation were observed in the MP group (P=0.026), 
and this feature has been reported to be a predictor of MVI 
in previous studies (28,29), possibly due to the high invasive-
ness of poorly differentiated tumors. In the present study, the 
result showed that the MP group tended to have higher AFP 
levels (P=0.025). Serum AFP level is considered a marker 
of HCC, which has also been reported to correlate with 
MVI (30). Nevertheless, the mechanism needs to be further 

Table VI. Predictive performance of the texture and combined models in predicting the microvascular invasion status in the 
training and validation cohorts.

	 Training cohort (n=99)	 Validation cohort (n=43)
	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ 
Model	 Phase	 AUC	 ACC	 SEN	 SPE	 AUC	 ACC	 SEN	 SPE

Texture	 AP	 0.765	 0.768	 0.730	 0.790	 0.773	 0.791	 0.750	 0.815
	 PP	 0.707	 0.727	 0.622	 0.790	 0.623	 0.767	 0.500	 0.926
Combined	 AP	 0.810	 0.798	 0.811	 0.790	 0.794	 0.837	 0.812	 0.852
	 PP	 0.799	 0.758	 0.730	 0.774	 0.706	 0.721	 0.750	 0.704

AP, arterial phase; PP, portal venous phase; AUC, area under the curve; ACC, overall accuracy; SEN, sensitivity; SPE, specificity.

Figure 4. Nomograms for predicting the microvascular invasion status of hepatocellular carcinoma in (A) the arterial phase and (B) portal venous phase using 
the texture signature and clinical‑radiological features. AFP) levels 1, 2 and 3 stand for ≤7, 7‑400 and >400 ng/ml, respectively. Differentiation levels 1, 2 and 3 
stand for poor, moderate and well differentiation, respectively. MTD, maximum tumor diameter; AFP, α‑fetoprotein.
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clarified. In the validation cohort, the above results were 
confirmed again.

CE‑MRI texture analysis of the AP and PP images was 
used to build models for predicting the MVI status, and 
the AP  images showed better predictive ability than did 
the PP  images. Four texture features in AP (uniformity, 
ClusterProminence, ClusterShade and LRLGLE) and five in 
PP (MinIntensity, GlcmEntropy, sumAverage, sumEntropy 
and RLN) were entered into the multivariate logistic regres-
sion analysis. These features frequently appeared in texture 
or radiomics research and showed noteworthy diagnostic and 
predictive efficiency, which could be explained by their defini-
tions (31,32). All these features reflect the heterogeneity in an 
image from a different aspect, and were thus related to tumor 
heterogeneity from a clinical point of view. Previous studies 
have shown that tumor heterogeneity is related to tumor 

differentiation, angiogenesis and prognosis (33,34). On the 
basis of the current results, tumor heterogeneity may be associ-
ated with the occurrence of MVI.

In the multivariate logistic regression analysis, the directly 
enter mode was used to build the predictive model, but the 
P‑values of the texture features in the texture model were not 
significant. The possible explanation was that all parameters 
were equally important, and hence, no significant texture 
features were observed in the regression. The combined model 
was also built by adding the clinical‑radiological features to 
the multivariate logistic regression. The nomogram was used 
to visualize the combined model and to reveal the weight of the 
clinical‑radiological and texture features. For clinical use of 
the model, the total scores of each patient could be calculated 
based on the nomogram. High scores corresponded to a high 
probability of MVI occurrence. The nomogram showed that 

Figure 5. ROC curves for the texture and combined models in predicting the microvascular invasion status in the training cohort. The solid dots represent the 
optimal cutoff values (specificity, sensitivity) for discrimination. The AUC for the texture models in (A) AP and (B) PP are 0.765 and 0.707, respectively. The 
AUC for the combined models in (C) AP and (D) PP are 0.810 and 0.799, respectively. ROC, receiver operating characteristic; AUC, area under the curve; 
AP, arterial phase; PP, portal‑venous phase.
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the texture signature accounted for a higher proportion in the 
total points than did the clinical‑radiological features in AP.

