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Abstract. The lack of clinically useful biomarkers compro-
mise the personalized management of lung adenocarcinomas 
(ADCs); epigenetic events and DNA methylation in particular 
have exhibited potential value as biomarkers. By comparing 
genome‑wide DNA methylation data of paired lung ADCs 
and normal tissues from 6 public datasets, cancer‑specific 
CpG island (CGI) methylation changes were identified with 
a pre‑specified criterion. Correlations between DNA meth-
ylation and expression data for each gene were assessed by 
Pearson correlation analysis. A prognostically relevant CGI 
methylation signature was constructed by risk‑score analysis, 
and was validated using a training‑validation approach. 
Survival data were analyzed by log‑rank test and Cox regres-
sion model. In total, 134 lung ADC‑specific CGI CpGs were 
identified, among which, a panel of 9 CGI loci were selected as 
prognostic candidates, and were used to construct a risk‑score 
signature. The novel CGI methylation signature was identi-
fied to classify distinct prognostic subgroups across different 
datasets, and was demonstrated to be a potent independent 
prognostic factor for overall survival time of patients with lung 
ADCs. In addition, it was identified that cancer‑specific CGI 
hypomethylation of RPL39L, along with the corresponding 
gene expression, provided optimized prognostication of lung 
ADCs. In summary, cancer‑specific CGI methylation aber-
rations are optimal candidates for novel biomarkers of lung 

ADCs; the 9‑CpG methylation panel and hypomethylation of 
RPL39L exhibited particularly promising significance. 

Introduction

Non‑small cell lung cancer (NSCLC) is the leading cause of 
cancer‑associated mortality worldwide, and adenocarcinoma 
(ADC) is its most common histological subtype (1). Despite 
multiple treatment modalities, NSCLC is commonly associ-
ated with unfavorable outcomes, and has a 5‑year survival rate 
of <20% (1). Several factors are known to contribute to the 
poor prognosis of patients with NSCLC, including late diag-
nosis of disease and a lack of effective drugs (2). NSCLCs are 
a clinically and molecularly heterogeneous group of diseases, 
and survival outcome or treatment response varies among 
individuals (3). Therefore, the absence of clinically informa-
tive biomarkers for stratifying different risk subgroups or 
guiding targeted treatment decisions is also notable. Efforts to 
identify potential biomarkers have been made, with a focus on 
genetic alterations including somatic mutations, copy number 
variations and gene expression; however, few are suitable for 
routine use in the field of NSCLC treatment (3‑5).

Epigenetic changes, and particularly those at the DNA 
methylation level, are implicated in tumor initiation and 
progression (6). Hypermethylation of CpG islands (CGI) at the 
promoter regions of tumor‑suppressor genes and consequent 
transcriptional silencing represents the best‑known epigenetic 
event in cancer biology (6). As a novel molecular candidate for 
cancer biomarker discovery, DNA methylation has numerous 
advantages over the genetic alteration‑ or gene expression‑based 
biomarkers for clinical application, including reliable DNA 
samples, stable methylation changes, informative biological 
relevance and drug‑induced reversibility  (7). Early efforts 
with candidate‑gene approaches have identified a number of 
useful prognostic biomarkers based on the CGI methylation 
status of key genes, including Ras association domain family 1 
isoform A (RASSF1A), runt‑related transcription factor 3, 
and deleted in esophageal and lung cancer 1, in NSCLC (8). 
Unfortunately, these single‑gene methylation events were 
unable to demonstrate consistent prognostic ability in indepen-
dent validation studies, and therefore have not effected a real 
change in routine practice (8). High‑throughput genome‑wide 
DNA methylation profiling techniques have been increasingly 
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used for the detection of the cancer genome markers. These 
methods may provide a comprehensive and unbiased iden-
tification of prognostic DNA methylation events throughout 
the epigenome, eventually leading to the improvement of 
personalized medicine for NSCLC (3).

The present study aimed to identify clinically useful 
epigenetic biomarkers from lung ADC‑specific CGI meth-
ylation changes at different gene regions using genome‑wide 
DNA methylation microarray data of lung ADCs and 
matched normal tissues from 6 publically available datasets. 
Accordingly, a 9‑CpG CGI methylation panel and hypometh-
ylation/overexpression of ribosomal protein 39 like (RPL39L) 
were identified, which may be of potential value for optimizing 
the risk stratification and personalized management of lung 
ADCs. 

Materials and methods

Public datasets 
The Cancer Genome Atlas (TCGA). Genome‑wide DNA 
methylation data and corresponding clinical information 
were retrieved from TCGA data portal (https://tcga‑data.nci.
nih.gov/tcga/, accessed March 2016), including a dataset of 
65 lung ADCs [female/male, 35/30; Tumor‑Node‑Metastasis 
(TNM) staging, I to IV (1); median age, 67 years; age range, 
38‑84  years] and 24 matched non‑tumor lung samples 
assayed using an Illumina Infinium 27k BeadChip system 
(TCGA‑27k set) and a dataset of 456 tumor samples 
[female/male, 244/212; TNM staging, I to IV (1); median age, 
66 years; age range, 33‑88 years] and 29 matched normal 
samples assayed using a Illumina Infinium 450k BeadChip 
system (TCGA‑450k set) (3). There were Infinium 27k and 
450k DNA methylation data for 6 tumor samples. For the 
transcriptome data, Level 3 Illumina HiSeq_RNASeqV2 data 
were obtained for all tumor samples from the TCGA‑27k set, 
and for 452 tumor samples and 58 matched normal samples 
from the TCGA‑450k set. Among the aforementioned 
TCGA datasets, Level 2 IlluminaGA_DNASeq data were 
also available for 490 samples, and Level 3 Affymetrix 
Genome_Wide_SNP_6 data for 512 samples. Somatic copy 
number data were analyzed within the GISTIC2.0 module 
on GenePattern (http://genepattern.broadinstitute.org/gp/; 
accessed March 2016). An amplitude threshold of ±0.2 was 
used.

Gene Expression Omnibus (GEO). Genome‑wide DNA meth-
ylation microarray data were also obtained from 4 GEO series 
(https://www.ncbi.nlm.nih.gov/geo/; access at March 2016), 
including: i) A dataset of 59 matched lung ADCs [female/male, 
45/14; TNM stage  I to  IV  (1); median age, 68  years; age 
range, 39‑86 years] and non‑tumor lung samples [accession 
no. GSE32861; Selamat et al set (9)]; ii) a dataset of 26 matched 
tumor [female/male, 14/12; TNM stage I to IV (1); median age, 
unknown] and normal lung samples [accession no. GSE32866; 
Ontario Tumor Bank set  (9)]; iii) a dataset of 28 matched 
tumor [female/male, 22/6; TNM stage  I to  IV (1); median 
age, 65 years; age range, unknown] and normal lung samples 
of never‑smokers [accession no. GSE62948; Mansfield et al 
set (10)]; and iv) a dataset of 35 matched tumors [female/male, 
19/16; TNM stage I to II (1); median age, 63 years; age range, 

47‑88 years] and normal lung samples of patients with lung 
ADCs [accession no. GSE63384; Robles et al set (11)].

