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Abstract. Lung cancer has the world's highest cancer‑​
associated mortality rate, making biomarker discovery for 
this cancer a pressing issue. Machine learning approaches 
to identify molecular biomarkers are not as prevalent as 
screening of potential biomarkers by differential expres-
sion analysis. However, several differentially expressed 
miRNAs involved in cancer have been identified using this 
approach. The availability of The Cancer Genome Atlas 
(TCGA) allows the use of machine‑learning methods for the 
molecular profiling of tumors. The present study employed 
empirical negative control microRNAs (miRs) in lung cancer 
to normalize lung adenocarcinoma (LUAD) and lung squa-
mous cell carcinoma (LUSC) datasets from TCGA to model 
decision trees in order to classify lung cancer status and 
subtype. The two primary classification models consisted 
of four miRNAs for lung cancer diagnosis and subtyping. 
hsa‑miR‑183 and hsa‑miR‑135b were used to distinguish 
lung tumors from normal samples taken from tissues adja-
cent to the tumor site, and hsa‑miR‑944 and hsa‑miR‑205 
to further classify the tumors into LUAD and LUSC major 
subtypes. Specific cancer status classification models were 
also presented for each subtype.

Introduction

Lung cancer was reported to have the world's leading 
cancer‑associated mortality in 2008 (1). It is classified into 
two main histological subtypes: Non‑small cell lung cancer 
(NSCLC), which accounts for ~85% of cases, and small cell 
lung cancer (SCLC) (2). NSCLC is further subdivided into 
lung squamous cell carcinoma (LUSC) and lung adenocar-
cinomas (LUAD), which generally affect the epithelial cells 

lining the larger airways and the peripheral smaller airways, 
respectively (3). The majority of patients with lung cancer are 
diagnosed at advanced stages and consequently the five‑year 
survival rate is 16.8% (4). The identification of new diagnostic 
strategies is therefore required to reduce lung cancer‑associated 
mortality (5).

MicroRNAs (miRNAs/miRs) are small, stable, 
single‑stranded non‑coding RNAs which are present in tissues 
and body fluids (6). These molecules have been revealed to 
serve roles in the mechanisms underlying cancer initiation 
and progression (7‑9). Previous studies have demonstrated 
the potential use of miRNAs in the non‑invasive detection of 
LOAD (2) as well as in the classification of diverse histological 
subtypes and identification of the source tissue in cases of 
poorly differentiated tumors (10).

Machine learning may be used as an alternative approach 
to statistical methods including differential expression 
analysis (11). There are two main types of machine learning 
algorithms: Supervised, where the algorithm is given some 
prior knowledge, and unsupervised, where it is not given any 
prior information. The most common applications of unsuper-
vised and supervised learning are clustering and discriminant 
analysis, respectively. A decision tree is a type of supervised 
machine learning algorithm used for discriminant analysis, 
which is simple to understand and interpret. It allows the 
extraction of knowledge from data by generating understand-
able knowledge structures in the form of hierarchical trees 
or sets of rules and presenting them in a graphically intuitive 
way. Attributes which are important for prediction or classi-
fication are subsequently selected with a low computational 
cost. A decision tree is a greedy algorithm constructed by 
a step‑by‑step process called recursive partitioning which 
is also known as hierarchical classification. The dataset is 
divided into training and testing data and the training data are 
subsequently used to create the decision tree model and test its 
performance (12). Several studies have used decision trees to 
solve biological problems, including predicting the expression 
status using chromatin modifications in the Encyclopedia of 
DNA Elements pilot project (13) and identifying cancer tissue 
origin using microRNAs (14,15). Decision trees have also 
been used to identify biomarkers in cancer, including defining 
a set of prognostic biomarkers for lung cancer using nuclear 
receptor expression (16). Although less widely used compared 
with differential analysis methods, the decision tree method 
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is applicable in cancer classification using gene expression 
data (17).

The present study aimed to identify lung cancer diagnostic 
and subtyping biomarkers by applying the decision tree 
method to the largest publicly available repository of miRNA 
expression in lung cancer collected by The Cancer Genome 
Atlas (https://portal.gdc.cancer.gov/).

Materials and methods

All calculations and plotting associated with data retrieval, 
preprocessing, filtering, differential expression, normalization, 
handling class imbalance, and applying and evaluating machine 
learning algorithms were performed in R (version 3.5.0; The 
R Foundation for Statistical Computing; http://www.r‑project.
org/foundation) using bioconductor packages  (18). The 
biomarker discovery pipeline used in the current study is the 
same as previously described (19).

