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Abstract. The response of cancer patients to oxaliplatin 
combined with 5‑fluorouracil (5‑FU) is difficult to predict. 
It has been reported that carcinoma-associated fibroblasts 
(CAFs) could induce AKT and ERK phosphorylation, and 
upregulate survivin expression in colorectal cancer (CRC) 
cells, which could lead to oxaliplatin plus 5‑FU resistance. 
A total of 71 patients with advanced CRC (aCRC) treated 
with oxaliplatin plus 5‑FU were included in the present 
study. These patients comprised 46 chemotherapy responders 
and 25 non‑responders. The expression levels of α-smooth 
muscle actin (α‑SMA), phosphorylated (p)‑AKT, p‑ERK and 
survivin were determined by immunohistochemical evalua-
tion of paraffin‑embedded samples from patients. A predictive 
model was established using a Probabilistic Neural Network 
model. The high expression of α‑SMA, p‑AKT and survivin 
in patients with aCRC were associated with oxaliplatin plus 
5‑FU resistance (P<0.001, P=0.023 and P=0.001, respec-
tively). Furthermore, patients with stage IV CRC exhibiting 
high expression levels of α‑SMA and survivin experienced 
a reduced progression‑free survival time compared with 
patients with low expressions of α‑SMA and survivin 
(5.5 vs. 15.0 months; 5.5 vs. 15.0 months; P=0.005 and P=0.001, 
respectively). Stage IV CRC and high survivin expression 
predicted a reduced overall survival time compared with that 
for patients with stage IV CRC and low survivin expression 

(50.0 vs. 15.0 months; P<0.001). Patients with α‑SMA, p‑AKT, 
p‑ERK and survivin overexpression were more likely to 
present with intrinsic resistance to the oxaliplatin plus 5‑FU 
regimen (the accuracies of modeling, validation and predic-
tion were 83.7, 92.9 and 85.7%, respectively). In conclusion, the 
multifactorial predictive biomarker model of α‑SMA, p‑AKT, 
p‑ERK and survivin expression for patients with aCRC to 
predict intrinsic resistance to oxaliplatin plus 5‑FU regimens 
is of great efficiency and accuracy. Patients with high expres-
sion of this predictive model may be intrinsically resistant to 
the oxaliplatin and 5‑FU regimen.

Introduction

Colorectal cancer (CRC) is the third most commonly diag-
nosed cancer and the leading cause of cancer‑associated 
mortality worldwide (1). Traditional chemotherapy remains 
one of the standard treatments of CRC. In particular, oxalipl-
atin plus 5‑fluorouracil (5‑FU)‑based regimens, also known as 
FOLFOX, XELOX and SOX, are the first‑line chemotherapy 
regimens for patients with advanced CRC (aCRC); however, 
the objective response rate of this regimen is estimated to 
be ~50% (2). In addition, numerous patients with CRC cannot 
benefit from chemotherapy due to intrinsic or acquired chemo-
therapy resistance (3). It is therefore difficult for oncologists 
to select the most suitable regimens for patients with CRC. 
Determining effective and distinct biomarkers to characterize 
patients who are intrinsically resistant to oxaliplatin plus 5‑FU 
regimens would have a significant influence in clinical prac-
tice.

Several tumor molecular markers that can predict the 
efficacy of 5‑FU or oxaliplatin have been reported, including 
DNA damage repair system genes, auch as X‑ray repair cross 
complementing 1 (4), ERCC excision repair 1, endonuclease 
non‑catalytic subunit (5) and ERCC excision repair 5 endonu-
clease (6), certain key enzymes in the chemotherapy‑associated 
signaling pathway, such as thymidylate synthase (7), and 
other molecules, such as NKx2‑3 and transforming growth 
factor-β1‑induced transcript 1 (8), homeobox B8 and kalli-
krein related‑peptidase 11 (9). However, the predictive value 

Response prediction to oxaliplatin plus 5‑fluorouracil 
chemotherapy in patients with colorectal cancer using 

a four‑protein immunohistochemical model
JUNJIE GU1,  ZHE LI1,  JIANFENG ZHOU2,  ZHAO SUN2  and  CHUNMEI BAI2

1Department of Medical Oncology, Peking Union Medical College Hospital, 
Chinese Academy of Medical Sciences and Peking Union Medical College;  

2Department of Medical Oncology, Peking Union Medical College Hospital, 
Chinese Academy of Medical Sciences, Dongcheng, Beijing 100730, P.R. China