Ethical approval. All procedures performed in studies 
involving humans were conducted in accordance with the 
ethical standards of the institutional research committees and 
with the 1964 Declaration of Helsinki and its later amend-
ments or comparable ethical standards. Informed consent 
was obtained from all individual participants as reported by 
included datasets (3,9‑11). 

Microarray data processing. For the Level 3 DNA meth-
ylation microarray data (Infinum BeadChips, Illumina 
Inc.), the methylation level of each interrogated CpG locus 
was summarized as a β‑value, providing a continuous and 
quantitative index of DNA methylation, ranging from 0 
(completely unmethylated) to 1 (completely methylated). 
To ensure that β‑values were comparable across each 
dataset/platform, batch effects were adjusted by a non‑para-
metric empirical Bayes approach (ber R package; version 
3.2.5; https://www.r‑project.org/)  (12‑14). The empirical 
Bayes correction was demonstrated to effectively remove 
batch effects following initial microarray data normaliza-
tion  (12,13). M‑value transformation was applied prior to 
the batch effect adjustment to avoid a negative β‑value, as 
described previously (15). For the gene‑level analysis of the 
Level 3 Illumina HiSeq_RNASeqV2 data, expression values 
of 0 were set as the overall minimum value, and all data were 
log2 transformed and standardized to z‑scores within each 
gene. All missing values were imputed by nearest neighbor 
averaging (impute R package) (3). 

Cancer‑specific CGI methylation loci and their correla‑
tion with gene expression. The CpG probes interrogated 
by the Infinium 27k and 450k platforms were maintained 
for analysis, and were annotated using the Infinium Human 
Methylation 450k annotation file. Prior selection of CpGs 
probes was performed by removal of those that: i) Targeted 
the X and Y chromosomes; ii) contained a single‑nucleotide 
polymorphism within 5 base pairs of and including the 
targeted CpGs; and iii) were not located at CGI regions of 
a gene; CGI was defined by the UCSC genome reference 
(http://genome.ucsc.edu/; accessed March 2016). For CpGs 
corresponding to multiple annotation terms, the first one in 
the 450k annotation file were used in the present study, to 
simplify data interpretation. Finally, a total of 9,270 CpG 
probes were included for additional analysis. Differentially 
methylated CpGs were computed by two‑sample Wilcoxon 
test (samr R package). Lung ADC‑specific CpGs were 
defined as those having a median β difference ≥0.2 between 
matched tumor and non‑tumor lung samples and a false 
discovery rate (FDR) q‑value ≤0.05 in at least 4 of the 6 
datasets. Methylation and expression data were paired 
based on each Entrez Gene ID (https://www.ncbi.nlm.nih.
gov/gene/; accessed March 2016). The correlation between 
methylation and expression level of each gene was evalu-
ated by Pearson's correlation analysis, and those having an 
absolute Pearson correlation coefficient (r)≥0.3, 0.2‑0.3, or 
0.1‑0.2 and P≤0.05 were defined as strong, moderate or weak 
correlations, respectively. 
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Construction and validation of a CGI methylation‑based 
risk score signature. The training‑validation approach was 
used to construct a prognostic CGI methylation signature. 
The training phase was performed using the TCGA‑450k set, 
where the methylation levels of lung ADC‑specific CpGs were 
correlated with overall survival (OS) time by univariate Cox 
regression analysis with permutation correction within the 
Biometric Research Branch‑Array Tools (http://brb.nci.nih.
gov/BRB‑ArrayTools, accessed March 2016). Those that exhib-
ited significant correlation with OS (permutation P≤0.05), and 
high variability [standard deviation (SD)≥0.10] were finally 
selected as prognostic methylation candidates. Probes with 
a higher SD variability indicated that the interrogated CpGs 
loci may have more opportunities to be dysregulated across 
tumors. These CpGs may therefore be more likely to serve 
roles in tumor biology, and the alterations in those CpGs may 
be easier to detect (16). The prognostic model was established 
by risk‑score analysis, where each patient was assigned a risk 
score that is a linear combination of the methylation levels 
of each CpG weighted by their corresponding Cox regres-
sion coefficients (17). The median risk score (3.08) from the 
training set was pre‑specified as cut‑off for stratifying low‑risk 
and high‑risk subgroups. The validation phase was performed 
on the aforementioned TCGA‑27k (3) and Robles et al (11) 
datasets. An additional dataset of patients with lung ADC 
[female/male, 127/125; TNM stage I to IV (1); median age, 
65 years; age range, 40‑90 years] with relapse‑free survival 
(RFS) time was also included for independent validation 
[accession no. GSE39279; n=252; Sandoval et al set (2)]. 

Database for Annotation, Visualization and Integrated 
Discovery (DAVID) annotation clustering analysis. DAVID 
(version 6.7; https://david.ncifcrf.gov/; accessed March 
2016) (18) was used to create functional annotation for genes 
corresponding to cancer‑specific differentially‑methylated 
CpGs with Gene Ontology  (19), BioCarta  (20) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathway 
tools (21).

Statistical analysis. Survival data were estimated by the 
Kaplan‑Meier method, and compared using the log‑rank 
test. Survival data were summarized as median OS time or 
RFS time. The associations between variables and survival 
data were evaluated using the univariate Cox regression 
model. A multivariate Cox regression model was used to 
evaluate the independence of each potential prognostic indi-
cator by incorporating those significant variables from the 
univariate Cox model. Pooled survival data were analyzed 
by meta‑analysis with the inverse‑variance method, where 
either fixed‑ or random‑effect models were used on the basis 
of the intra‑dataset heterogeneity. Heterogeneity was analyzed 
using the χ2 test and I2 statistic, with Pheterogeneity <0.1 or I2 

value >50% being considered significant. When integrating 
the DNA methylation and gene expression data of RPL39L, 
the optimal cut‑off values to segregate patients into poor and 
good prognostic subgroups were determined by the maximally 
selected rank statistics, as described previously (22). All calcu-
lations were performed with SPSS v19.0 (SPSS Software, Inc., 
Chicago, IL, USA) and R software version 3.2.5, and P≤0.05 
was considered to indicate a statistically significant difference. 

Results 

Identification of cancer‑specific CGI methylation loci in lung 
ADCs. By comparing the genome‑wide DNA methylation data of 
matched lung ADCs and non‑tumor tissues from the 6 included 
datasets, a total of 134 CGI loci (corresponding to 119 genes) 
that met the study criteria of lung ADCs‑specific methylation 
changes were identified. Almost all of these CGI CpGs gained 
DNA methylation, whereas only 3 loci ([cg07693270 (RPL39L); 
cg24898753 (ferritin heavy chain 1); and cg06038133 (CORO6)] 
were hypomethylated in lung ADCs (Table I). DAVID annota-
tion analysis (18) revealed that those cancer‑specific methylation 
changes often affected genes with roles in the regulation of 
transcription (49  genes, P=3.60x10‑10), cell‑cell signaling 
(17 genes, P=1.29x10‑5) and cell surface receptor linked signal 
transduction (22 genes, P=0.042). Furthermore, by integrating 
TCGA gene expression data, it was identified that the methyla-
tion levels of 27 (20%), 23 (17%) and 45 (34%) CpGs exhibited 
strong, moderate and weak correlations with their gene expres-
sions, respectively. Accordingly, among those that were strongly 
associated with DNA methylation (n=82), 64 genes (78%) were 
differentially expressed between tumor and non‑tumor tissues. 
In summary, ADC‑specific CGI loci, and those with corre-
sponding gene expression aberrations in particular, may serve as 
potential biomarker candidates with diagnostic and prognostic 
possibilities.