Data retrieval and exploratory data analysis. Level three 
miRNA sequencing data as well as the clinical dataset were 
obtained from 1,068 samples from two lung cancer projects 
(LUAD and LUSC) in TCGA (https://portal.gdc.cancer.gov/). 
The sequencing data were retrieved and prepared using the 
TCGAbiolinks package  (20). The LUAD project included 
499 solid tumor and 46 normal control samples from tissues 
adjacent to the tumor site, and the LUSC project included 478 
solid tumors and 45 normal control samples (21,22).

Filtering features, samples and partitioning datasets. 
Non‑specific filtering was performed by removing miRNAs 
with expressions of <100 reads over at least 10 samples to 
exclude uninteresting features without regard to the phenotype 
data and to reduce the number of features that were included 
in further analysis (19). The genefilter package (23) reduced 
1,208 features to 310 features in LUAD and 301 in LUSC. 
Samples that did not have clinical information in the database 
were also excluded.

Data were partitioned into training (70%) and testing 
(30%) datasets using the caret package (24) and all subsequent 
exploratory data analysis and model training were performed 
only on training datasets. Exploratory data analysis and prin-
cipal component analysis (PCA) were performed using the 
EDAseq package (25). PCA plots were drawn in logarithmic 
scales (Fig. 1).

Normalization and differential expression. The TCGA miRNA 
expression data were generated through a large collaborative 
project involving a number of sequencing centers and the data 
therefore included different batches (19). In order to account 
for this, the TCGA gene expression data set was normalized 
using the remove unwanted variation (RUV) normalization 
method. A set of miRNAs whose expression did not vary across 
samples, referred to as ‘negative controls’, were used for the 
normalization procedure. In order to obtain in silico empirical 
negative control miRNAs, the P‑ and P‑adjusted values for all 
miRNAs were calculated between lung cancer status (normal 
and tumor) or between its two subtypes (LUAD and LUSC). 
miRNAs with P>0.5 were selected for further study. These 
sets of empirical controls were used to remove the factors of 

unwanted variation and to normalize the data sets for classi-
fication. Unwanted variation of raw miRNA sequencing data 
was removed using the RUVseq package (26), with miRNAs 
obtained from differential analysis as the internal controls. 
Least significantly differentially expressed miRNAs obtained 
using the DESeq2 package were used as internal negative 
controls (27). A total of 13 miRNAs in LUSC, 32 miRNAs 
in LUAD, and 17 and 15 miRNAs in LUAD and LUSC, 
respectively, were used as internal controls for classification 
of cancer status and subtypes. Factors of unwanted variation, 
k=1, were considered in all calculations.

Combating imbalance, tree model training, evaluation and 
plotting. Class imbalance in training and testing datasets 
were addressed separately using the Synthetic Minority 
Oversampling Technique (SMOTE)  (28) in the DMwR 
package (29). Supervised classification was performed using 
Recursive Partitioning and Regression Trees (RPART), and 
was implemented using the RPART package (version 4.1‑13). 
Decision trees from the RPART model were plotted using 
the rattle package version 5.1.0 (30,31). This was followed 
by adjusted pruning which improves decision tree accuracy 
by avoiding over‑fitting to the training set and reducing its 
size. The complexity parameter by which the RPART objects 
trimmed was 0.001.

ROC curve analyses. ROC curve analyses were performed in 
R version 3.5.0 (The R Foundation for Statistical Computing, 
http://www.r‑project.org/foundation) using procedures from 
the pROC (32) package.

Results

Least significantly differentially expressed miRNAs are 
used for normalization and removal of technical variability. 
Correction of unwanted variation in data was required in 
order to fulfill the assumption that the biological variation 
of interest was the main source of variation in the current 
study. Since miRNA sequencing expression data obtained 
from TCGA involved multiple laboratories, unwanted varia-
tion dominated the data. The RUV method using in silico 
empirical controls obtained by differential expression analysis 
was used for normalization of the data in the present study. 
The RUV allows the removal of laboratory‑specific effects to 
allow the combined analysis of miRNA sequencing expression 
changes (26).

Four sets of empirical negative controls based on differ-
ential expression analysis were used in the current study. 
First‑pass differential expression analysis was performed in 
LUAD, LUSC and in combined subtypes separately. Cancer 
status and cancer subtype were used to obtain least signifi-
cantly differentially expressed miRNAs. miRNAs with P>0.5 
were selected as negative controls. Two sets of empirical nega-
tive controls were obtained in combined subtypes (LUAD and 
LUSC) under two sets of conditions: Cancer status and cancer 
subtype (Table I).