Received August 9, 2018;  Accepted April 29, 2019

DOI:  10.3892/ol.2019.10474

Correspondence to: Professor Zhao Sun or Professor Chunmei Bai, 
Department of Medical Oncology, Peking Union Medical College 
Hospital, Chinese Academy of Medical Sciences, 1 Shuaifuyuan, 
Dongcheng, Beijing 100730, P.R. China
E‑mail: jessiesz@126.com
E‑mail: baichunmei1964@163.com

Key words: predictive model, oxaliplatin plus 5‑fluorouracil, response, 
advanced colorectal cancer, intrinsic resistance



GU et al:  A PREDICTIVE MODEL OF INTRINSIC DRUG RESISTANCE2092

of a single molecular marker is limited due to the participa-
tion of multiple genes and proteins, rather than a single gene 
or protein, in the process of drug resistance. It is therefore 
crucial to detect multiple genes and proteins, and establish 
a predictive model that could determine the efficacy and 
accuracy of the oxaliplatin plus 5‑FU regimen in patients with 
aCRC rather than using the predictive value of one molecular 
marker only (10).

Previous studies reported that carcinoma‑associated 
fibroblasts (CAFs) are a pivotal part of the tumor microen-
vironment and serve a crucial role in tumor drug resistance. 
Gonçalves‑Ribeiro et al (11) reported that CAFs have a 
protective effect on CRC cells and could be associated with 
chemotherapy resistance in patients with CRC. Furthermore, 
CAFs can induce the translocation of AKT, survivin and ERK 
to the nucleus of CRC cells, induce AKT and ERK phosphory-
lation, and upregulate survivin expression. These phenomena 
ensure correct DNA repair and accurate cell entrance 
and exit from mitosis in the presence of chemotherapy. 
Oxaliplatin plus 5‑FU regimen resistance is subsequently 
induced via the activation of the PI3K/AKT, MAPK and 
Janus kinase/signal transducer and activator of transcription 
(JAK‑STAT) signaling pathways. In addition, it has been 
reported that the MAPK (12‑14) and PI3K/AKT/mTOR (15‑18) 
pathways serve key roles in drug resistance, notably in CRC, 
and that PI3K/AKT signaling pathway inhibition can reduce 
resistance to chemotherapeutic drugs. It was also reported that 
survivin overexpression, which may be a downstream effect 
of the MAPK or PI3K‑AKT‑mTOR signaling pathway (19), is 
associated with drug resistance in CRC. As all these findings 
focus on cellular and molecular approaches, it is essential to 
verify whether they exist in patients with CRC. The present 
study therefore investigated the association between α‑SMA, 
p‑AKT, p‑ERK and survivin expression and oxaliplatin plus 
5‑FU chemotherapy efficacy in patients with aCRC. Since 
chemotherapy resistance is a multifactorial process, the 
present study aimed to establish a predictive model that could 
help oncologists to screen patients with intrinsic resistance to 
chemotherapeutic drugs.

Materials and methods

Patients and tissue samples. A total of 71 patients diagnosed 
with aCRC at the Peking Union Medical College Hospital 
(Beijing, China) between June 2013 and February 2018 were 
enrolled in the present study. Tissue samples were obtained 
from patients following radical CRC resection or biopsy 
during colonoscopy. All patients provided written informed 
consent. The inclusion criteria were as follows: i) All patients 
were histologically diagnosed with aCRC and cancer stage 
was evaluated according to the American Joint Committee 
on Cancer, 7th edition (20); ii) all patients received oxali-
platin plus 5‑FU regimens in accordance with the National 
Comprehensive Cancer Network guideline (21), including 
mFOLFOX6, which consisted of 85 mg/m2 oxaliplatin on 
day 1, 400 mg/m2 leucovorin on day 1, 400 mg/m2 intrave-
nous (IV) bolus 5‑FU on day 1, and then 1,200 mg/m2/day 
for 48 h by continuous IV infusion, repeating every 2 weeks 
and evaluated every 4 cycles using the Response Evaluation 
Criteria in Solid Tumors (RECIST 1.1) (22), or XELOX, which 

consists of 130 mg/m2 IV oxaliplatin on day 1 and 1,000 mg/m2 
oral capecitabine twice daily for 14 days, repeating every 
3 weeks and evaluated every 2‑3 cycles using RECIST; 
iii) non‑responders to chemotherapy (NRCs) included patients 
with stage IV CRC who received first‑line chemotherapy and 
were identified as having progressive disease when evaluated 
the first time (after 4 cycles of mFOLFOX6 or 2‑3 cycles of 
XELOX), and patients with stage III CRC who received adju-
vant chemotherapy following surgery and who relapsed within 
6 months. Chemotherapy responders (CRs) referred to patients 
with stage IV CRC who received first‑line chemotherapy 
and who were evaluated with partial regression or complete 
regression at most. The chemotherapy responses were evalu-
ated independently in all patients by two oncologists using 
RECIST. If their conclusions were different, a third oncologist 
independently evaluated the case, and the three oncologists 
consulted and obtained the final result together. Patients 
with CRC who were identified as stable after chemotherapy 
or as progressive disease following the first evaluation were 
excluded from the present study.