Identification of a novel CGI methylation signature that is a 
potent prognostic indicator for OS time in lung ADCs. Within 
the univariate Cox regression model incorporating methyla-
tion data of those ADCs‑specific CGI loci, a total of 9 CGI 
CpGs were identified from the training set (TCGA‑450k 
set) that were significantly associated with OS (permutation 
P≤0.05), and that had higher variability (SD≥0.10) in lung 
ADCs. Characteristics of the 9 CGI CpGs are summarized in 
Table II. Methylation data of 7 and 2 CpGs exhibited nega-
tive and positive associations with OS, respectively (Table II). 
Accordingly, as aforementioned, the risk score formula for the 
CpGs of the MyoD family inhibitor (MDFI), homeobox D3 
(HOXD3), CKLF like MARVEL transmembrane domain 
containing 2 (CMTM2), paired box 3 (PAX3), LY6/PLAUR 
domain containing 5 (LYPD5), laeverin (LVRN), RPL39L, 
glutamate ionotropic receptor kainite type subunit 2 (GRIK2) 
and complexin 2 (CPLX2) genes was established as follows: 
Risk score=[(1.403 x β‑value of cg05345286 (MDFI)) + 
(1.564 x β‑value of cg18702197 (HOXD3)) + (1.646 x β‑value 
of cg01683883 (CMTM2)) + (1.526 x β‑value of cg02245378 
(PAX3)) + (0.984 x β‑value of cg12768605 (LYPD5)) + (1.316 x 
β‑value of cg25044651 (Laeverin (LVRN)) + (‑1.130 x β‑value 
of cg07693270 (RPL39L)) + (1.088 x β‑value of cg26316946 
(GRIK2)) + (‑0.835 x β‑value of cg19885761 (CPLX2))]. On the 
basis of the risk formula, each patient from the TCGA‑450k 
set was assigned a risk score, and then classified into low‑risk 
or high‑risk groups using the median score as a cut‑off (3.08). 
Survival analysis indicated that in the TCGA‑450k set, the 
low‑risk group was associated with increased OS times 
compared with the high‑risk group [54.4 vs. 42.3 months, 
respectively; P=0.006 (log‑rank test); Fig. 1A]. 

To confirm its prognostic relevance, the CGI methylation 
signature in an additional 2 datasets, the TCGA‑27k and 
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Table I. Characteristics of the identified lung ADC‑specific CpGs at CpG island regions.

							       Pearson
						      Methylation	 coefficients	 Log2 fold
				    Association	 Association	 status between	 between DNA	 change between
				    with CpG	 with gene	 tumor and	 methylation and	 tumor and
Probes	 Chr.	 Symbols	 Gene ID	 island	 region	 normal tissues	 gene expressiona	 normal tissuesb

cg18335068	 19	 ZNF677	 342926	 Island	 5'UTR	 Hypermethylation	‑ 0.603	‑ 0.860
cg08089301	 17	 HOXB4	 3214	 Island	 1stExon	 Hypermethylation	‑ 0.536	‑ 0.326
cg04317399	 7	 HOXA4	 3201	 Island	 1stExon	 Hypermethylation	‑ 0.492	‑ 1.446
cg07533148	 1	 TRIM58	 25893	 Island	 1stExon	 Hypermethylation	‑ 0.475	‑ 1.407
cg07703401	 16	 HBQ1	 3049	 Island	 1stExon	 Hypermethylation	‑ 0.461	‑ 0.552
cg23432345	 7	 HOXA7	 3204	 Island	 1stExon	 Hypermethylation	‑ 0.436	‑ 0.648
cg12880658	 5	 CDO1	 1036	 Island	 1stExon	 Hypermethylation	‑ 0.414	‑ 1.599
cg02919422	 8	 SOX17	 64321	 Island	 5'UTR	 Hypermethylation	‑ 0.410	‑ 1.527
cg25875213	 19	 ZNF781	 163115	 Island	 5'UTR	 Hypermethylation	‑ 0.402	‑ 1.279
cg14458834	 17	 HOXB4	 3214	 Island	 1stExon	 Hypermethylation	‑ 0.389	‑ 0.326
cg10088985	 4	 CXCL5	 6374	 Island	 1stExon	 Hypermethylation	‑ 0.375	‑ 0.392
cg04048259	 20	 EDN3	 1908	 Island	 TSS200	 Hypermethylation	‑ 0.363	‑ 1.415
cg04062391	 19	 ZNF560	 147741	 Island	 5'UTR	 Hypermethylation	 ‑0.341	 Not Significant
cg16428251	 3	 SOX14	 8403	 Island	 TSS200	 Hypermethylation	 ‑0.341	 Not Significant
cg07621046	 10	 C10orf82	 143379	 Island	 TSS200	 Hypermethylation	‑ 0.337	‑ 0.355
cg18536148	 17	 TBX4	 9496	 Island	 5'UTR	 Hypermethylation	‑ 0.332	‑ 1.540
cg23290344	 8	 NEFM	 4741	 Island	 TSS1500	 Hypermethylation	‑ 0.328	‑ 0.336
cg21233722	 5	 DOCK2	 1794	 Island	 Body	 Hypermethylation	‑ 0.325	‑ 0.946
cg14384532	 15	 NTRK3	 4916	 Island	 TSS1500	 Hypermethylation	‑ 0.322	‑ 1.120
cg02008154	 7	 TBX20	 57057	 Island	 1stExon	 Hypermethylation	 ‑0.320	 Not Significant
cg21546671	 17	 HOXB4	 3214	 Island	 1stExon	 Hypermethylation	‑ 0.319	‑ 0.326
cg19885761	 5	 CPLX2	 10814	 Island	 5'UTR	 Hypermethylation	‑ 0.318	‑ 0.476
cg03734874	 14	 TMEM179	 388021	 Island	 TSS1500	 Hypermethylation	‑ 0.313	 0.530
cg17525406	 1	 AJAP1	 55966	 Island	 Body	 Hypermethylation	‑ 0.295	‑ 0.943
cg20616414	 9	 WNK2	 65268	 Island	 1stExon	 Hypermethylation	‑ 0.288	 0.946
cg10235817	 4	 ADRA2C	 152	 Island	 1stExon	 Hypermethylation	‑ 0.269	‑ 1.000
cg10141715	 12	 SLC5A8	 160728	 Island	 1stExon	 Hypermethylation	‑ 0.254	‑ 0.829
cg00015770	 4	 QRFPR	 84109	 Island	 1stExon	 Hypermethylation	 ‑0.246	 Not Significant
cg07536847	 1	 PAX7	 5081	 Island	 TSS1500	 Hypermethylation	‑ 0.237	 0.777
cg25484904	 4	 CWH43	 80157	 Island	 TSS1500	 Hypermethylation	‑ 0.237	‑ 0.971
cg13870866	 7	 TBX20	 57057	 Island	 1stExon	 Hypermethylation	 ‑0.235	 Not Significant
cg06092815	 2	 SPHKAP	 80309	 Island	 TSS200	 Hypermethylation	‑ 0.233	‑ 0.977
cg23710218	 8	 MSC	 9242	 Island	 1stExon	 Hypermethylation	‑ 0.225	 0.735
cg12111714	 13	 ATP8A2	 51761	 Island	 Body	 Hypermethylation	‑ 0.220	‑ 1.184
cg00548268	 7	 NPTX2	 4885	 Island	 TSS1500	 Hypermethylation	‑ 0.215	 0.843
cg21376883	 1	 ACTN2	 88	 Island	 Body	 Hypermethylation	‑ 0.213	‑ 1.639
cg08441806	 10	 NKX6‑2	 84504	 Island	 1stExon	 Hypermethylation	‑ 0.212	‑ 0.576
cg20959866	 1	 AJAP1	 55966	 Island	 TSS1500	 Hypermethylation	‑ 0.211	‑ 0.943
cg00662556	 18	 GALR1	 2587	 Island	 Body	 Hypermethylation	‑ 0.211	‑ 0.322
cg20792062	 12	 KCNA5	 3741	 Island	 5'UTR	 Hypermethylation	‑ 0.211	‑ 1.276
cg10556064	 16	 SMPD3	 55512	 Island	 5'UTR	 Hypermethylation	‑ 0.206	‑ 0.405
cg20291049	 2	 POU3F3	 5455	 Island	 1stExon	 Hypermethylation	‑ 0.200	 0.385
cg12614105	 7	 NPY	 4852	 Island	 5'UTR	 Hypermethylation	 ‑0.195	 Not Significant
cg09619146	 10	 CPXM2	 119587	 Island	 1stExon	 Hypermethylation	 ‑0.193	 Not Significant
cg04490714	 16	 SLC6A2	 6530	 Island	 1stExon	 Hypermethylation	‑ 0.190	‑ 0.375
cg13929328	 10	 FOXI2	 399823	 Island	 1stExon	 Hypermethylation	‑ 0.189	‑ 0.781
cg18081258	 14	 NDRG2	 57447	 Island	 TSS1500	 Hypermethylation	‑ 0.188	‑ 1.450
cg15343119	 18	 GALR1	 2587	 Island	 TSS1500	 Hypermethylation	‑ 0.187	‑ 0.322
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Table I. Continued.