Exploratory data analysis ensures proper clustering of 
samples following RUV normalization. PCA was performed 
following data normalization. PCA plots are an established 
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method of visualizing the sources of variation in genome‑wide 
studies. PCA plots identify the principal components of data 
by reducing its dimensions. The first principal component 
(PC1) explains the highest amount of variance across all 
samples  (26). The clustering of samples by the biological 
factor of interest such as cancer status in the space of main 
principal components indicated that the data in the present 
study had clear separation values based on the cancer status 
prior to classification. Plotting the miRNA expression in first 
principal component and coloring by the biological factor, 
cancer status indicated that this was the main driver of clus-
tering in PC1 which avoids false positives and false negatives 
in the current results (Fig. 1). The first principle component 
(PC) with highest variation (29.75%) separated normal lung 
tissues from cancerous lung tissues. The second and third PCs 
account for 10.95 and 6.42% of variation respectively.

Modeling lung cancer miRNA sequencing data with deci-
sion tree algorithms identifies complementary diagnostic 
and subtyping miRNA markers in lung cancer. Due to the 
predominance of tumor samples over non‑tumor samples in 
TCGA data, the data in the current study were imbalanced. 
Imbalanced data may affect model training and its subsequent 
performance (24). Therefore, TCGA data are not suitable for 
machine learning algorithms to classify cancer status. The 
imbalance of TCGA data was addressed by SMOTE before 
training the models to classify cancer status. Using SMOTE, 

the minority class (normal cases in tumor‑normal classifica-
tion) is over‑sampled by creating synthetic samples. Training 
and testing datasets for classification as tumor or normal were 
subjected to this approach separately. The PCA plot method 
was used to ensure the retention of separation of samples with 
different cancer status.

To classify lung cancer status and its subtypes, two simple 
models were obtained by applying the RPART algorithm to 
the balanced miRNA sequencing training datasets. Each 
model consisted of two essential miRNAs as the primary aim 
of the current study was to identify the minimal number of 
biomarkers that can be used to classify lung cancer status and 
its subtypes.

The main resulting cancer classifier structures were two 
trained two‑step decision trees. The first classification tree 
distinguished tumor from non‑tumor samples in both subtypes 
of lung cancer (LUAD and LUSC) from TCGA database. 
Two decision nodes of this classifier are hsa‑miR‑183 and 
hsa‑miR‑135b (Fig. 2). Performances of all classification trees 
were measured using testing datasets (30% of total data). 
Discriminative power of this classifier was then measured by 
the area under the curve (91.2%).

More specific classification trees were also trained in each 
subtype. The classification tree in the LUAD subtype used simple 
rules to classify tumor status. hsa‑miR‑183 and hsa‑let‑7a were 
two nodes of this decision tree. LUAD samples were classified 
as normal if hsa‑miR‑183 and hsa‑let‑7a expression levels were 

Figure 1. PCA matrix plot of miRNA expression in samples obtained from patients with lung cancer in TCGA database. Three main PCs, including PC1, 
PC2 and PC3, of miRNA expression in LUAD and LUSC from TCGA database were plotted and colored according to their cancer status (light and dark gray 
represent cancer and normal, respectively). Each PC is a linear combination of normalized miRNA sequencing counts. In this plot, the diagonal cells specify 
the axes (PC1, PC2 and PC3) of the remaining cells of the plot. The samples were projected into a lower dimensional space and clustered by their cancer status. 
LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma; TCGA, The Cancer Genome Atlas; PCA, principal component analysis; PC, principal 
component.
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<12x103 and ≥68x103, respectively. Area under the curve for 
this classifier was 95.1%. The classification tree in the LUSC 
subtype used hsa‑miR‑30a and hsa‑miR‑1269a to classify 
tumors from non‑tumors. Samples were classified as normal if 
the expression levels of hsa‑miR‑30a and hsa‑miR‑1269a were 
>134x103 and <48, respectively. The discriminative power of 
this classification tree was measured after testing this model on 
the testing dataset (data not shown). The area under the curve 

was 95.2%. A further tree distinguished lung cancer subtypes 
(LUAD from LUSC) using two miRNAs, hsa‑miR‑944 and 
hsa‑miR‑205. A sample was classified as LUSC if the expres-
sion levels of hsa‑miR‑944 and hsa‑miR‑205 were <80 and 
<3,376, respectively. Area under the curve for this classifier 
was 91.6% (Fig. 3). The four miRNAs used to classify lung 
cancer status and its subtypes in the current study were: 
hsa‑miR‑183, hsa‑miR‑135b, hsa‑miR‑944 and hsa‑miR‑205.