In the ROC analysis, the combined model showed a little 
better predictive performance than did the texture model 
in the validation cohort both in AP (AUC, 0.794 vs. 0.773; 
specificity, 0.852 vs. 0.815; sensitivity, 0.812 vs. 0.750) and in 
PP (AUC, 0.706 vs. 0.623; specificity, 0.704 vs. 0.926; sensi-
tivity, 0.750 vs. 0.500). The predictive ability was better in AP 
than in PP. The possible explanations might be that the blood 
supply to the HCC is mainly dependent on the hepatic artery, 
and that the AP image could more clearly reflect the changes in 
small blood vessels in the HCC. Moreover, when MVI occurs, 
the local hemodynamics of the liver tissue around the tumor 
changes. Therefore, the changes in MRI texture features in AP 
were more obvious than those in PP.

From a clinical perspective, the results of the present 
study suggest that CE‑MRI texture analysis may be an option 

for preoperatively predicting MVI in HCC. This could alert 
pathologists to conduct more detailed pathological examina-
tions, particularly when preoperative texture analysis suggests 
a high possibility of MVI occurrence. Meanwhile, predicting 
the possibility of MVI occurrence could also help clinicians 
select more suitable surgical procedures for HCC patients. A 
number of studies have shown that anatomic resection (35,36) 
and wide resection SM (10) may provide radical treatment in 
HCC patients with MVI. Intrahepatic metastases resulting 
from MVI could also be reduced, thereby improving the 
prognosis.

The present study had the following advantages. First, to 
our knowledge, this was the first study to use 3D MRI texture 
features to build a model for predicting the MVI status preop-
eratively and noninvasively. The 3D VOI may have a better 
predictive performance since MVI could occur in every slice, 
and 3D feature analysis considers all of the available slices 

Figure 6. ROC curves for the texture and combined models in predicting the microvascular invasion status in the validation cohort. The solid dots represent the 
optimal cutoff values (specificity, sensitivity) for discrimination. The AUC for the texture models in the (A) AP and (B) PP are 0.773 and 0.623, respectively. 
The AUC for the combined models in (C) AP and (D) PP are 0.794 and 0.706, respectively. ROC, receiver operating characteristic; AUC, area under the curve; 
AP, arterial phase; PP, portal‑venous phase.
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with abundant information. Previous studies have also shown 
that 3D features improved the diagnostic accuracy than did 
two‑dimensional features (37,38). Second, both the AP and 
PP images were analyzed to compare their predictive perfor-
mance. Third, training and validation cohorts were used, 
making the model more objective. Therefore, the process and 
method established in the present study provide a basis for 
further computer‑aided and artificial‑intelligence analyses for 
predicting MVI in HCC.

The current study also had several limitations. First, this 
was a retrospective study with a single‑center design; therefore, 
selection bias was unavoidable. Second, the sample size was 
small for texture analysis. More cases are needed to verify the 
results. Third, the manual segmentation of tumors may have 
introduced a certain amount of subjectivity. The MVI grade in 
the positive group was not taken into account. Forth, the present 
study did not include des‑γ‑carboxy‑prothrombin (DCP) as it 
was not tested routinely in our hospital, although a study has 
reported that DCP was useful for prediction of MVI (39). At 
last, no follow‑up and survival analysis were performed, and 
hence, the relationship between prognosis and texture features 
could not be further clarified.

In conclusion, model‑based texture analysis of CE‑MRI 
could predict MVI in HCC preoperatively and noninvasively. 
The AP image shows better predictive efficiency than PP image. 
The combined model of AP with clinical‑radiological features 
could improve MVI prediction ability. It may be of value to 
clinicians in objectively selecting appropriate treatment strate-
gies and as an individualized predictive tool for improving 
clinical outcomes.
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