							       Pearson
						      Methylation	 coefficients	 Log2 fold
				    Association	 Association	 status between	 between DNA	 change between
				    with CpG	 with gene	 tumor and	 methylation and	 tumor and
Probes	 Chr.	 Symbols	 Gene ID	 island	 region	 normal tissues	 gene expressiona	 normal tissuesb

cg00891541	 16	 SMPD3	 55512	 Island	 5'UTR	 Hypermethylation	‑ 0.187	‑ 0.405
cg10486998	 18	 GALR1	 2587	 Island	 TSS1500	 Hypermethylation	‑ 0.187	‑ 0.322
cg21245652	 2	 MAL	 4118	 Island	 TSS1500	 Hypermethylation	‑ 0.181	‑ 1.204
cg06675478	 13	 SOX1	 6656	 Island	 TSS200	 Hypermethylation	‑ 0.178	 0.352
cg26721264	 18	 GALR1	 2587	 Island	 TSS1500	 Hypermethylation	‑ 0.178	‑ 0.322
cg18952647	 15	 BNC1	 646	 Island	 TSS1500	 Hypermethylation	‑ 0.177	‑ 0.498
cg01683883	 16	 CMTM2	 146225	 Island	 TSS1500	 Hypermethylation	‑ 0.175	‑ 1.336
cg06722633	 1	 GRIK3	 2899	 Island	 Body	 Hypermethylation	 ‑0.175	 Not Significant
cg25942450	 5	 TLX3	 30012	 Island	 TSS200	 Hypermethylation	‑ 0.173	 0.474
cg27009703	 7	 HOXA9	 3205	 Island	 1stExon	 Hypermethylation	 ‑0.170	 Not Significant
cg04534765	 18	 GALR1	 2587	 Island	 1stExon	 Hypermethylation	‑ 0.170	‑ 0.322
cg19064258	 16	 HS3ST2	 9956	 Island	 1stExon	 Hypermethylation	‑ 0.163	‑ 0.265
cg02164046	 3	 SST	 6750	 Island	 1stExon	 Hypermethylation	 ‑0.159	 Not Significant
cg12768605	 19	 LYPD5	 284348	 Island	 TSS200	 Hypermethylation	‑ 0.153	‑ 0.346
cg25720804	 5	 TLX3	 30012	 Island	 1stExon	 Hypermethylation	‑ 0.153	 0.474
cg10883303	 7	 HOXA13	 3209	 Island	 1stExon	 Hypermethylation	‑ 0.150	 0.831
cg12457773	 6	 NRSN1	 140767	 Island	 5'UTR	 Hypermethylation	‑ 0.150	‑ 0.521
cg14008883	 10	 SLC18A3	 6572	 Island	 1stExon	 Hypermethylation	‑ 0.148	 0.725
cg03544320	 4	 CRMP1	 1400	 Island	 1stExon	 Hypermethylation	‑ 0.147	‑ 0.610
cg24199834	 4	 POU4F2	 5458	 Island	 1stExon	 Hypermethylation	 ‑0.145	 Not Significant
cg19456540	 14	 SIX6	 4990	 Island	 1stExon	 Hypermethylation	‑ 0.144	 0.392
cg08572611	 7	 ACTL6B	 51412	 Island	 Body	 Hypermethylation	 ‑0.142	 Not Significant
cg00489401	 5	 FLT4	 2324	 Island	 Body	 Hypermethylation	‑ 0.133	‑ 1.340
cg05373457	 8	 KCNS2	 3788	 Island	 5'UTR	 Hypermethylation	 ‑0.133	 Not Significant
cg14991487	 2	 HOXD9	 3235	 Island	 TSS200	 Hypermethylation	 ‑0.123	 Not Significant
cg02774439	 4	 HAND2	 9464	 Island	 5'UTR	 Hypermethylation	‑ 0.122	‑ 0.364
cg02757432	 10	 GPR26	 2849	 Island	 1stExon	 Hypermethylation	 ‑0.114	 Not Significant
cg25044651	 5	 LVRN	 206338	 Island	 1stExon	 Hypermethylation	 ‑0.112	 Not Significant
cg01354473	 7	 HOXA9	 3205	 Island	 1stExon	 Hypermethylation	 ‑0.112	 Not Significant
cg08109815	 6	 NMBR	 4829	 Island	 5'UTR	 Hypermethylation	‑ 0.107	‑ 0.506
cg10303487	 8	 DPYS	 1807	 Island	 1stExon	 Hypermethylation	‑ 0.107	‑ 0.816
cg18555440	 11	 MYOD1	 4654	 Island	 1stExon	 Hypermethylation	 ‑0.094	 Not Significant
cg09936561	 4	 DRD5	 1816	 Island	 1stExon	 Hypermethylation	 ‑0.085	 Not Significant
cg14859460	 5	 GRM6	 2916	 Island	 TSS200	 Hypermethylation	 ‑0.079	 Not Significant
cg18722841	 11	 PHOX2A	 401	 Island	 1stExon	 Hypermethylation	‑ 0.079	 0.428
cg09229912	 12	 CUX2	 23316	 Island	 1stExon	 Hypermethylation	 ‑0.076	 Not Significant
cg20404387	 1	 FAM43B	 163933	 Island	 1stExon	 Hypermethylation	‑ 0.072	 0.314
cg12782180	 7	 LEP	 3952	 Island	 TSS1500	 Hypermethylation	‑ 0.070	 0.987
cg15489294	 5	 LVRN	 206338	 Island	 TSS1500	 Hypermethylation	 ‑0.068	 Not Significant
cg25993718	 20	 CBLN4	 140689	 Island	 TSS200	 Hypermethylation	‑ 0.067	‑ 0.431
cg16787600	 10	 SORCS3	 22986	 Island	 1stExon	 Hypermethylation	 ‑0.062	 Not Significant
cg07307078	 18	 TUBB6	 84617	 Island	 TSS1500	 Hypermethylation	‑ 0.059	‑ 1.308
cg08832227	 12	 KCNA1	 3736	 Island	 Body	 Hypermethylation	‑ 0.058	‑ 0.405
cg01381846	 7	 HOXA9	 3205	 Island	 1stExon	 Hypermethylation	 ‑0.055	 Not Significant
cg02332525	 3	 GRM7	 2917	 Island	 1stExon	 Hypermethylation	‑ 0.050	‑ 0.368
cg15748507	 10	 PRLHR	 2834	 Island	 Body	 Hypermethylation	 ‑0.049	 Not Significant
cg15191648	 18	 SALL3	 27164	 Island	 TSS200	 Hypermethylation	‑ 0.048	 0.690
cg26609631	 13	 GSX1	 219409	 Island	 5'UTR	 Hypermethylation	 ‑0.048	 Not Significant
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Robles et al (11) datasets, were analyzed. By directly applying 
the risk formula and using cut‑off points, the TCGA‑27k set 
was divided into a low‑risk group (n=21) and a high‑risk group 
(n=44). In concordance with the training set, patients within 