Discussion

The current study used 5 miRNAs in the diagnosis of lung 
cancer for three separate classifications: miR‑183 and let‑7a 
in the LUAD subtype, miR‑30a and miR‑1296a in the LUSC 
subtype and miR‑183 and miR‑135b in both subtypes. Let‑7a, 
one of the two biomarkers used in the LUAD model of cancer 
diagnosis in the present study, is a member of the let‑7 family 
and one of the first miRNAs implicated in of lung cancer. 
Takamizawa et al (7) reported that let‑7 expression was lower 
in lung cancer compared with healthy control tissue and that 
lower expression of let‑7 was associated with poor prognosis. 
Furthermore, the overexpression of let‑7 in the A549 lung 
adenocarcinoma cell line inhibited cell growth, and was 
revealed to act as a tumor suppressor by decreasing cell prolif-
eration and regulating oncogenes including tumor protein p53, 
RAS type GTPase family (RAS) and MYC proto‑oncogene 
bHLH transcription factor  (5,33). High expression of let‑7 
and downregulation of its target oncogenes (high mobility 
group AT‑hook 2 and RAS) in well‑differentiated lung tumors 
suggested that let‑7 may be a biomarker for poorly differenti-
ated tumors (33). Landi et al (3) analyzed 440 human miRNAs 
and identified a signature consisting of five miRNAs, including 
hsa‑let‑7b, that differentiated LUAD from LUSC and had 
prognostic value.

The miR‑183 family members, including miR‑182, miR‑183 
and miR‑96, exhibit oncogenic and tumor suppressor functions 
in different types of cancer. miR‑183 inhibited lung tumor 
invasion and metastasis by targeting ezrin. Overexpression 
of miR‑183 was reported as a risk factor for lung cancer by 
Feng et al (34). Sun et al (35) reported that the overexpres-
sion of miR‑126 in non‑small cell lung cancer cells resulted in 
decreased cell proliferation in vitro and tumor growth in vivo. 
Zhong et al (36) revealed dose‑dependent inhibition of lung 
cancer cell growth by miR‑107, miR‑126 and let‑7a in vivo, 
suggesting that the overexpression of these miRNAs may 
suppress cancer.

Leidinger et al  (4) analyzed 74  individual whole blood 
samples and revealed that miR‑20b‑5p, miR‑20a‑5p, 
miR‑17‑5p and miR‑106a‑5p accurately differentiated patients 
with NSCLC from unaffected controls with a specificity and 
sensitivity of 98 and 91%, respectively. Su et al (37) analyzed 
sputum samples from 103 patients with NSCLC and 528 
cancer‑free smokers. The authors identified a panel of three 
sputum miRNA biomarkers (miRs‑21, ‑31 and ‑210) with 
83% sensitivity and 88% specificity for the early detection 
of lung cancer. Võsa et al  (38) performed a meta‑analysis 
of 20 published miRNA expression studies in lung cancer 
and identified seven upregulated (miR‑21, miR‑31, miR‑182, 
miR‑183, miR‑200b, miR‑210 and miR‑205) and eight down-
regulated (miR‑30a, miR‑30d, miR‑126‑3p, miR‑126‑5p, 

Table I. Least significantly differentially expressed miRNAs in 
lung cancer considering status of cancer or its subtypes.

A, Cancer status control miRs		

miR	 Lfc	 Adjusted P‑value

hsa‑mir‑6718	‑ 0.155	 0.546
hsa‑mir‑23a	‑ 0.047	 0.573
hsa‑mir‑330	 0.067	 0.573
hsa‑mir‑6720	‑ 0.136	 0.573
hsa‑mir‑181b‑2	‑ 0.066	 0.606
hsa‑mir‑5683	‑ 0.117	 0.709
hsa‑mir‑363	 0.076	 0.711
hsa‑mir‑3074	‑ 0.056	 0.732
hsa‑mir‑132	‑ 0.034	 0.756
hsa‑mir‑30e	 0.024	 0.764
hsa‑mir‑25	 0.018	 0.854
hsa‑mir‑181b‑1	‑ 0.017	 0.893
hsa‑mir‑27b	‑ 0.010	 0.915
hsa‑mir‑151a	 0.010	 0.927
hsa‑mir‑92b	 0.011	 0.943
hsa‑mir‑3130‑1	 0.010	 0.954
hsa‑mir‑181d	 0.003	 0.981