the low‑risk group exhibited increased OS times compared 
with those within the high‑risk group [77.3 vs. 34.2 months; 
P=0.039 (log‑rank test); Fig. 1B]. Similar results were also 
observed within the Robles et al  (11) set, where low‑risk 

Table I. Continued.

							       Pearson
						      Methylation	 coefficients	 Log2 fold
				    Association	 Association	 status between	 between DNA	 change between
				    with CpG	 with gene	 tumor and	 methylation and	 tumor and
Probes	 Chr.	 Symbols	 Gene ID	 island	 region	 normal tissues	 gene expressiona	 normal tissuesb

cg13302823	 8	 SCRT1	 83482	 Island	 1stExon	 Hypermethylation	 ‑0.033	 Not Significant
cg01839464	 18	 DCC	 1630	 Island	 Body	 Hypermethylation	‑ 0.029	‑ 1.162
cg25691167	 7	 FERD3L	 222894	 Island	 1stExon	 Hypermethylation	 ‑0.025	 Not Significant
cg05345286	 6	 MDFI	 4188	 Island	 Body	 Hypermethylation	‑ 0.024	 0.960
cg25574024	 11	 IGF2AS	 51214	 Island	 Body	 Hypermethylation	 ‑0.020	 Not Significant
cg11525285	 14	 VSX2	 338917	 Island	 1stExon	 Hypermethylation	‑ 0.019	‑ 0.269
cg22187630	 19	 CACNA1A	 773	 Island	 1stExon	 Hypermethylation	‑ 0.016	 0.290
cg21296230	 15	 GREM1	 26585	 Island	 5'UTR	 Hypermethylation	‑ 0.010	 1.327
cg13791131	 11	 IGF2AS	 51214	 Island	 Body	 Hypermethylation	 ‑0.009	 Not Significant
cg01295203	 8	 PRDM14	 63978	 Island	 TSS1500	 Hypermethylation	 0.002	 Not Significant
cg26252167	 6	 GPR6	 2830	 Island	 1stExon	 Hypermethylation	 0.004	 Not Significant
cg13547644	 1	 ACTA1	 58	 Island	 5'UTR	 Hypermethylation	 0.012	 Not Significant
cg22881914	 14	 NID2	 22795	 Island	 TSS1500	 Hypermethylation	 0.028	 0.667
cg23207990	 4	 SFRP2	 6423	 Island	 TSS1500	 Hypermethylation	 0.041	 0.729
cg13323752	 12	 SLC2A14	 144195	 Island	 TSS200	 Hypermethylation	 0.054	‑ 0.701
cg09643544	 19	 ZNF177	 7730	 Island	 1stExon	 Hypermethylation	 0.064	‑ 0.725
cg08575537	 7	 EPO	 2056	 Island	 Body	 Hypermethylation	 0.064	‑ 0.262
cg15107670	 11	 WT1	 7490	 Island	 1stExon	 Hypermethylation	 0.067	 0.569
cg26186727	 18	 NETO1	 81832	 Island	 1stExon	 Hypermethylation	 0.086	 1.372
cg06958829	 17	 ACSF2	 80221	 Island	 Body	 Hypermethylation	 0.091	‑ 0.500
cg04907257	 5	 ADCY2	 108	 Island	 TSS1500	 Hypermethylation	 0.097	‑ 0.578
cg21591742	 2	 HOXD10	 3236	 Island	 TSS1500	 Hypermethylation	 0.114	 0.507
cg03958979	 6	 NR2E1	 7101	 Island	 TSS1500	 Hypermethylation	 0.123	 1.200
cg02245378	 2	 PAX3	 5077	 Island	 Body	 Hypermethylation	 0.126	 Not Significant
cg14144305	 11	 ALX4	 60529	 Island	 Body	 Hypermethylation	 0.129	 Not Significant
cg25902889	 19	 FSD1	 79187	 Island	 Body	 Hypermethylation	 0.141	 0.842
cg22660578	 17	 LHX1	 3975	 Island	 TSS1500	 Hypermethylation	 0.151	 0.784
cg22341310	 19	 ZNF541	 84215	 Island	 Body	 Hypermethylation	 0.172	‑ 0.621
cg13462129	 7	 DLX5	 1749	 Island	 Body	 Hypermethylation	 0.193	 0.678
cg11376198	 1	 AKR7L	 246181	 Island	 TSS200	 Hypermethylation	 0.243	 0.531
cg26316946	 6	 GRIK2	 2898	 Island	 1stExon	 Hypermethylation	 0.246	 0.659
cg03874199	 2	 HOXD12	 3238	 Island	 TSS200	 Hypermethylation	 0.283	 0.501
cg23130254	 2	 HOXD12	 3238	 Island	 1stExon	 Hypermethylation	 0.317	 0.501
cg00767581	 2	 HOXD4	 3233	 Island	 TSS1500	 Hypermethylation	 0.353	 Not Significant
cg18702197	 2	 HOXD3	 3232	 Island	 TSS1500	 Hypermethylation	 0.355	 0.422
cg07693270	 3	 RPL39L	 116832	 Island	 5'UTR	 Hypomethylation	‑ 0.668	 1.296
cg24898753	 11	 FTH1	 2495	 Island	 TSS1500	 Hypomethylation	 0.053	‑ 0.589
cg06038133	 17	 CORO6	 84940	 Island	 Body	 Hypomethylation	 0.054	‑ 0.849

aPearson coefficients that were calculated using all TCGA lung ADC samples with paired DNA methylation and gene expression data. bLog2 
fold changes that were calculated using the expression data from all paired lung ADCs and normal tissues from TCGA. TSS, transcription start 
site; UTR, untranslated region; TCGA, The Cancer Genome Atlas; ADC, adenocarcinoma; Chr., chromosome. 
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patients were associated with improved OS compared with 
the high‑risk patients [median time not reached for either 
group; P=0.009 (log‑rank test); Fig. 1C]. Pooled analysis 
at dataset level confirmed the prognostic relevance of the 
CGI methylation signature for lung ADCs [hazard ratio 
(HR)=1.61, 95% confidence interval (CI), 1.20‑2.17; P=0.002; 
I2=29%, P=0.25]. 

Univariate Cox regression analysis of all patients from 
TCGA datasets (combined TCGA‑27k and TCGA‑450k sets) 
indicated that only tumor stages and the CGI methylation 
signature were significantly associated with OS, while patient 
age, sex, tumor stages, smoking status, MET proto‑oncogene, 
receptor tyrosine kinase amplification and mutations in key 
genes including KRAS proto‑oncogene, GTPase, Epithelial 
growth factor receptor, tumor protein P53 and B‑Raf 
proto‑oncogene, serine/threonine kinase were not. Finally, 
the multivariate Cox regression analysis demonstrated the 

prognostic significance of the CGI methylation signature of 
the present study in lung ADCs (Table III).

CGI methylation signature is not a strong prognostic indicator 
of RFS in lung ADCs. To investigate the association of the CGI 
methylation signature of the present study with RFS, it was 
analyzed within the TCGA‑450k set, which yielded a margin-
ally significant difference in RFS between each risk group 
[33.9 vs. 27.0 months; P=0.049 (log‑rank test); Fig. 2A]. Then, in 
the TCGA‑27k set, low‑risk patients appeared to exhibit longer 
RFS compared with the high‑risk patients, but the difference 
did not reach significance (68.2 vs. 17.0 months; log‑rank test 
P=0.072; Fig. 2B). An additional large cohort of lung ADCs 
was finally introduced into the validation phase, where the 
CGI methylation signature also failed to significantly stratify 
patients into subgroups with distinct RFS outcomes [62.6 vs. 
55.6 months; P=0.492 (log‑rank test); Fig. 2C]. Despite that, the 

Figure 1. Kaplan‑Meier curves of overall survival time using the 9‑CpG island methylation signature across each dataset. (A) TCGA‑450k dataset. 
(B) TCGA‑27k dataset. (C) Robles et al (11) dataset. TCGA, The Cancer Genome Atlas.

Table II. Characteristics of the 9‑CpG CpG island methylation panel.

						      Pearson
				    Methylation	 Expression	 coefficients	
		  Association		  status between	 status between	 between DNA	 Univariate
		  with gene		  tumor and	 tumor and	 methylation and	 Cox	 Permutation
Probe ID	 Symbol	 region	 Chr.	 normal tissuesa	 normal tissuesb	 gene expressionc	 coefficientsd	 P‑valued

cg05345286	 MDFI	 Body	 6	 Hyper	 Up	‑ 0.024	 1.403	 0.003
cg18702197	 HOXD3	 TSS1500	 2	 Hyper	 Up	 0.355	 1.564	 0.004
cg01683883	 CMTM2	 TSS1500	 16	 Hyper	 Down	‑ 0.175	 1.646	 0.012
cg02245378	 PAX3	 Body	 2	 Hyper	 NS	 0.126	 1.526	 0.017
cg12768605	 LYPD5	 TSS200	 19	 Hyper	 Down	‑ 0.153	 0.984	 0.024
cg25044651	 LVRN	 1stExon	 5	 Hyper	 NS	‑ 0.112	 1.316	 0.030
cg07693270	 RPL39L	 5'UTR	 3	 Hypo	 Up	‑ 0.668	‑ 1.130	 0.043
cg26316946	 GRIK2	 1stExon	 6	 Hyper	 Up	 0.246	 1.088	 0.043
cg19885761	 CPLX2	 5'UTR	 5	 Hyper	 Down	‑ 0.318	‑ 0.835	 0.049

aMethylation status in all the 6 included datasets. bExpression status in all matched lung adenocarcinomas and normal tissues within the 
combined TCGA dataset (TCGA‑27k and TCGA‑450k sets). cPearson coefficients in all TCGA tumor samples with paired DNA methylation 
and gene expression data. dCalculated within the TCGA‑450k training set. Chr., chromosome; hyper, hypermethylation; hypo, hypomethyl-
ation; up, upregulation; down, downregulation; NS, not significantly altered; TCGA, The Cancer Genome Atlas; TSS, transcription start site; 
UTR, untranslated region; MDFI, MyoD family inhibitor; HOXD3, homeobox D3; CMTM2, CKLF like MARVEL transmembrane domain 
containing 2; PAX3, paired box 3; LYPD5, LY6/PLAUR domain containing 5; LVRN, laeverin; RPL39L, ribosomal protein 39 like; GRIK2, 
glutamate ionotropic receptor kainite type subunit 2; CPLX2, complexin 2. 
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pooled analysis of the 3 datasets yielded a significant difference 
in RFS between the risk groups (HR, 1.30; 95% CI, 1.04‑2.62; 
P=0.020; I2=0%; P=0.38). The inconsistent results from 
different analysis levels indicated that the CGI methylation 
signature is not a robust indicator for RFS in lung ADCs. 