B, Subtype‑specific control miRs		

miR	 Lfc	 Adjusted P‑value

hsa‑mir‑145	 0.040	 0.538
hsa‑mir‑200a	‑ 0.044	 0.577
hsa‑mir‑1468	‑ 0.049	 0.578
hsa‑mir‑374a	 0.022	 0.696
hsa‑mir‑187	 0.058	 0.709
hsa‑mir‑34b	 0.050	 0.755
hsa‑mir‑889	‑ 0.035	 0.771
hsa‑let‑7c	‑ 0.024	 0.773
hsa‑mir‑369	 0.023	 0.846
hsa‑mir‑3677	 0.016	 0.869
hsa‑mir‑15a	‑ 0.007	 0.893
hsa‑mir‑522	 0.034	 0.904
hsa‑mir‑3613	‑ 0.006	 0.932
hsa‑mir‑2355	‑ 0.005	 0.939
hsa‑mir‑485	 0.002	 0.988

miR/miRNA, microRNA; adj, adjusted; lfc, logarithm of fold change; 
LUSC, lung squamous cell carcinoma; LUAD, lung adenocarcinoma.
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miR‑143, miR‑145, miR‑486‑5p and miR‑451a) miRNAs as a 
statistically significant meta‑signature of lung cancer.

miR‑205 and miR‑944 were used as subtyping biomarkers 
of lung cancer in the current study. miR‑205 and miR‑21 were 
previously reported to accurately distinguish LUAD from 
LUSC subtypes  (39). However, miR‑205 was subsequently 
revealed to be useful as an adjunctive diagnostic criterion in 
selected cases but should not be used as a substitute of accu-
rate morphological and immunophenotypical characterization 

of lung tumors (10). Lebanony et al (40) reported decreased 
expression of miR‑205 in LUAD compared with LUSC 
subtypes and suggested that the expression level of miR‑205 
may be used to predict and diagnose LUSC. Lu et al  (41) 
revealed that the expression of miR‑205 in NSCLC may be 
used to distinguish patients with LUAD from those with 
LUSC.

Zhang et al (42) assessed the application of miRNA for lung 
cancer screening and demonstrated that the expression profile 

Figure 3. Decision tree and its performance in classification of lung cancer subtypes based on miR sequencing data from The Cancer Genome Atlas following 
normalization. LUAD and LUSC were classified by decision tree trained with RPART algorithm on 70% of balanced and normalized miRNA expression. The 
decision tree with two miRNA nodes (hsa‑miR‑944 and hsa‑miR‑205) is presented on the left. Normalized counts of these miRNAs were used as decision 
rules. Performance of this decision tree was obtained from testing the tree model on balanced and normalized testing dataset (30% of data) and presented 
on the right as a receiver operating characteristic curve (AUC=0.916). miR/miRNA, micro RNA; LUAD, lung adenocarcinoma; LUSC, lung squamous cell 
carcinoma; AUC, area under the curve.

Figure 2. RPART classification tree and its performance in classification of lung cancer tissues from normal tissues based on miR sequencing data from 
TCGA following normalization. LUAD and LUSC data from TCGA were merged and a decision tree trained with RPART algorithm on 70% of balanced and 
normalized miRNA expression was generated. The decision tree with two miRNA nodes (hsa‑miR‑183 and hsa‑miR‑135b) is presented on the left. Normalized 
counts of these miRNAs were used as decision rules. Performance of this decision tree was obtained from testing the tree model on balanced and normalized 
testing dataset (30% of data) and presented on the right as a receiver operating characteristic curve (AUC=0.912). miR/miRNA, micro RNA; LUAD, lung 
adenocarcinoma; LUSC, lung squamous cell carcinoma; AUC, area under the curve; RPART, Recursive Partitioning and Regression Trees; TCGA, The Cancer 
Genome Atlas.
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of sputum miR‑21, miR‑486, miR‑37 and miR‑200b yielded 
81% sensitivity and 92% specificity in distinguishing patients 
with NSCLC from healthy individuals. Hamamoto et al (43) 
revealed that the expression profile of miR‑205, miR‑196b and 
miR‑375 yielded 85% sensitivity and 83% specificity in the 
distinction between patients with LUSC and LUAD.

The miR‑200 family and miR‑205 have been implicated 
in the epithelial‑mesenchymal transition in a number of breast 
cancer cell lines by targeting zinc finger E‑box‑binding protein 
transcription factors to alter the gene expression of vimentin 
and E‑cadherin (44). Duan et al (45) demonstrated that miR‑205 
was significantly higher in  NSCLC patients. miR‑205 had a 
positive correlation with protein kinase B gene expression in 
NSCLC cancer tissues. Increased expression levels of protein 
kinase B enhanced the invasion abilities of cancer cells.
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