Novel classification approach based on the integration of 
DNA methylation and gene expression of RPL39L in lung 
ADCs. By characterizing each member of the CGI methyla-
tion panel, it was identified that one CGI locus (cg07693270) 
was consistently hypomethylated in lung ADCs (Fig. 3A), 
and the methylation data were closely correlated with gene 
expression (RPL39L, Pearson coefficient r=‑0.668; P<0.0001; 
Fig. 3B), indicating a methylation‑dependent transcriptional 
regulatory mechanism for RPL39L. In line with its epigenetic 
status, RPL39L was upregulated in lung ADCs, indicating 
a tumor‑promoting role (Fig. 3C). At the initiation of the 
present study, the methylation level of RPL39L was positively 
correlated with OS. Therefore, the present study attempted 
to prognostically classify patients by single‑locus methyla-
tion status of RPL39L, and it was identified that tumors with 
methylated CGI of RPL39L were associated with increased 
OS compared with the unmethylated tumors within TCGA 

samples (Fig. 3D). Additionally, it was identified that based on 
RPL39L expression levels, patients may also be classified into 
distinct prognostic subgroups, in which tumors exhibiting 
decreased RPL39L expression levels were associated with 
increased OS time compared with those with increased expres-
sion levels [59.7 vs. 42.7 months; P=0.002 (log‑rank test); 
Fig. 3E]. These data indicated the possibility of a promising 
classification approach based on the integration of the DNA 
methylation and gene expression of RPL39L. Consequently, 
the present study identified that tumors with increased meth-
ylation and decreased expression of RPL39L exhibited the 
best OS among all cases (Fig. 3F and G). The multivariate 
Cox model demonstrated the prognostic independence of the 
integrated approach (HR, 0.54; 95% CI, 0.36‑0.81; P=0.003) 
as compared with tumor stages (HR, 1.66; 95% CI, 1.45‑1.91; 
P<0.001) within TCGA samples. These data indicated that 
RPL39L may serve oncogenic roles in the progression of lung 
ADCs, and may represent a novel promising therapeutic target 
for this disease. The integrated epigenetic and transcriptional 
assessment of PRL39L may be useful for optimizing the risk 
stratification of patients with lung ADC, and for identifying 
the appropriate subgroups sensitive to targeted drugs against 
RPL39L.

Table III. Results from Cox regression models within all The Cancer Genome Atlas samples.

	 Univariate Cox model	 Multivariate Cox model
	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ 
Variables	 HR (95% CI)	 P‑value	 HR (95% CI)	 P‑value

Tumor stage	 1.651 (1.441‑1.893)	 <0.001	 1.611 (1.405‑1.847)	 <0.001
CGI methylation signature	 1.606 (1.199‑2.152)	 0.001	 1.449 (1.078‑1.947)	 0.014
Sex	 1.057 (0.794‑1.407)	 0.705	‑	‑ 
Smoking status	 0.915 (0.611‑1.371)	 0.666	‑	‑ 
Age	 1.009 (0.993‑1.024)	 0.271	‑	‑ 
BRAF mutations	 0.707 (0.402‑1.246)	 0.231	‑	‑ 
EGFR mutations	 1.230 (0.830‑1.824)	 0.302	‑	‑ 
KRAS mutations	 1.176 (0.858‑1.610)	 0.314	‑	‑ 
TP53 mutations	 1.332 (0.990‑1.793)	 0.058	‑	‑ 
MET amplification	 1.027 (0.833‑1.268)	 0.801	 ‑	 ‑

HR, hazard ratio; CI, confidence interval; CGI, CpG island; BRAF, B‑Raf proto‑oncogene, serine/threonine kinase; EGFR, epithelial growth 
factor receptor; KRAS, KRAS proto‑oncogene, GTPase; TP53, tumor protein P53; MET, MET proto‑oncogene, receptor tyrosine kinase.

Figure 2. Kaplan‑Meier curves of the relapse‑free survival time using the 9‑CpG island methylation signature across each dataset. (A) TCGA‑450k dataset. 
(B) TCGA‑27k dataset. (C) Sandoval et al (2) dataset. TCGA, The Cancer Genome Atlas. 
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Discussion 

The study of epigenetic markers, particularly DNA methylation, 
represents one of the most promising and fastest expanding areas 
in cancer biomarker identification (23). Similar to other tumors, 
lung ADCs are characterized by distinct genome‑wide DNA 
methylation landscapes, where the global hypomethylation of 
DNA repeats occurs concomitantly with CGI hypermethyl-
ation of gene regions (8). Among those cancer‑specific DNA 
methylation aberrations, the promoter‑specific CGI de novo 
methylation of tumor suppressor genes is the best‑known 
epigenetic abnormality in lung cancer patients (8). Studies using 
candidate gene approaches have identified a large number of 
known tumor suppressors, including cyclin‑dependent kinase 
inhibitor 2A (24), RAS association domain family member 

1 (25), O‑6‑methylguanine‑DNA methyltransferase (26) and 
APC, WNT signaling pathway regulator (27), to be consistently 
methylated in lung ADCs. A number of those epigenetic altera-
tions were identified to serve crucial roles in tumorigenesis 
via the regulation of gene expression and to exhibit promise 
in the diagnosis and prognostication of patients with lung 
cancer (24‑27). Previously, efforts have been made to compre-
hensively assess cancer epigenomes using genome‑wide 
DNA methylation profiling techniques, including Illumina 
array‑based assays, restriction landmark genome scanning 
gel‑based analysis, and next‑generation sequencing‑based anal-
ysis (23,28). The application of those high‑throughput detection 
approaches may provide an unbiased and clear view of the lung 
cancer epigenome, and assist in identifying useful DNA meth-
ylation events for diagnostic and prognostic purposes. 

Figure 3. Integration of DNA methylation and gene expression of RPL39L within The Cancer Genome Atlas samples. (A) Methylation status between matched 
lung adenocarcinomas and normal tissues. (B) Expression status between matched lung adenocarcinomas and normal tissues. (C) Pearson correlation between 
DNA methylation and RPL39L gene expression. (D) Patient classification on the basis of single‑locus methylation levels of RPL39L. (E) Patient classification 
on the basis of the expression levels of RPL39L. (F) Patient classification on the basis of the combined assessment of DNA methylation and gene expression of 
RPL39L. (G) Patients with increased methylation and decreased expression of RPL39L experienced an improved survival time compared with that in the other 
subgroups. RPL39L, ribosomal protein 39 like; methy, methylated; unmethy, unmethylated.
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The reproducibility of results from genome‑wide DNA 
methylation analysis may be an issue for making definitive 
conclusions from these types of studies, as false‑positive data 
are common in microarray analysis where the number of inter-
rogated loci within each tumor is larger compared with the 
number of participants (29). 

Batch effects appear to be a common phenomenon in 
high‑throughput microarray data, particularly for the Infinium 
Methylation BeadChip (13). In the present study, the effective 
empirical Bayes method was adopted to remove the potential 
non‑biological difference of methylation data across each 
dataset. Genome‑wide DNA methylation data of lung ADCs 
and matched control tissues from 6 publically available 
datasets were then independently re‑analyzed, and stricter 
criteria were adopted to identify robust cancer‑specific CGI 
methylation loci in lung ADCs. In total, 134 cancer‑specific 
CpGs were consistently observed in at least 4 of the 6 datasets 
examined in the present study, 11 of which had been described 
by previous studies with other DNA methylation detection 
approaches, for example genes in HOX clusters (30) including 
HOXB4, HOXA7 and HOXA9, TRIM58 (31) and GALR1 (32) 
(Table  I). The methylation status of these genes exhibited 
promise for the early detection and risk prediction for lung 
cancer (30‑32). In addition, by integrating gene expression 
data, it was identified that a considerable proportion of these 
cancer‑specific CGI methylation changes may have significant 
effects on their relevant gene expression, and indicate potential 
functional value in tumorigenesis of lung ADCs. Well‑studied 
examples are the de novo CGI methylation of zinc finger protein 
677  (33), cysteine dioxygenase type 1  (34,35), SRY‑box 1 
(SOX1) (36) and SOX17 (37) in NSCLCs. The data from the 
present study were corroborated by the validation of the iden-
tified CGI methylation candidates in the literature (30‑34). In 
addition, the present study also identified a panel of previously 
unknown cancer‑specific CGI methylation loci that may have 
potential roles in determining the fate of patients with lung 
cancer, which will warrant future investigation. 

Clinically or functionally characterizing each CGI candi-
date is beyond the scope of the present study. Instead, by 
applying a univariate Cox regression model and permutation 
correction, a panel of 9 CGI CpGs that were significantly asso-
ciated with OS time was identified in a large cohort of patients 
with lung ADCs (TCGA‑450k set; n=450). The detection of 
a panel of biomarkers, compared with single markers, may 
have a higher sensitivity and specificity for specific clinical 
purposes (38). Therefore, a risk score‑based prognostic classi-
fier was established based on the methylation patterns of the 
9 CpGs to assist in stratifying patients into distinct prognostic 
subgroups. The novel methylation signature indicated consis-
tent prognostic ability in different patient cohorts. Finally, a 
multivariate Cox model demonstrated its prognostic signifi-
cance in the context of different tumor stages. However, with 
respect to the RFS data, which is an additional notable clinical 
outcome, the novel methylation signature demonstrated limited 
value for risk stratification, and future validation is required 
for justifying a definitive conclusion. In summary, the data in 
the present study indicated that the CGI methylation signature 
of the present study may be a potent prognostic indicator for 
OS outcome in patients with all‑stage lung ADCs. Additional 
supporting evidence for this novel CGI methylation signature 

may support its potential biological relevance in cancer biology. 
In the present study, it was identified that the methylation levels 
of 8 CpG loci were significantly correlated with gene expres-
sion (positively correlated: HOXD3, GRIK2 and PAX3; and 
negative correlation: PRL39L, CPLX2, CMTM2, LYPD5 and 
LVRN). Accordingly, the majority of the genes were differ-
entially expressed between lung ADCs and normal tissues 
(upregulated: RPL39L, GRIK2 and HOXD3; and downregu-
lated: CMTM2, CPLX2 and LYPD5). The majority of these 
genes have been demonstrated to be abnormally methylated 
and expressed in a number of human cancer types, including 
breast, colorectal and prostate cancer, and were closely associ-
ated with patient prognosis and tumor aggressiveness (39‑42). 
However, limited data had been acquired on their functional 
roles in cancer biology. RPL39L was identified to confer drug 
resistance in lacrimal gland adenoid cystic carcinoma (43) and 
the lung cancer A549 cell line (44), but others have not been 
fully characterized in cancer. Future functional investigation 
of these genes will assist in developing understanding of the 
biological implications of the CGI methylation signature of 
the present study, and for identifying promising epigenetic 
therapeutic targets in lung ADCs.

Unlike the cancer‑specific de novo DNA methylation at 
CGI regions of genes, the presence and functional roles of 
CGI hypomethylation have been much less well character-
ized in cancer biology. The present study identified that CGI 
hypomethylation of RPL39L was consistently observed in lung 
ADCs. This epigenetic event may have functional significance 
in the initiation and progression of lung cancer, as it markedly 
affected gene transcription and resulted in the upregulation 
of RPL39L in tumor tissues. In line with the aforementioned 
data, it was also demonstrated that within TCGA samples, 
either epigenetic or transcriptional activations of RPL39L 
were associated with poorer OS time in patients with lung 
ADCs. Furthermore, the integration of DNA methylation and 
gene expression data identified a refined subset of tumors with 
favorable prognoses whose RPL39L gene was epigenetically 
and transcriptionally repressed. RPL39L is a recently evolved 
ribosomal protein paralog that exhibits highly specific tissue 
expression patterns in mice and humans (45). This gene was 
previously described to be highly expressed in the testis and to 
be upregulated in multiple cancer cell lines (45). Wong et al (45) 
had demonstrated that RPL39L was highly upregulated 
in mouse embryonic stem cells, and that its expression was 
markedly associated with tumor aggressiveness and vascular 
invasiveness of hepatocellular carcinomas (45). High expres-
sion of RPL39L may also confer the drug‑resistant phenotype 
of lung cancer A549 cell lines (44). However, RPL39L was 
demonstrated to be associated with hypermethylation and gene 
inactivation in prostate cancer cell lines (39). Together, these 
results indicated that epigenetic and transcriptional abnormali-
ties in RPL39L were commonly implicated in the initiation 
and progression of human cancer. Notably, the data from 
the present study is of interest as it provides novel evidence 
for the contributing roles of CGI hypomethylation and gene 
re‑activation in lung cancer. In addition, the data also raise 
concerns surrounding the current non‑specific demethylating 
anticancer approach, as it may promote cancer development 
via the exacerbation of cancer‑specific hypomethylation. 
Targeted epigenetic therapy that has distinct effects on 
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cancer‑specific hypermethylation and hypomethylation may 
be a promising option for the future development of anticancer 
therapy. Unfortunately, the oncogenic roles of RPL39L have 
not been studied extensively in lung ADCs. Future functional 
studies may assist in developing targeted therapies against this 
gene. Finally, the integrated assessment of RPL39L may be 
a promising approach for optimizing risk stratification, and 
improving personalized medicine in lung ADCs. 

There were several limitations to the present study. The 
incompleteness of certain important clinical information for 
the included patients, including performance status and treat-
ment modality, compromised the prognostic robustness of the 
study‑specific methylation signature. The clinical and method-
ological heterogeneity across each dataset may also introduce 
uncertainty in data interpretation. Other limitations include 
the relatively small sample size of the validation sets, and the 
lack of functional validation of those CGI methylation candi-
dates. The results of the present study were preliminary and 
primarily derived from microarray data analysis. Additional 
studies will be required to validate these results in vivo, and in 
a clinical setting. 

In conclusion, by comparing genome‑wide DNA methyla-
tion and gene expression profiles of lung ADCs and matched 
non‑tumor tissues from multiple independent datasets, the 
present study identified a number of cancer‑specific CGI 
methylation changes in lung ADCs, and characterized their 
associations with gene expression. Those CGI methylation 
changes may be useful for the identification of novel biomarkers 
for diagnostic and prognostic purposes in lung ADCs. One 
example is the identification of a 9‑CpG methylation panel that 
was demonstrated to be a potent prognostic indicator for OS 
time. Furthermore, the identification of CGI hypomethylation 
and consequent gene re‑activation of RPL39L provides novel 
insights into treatment development and risk stratification for 
lung ADCs. 
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