Immunohistochemistry (IHC) staining and scoring. 
IHC staining was performed on 4‑µm thick sections of 
paraffin‑embedded tissue samples to detect the protein 
expression levels of α‑SMA, p‑AKT, p‑ERK and survivin. 
Briefly, sections were deparaffinized with xylene, rehydrated 
in decreasing gradient of alcohol and immersed in distilled 
water for 5 min. Sections were then incubated with EDTA 
antigen retrieval buffer (pH 8.0) in a microwave for 15 min. 
Sections were treated with 3% hydrogen peroxide for 25 min at 
room temperature in the dark to block endogenous peroxidase 
activity, washed with PBS three times for 5 min and blocked 
with 3% bovine serum albumin at room temperature for 
30 min. Sections were incubated with the following primary 
antibodies at 4˚C overnight: Mouse anti‑human α‑SMA 
(cat. no. GB13044, 1:1,000; Servicebio), mouse anti‑human 
p‑ERK (cat. no. GB13004; 1:1,000; Servicebio), rabbit 
anti‑human p‑AKT (cat. no. GB13012‑3; 1:100; Servicebio) 
and rabbit anti‑human survivin (cat. no. 10508‑1‑AP; 1:100; 
ProteinTech Group, Inc.). Sections were then incubated with 
goat anti‑mouse secondary antibody (cat. no. GB23301; 
1:200; Servicebio; Startech) or goat anti‑rabbit secondary 
antibody (cat. no. GB13044; 1:1,000; Servicebio; Startech) at 
room temperature for 50 min. Sections were developed using 
3,3'‑diaminobenzidine and counterstained with hematoxylin 
at room temperature for 5 min. Images were captured under 
light microscopy.

All slides were independently evaluated by two patholo-
gists who had no knowledge of the clinical information. If 
their conclusions were different, a third pathologist indepen-
dently evaluated the case, and the three pathologists discussed 
and obtained the final result together. Positive α‑SMA 
expression was localized in the cytoplasm of CAFs; positive 
survivin expression was localized in the cytoplasm of CRC 
cells; positive p‑AKT and p‑ERK expression was localized 
in the nucleus of CRC cells due to AKT and ERK nuclear 
translocation. The staining intensity of α‑SMA expression 
was visually scored and classified as follows: 0, no staining; 
1, light brown staining; and 2, brown staining. The proportion 
of cells positively stained for α‑SMA was graded as follows: 
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0, no positively stained CAFs/total CAFs in high‑power 
fields (HPFs); 1, positively stained CAFs/total CAFs in 
HPFs <10%; 2, positively stained CAFs/total CAFs in HPFs 
between 10 and 50%; and 3, positively stained CAFs/total 
CAFs in HPFs >50%. The staining intensity of p‑AKT, p‑ERK 
and survivin was visually scored and classified as follows: 
0, no staining; 1, light brown staining; and 2, brown staining. 
The proportion of cells positively stained for p‑AKT, p‑ERK 
or survivin was graded as follows: 0, no positively stained 
CRC cells/total CRC cells in HPFs; 1, positively stained CRC 
cells/total CRC cells in HPFs <10%; 2, positively stained CRC 
cells/total CRC cells in HPFs between 10 and 50%; 3, posi-
tively stained CRC cells/total CRC cells in HPFs >50%. The 
staining index (SI) of α‑SMA, p‑AKT, p‑ERK and survivin 
was calculated as follows: SI = staining intensity x proportion 
of positive cells. The results were scored from 0 to 6. Low 
expression was defined as an SI of 0 to 2 and high expression 
was defined as an SI of 3 to 6 (23).

Follow‑up of patient survival. Follow‑ups were designed 
to assess the progression‑free survival (PFS), disease‑free 
survival (DFS) and overall survival (OS) of the patients. 
The latest follow‑up of the patients was performed on 
February 28, 2019.

Data analysis, modeling and validation
Analysis of data characteristics. Expression levels of α‑SMA, 
p‑AKT, survivin and p‑ERK were used as features for this 
model and scored as 1 or 2 (low and high expression, respec-
tively). First, the accuracy of these four features as predictive 
biomarkers for chemotherapy efficiency in patients with 
aCRC who were identified as NRCs or CRs was analyzed. 
Subsequently, the two features of highest accuracy were 
selected, integrated and their accuracy was analyzed. The 
selection was then increased to three and four features in order 
to analyze the predictive accuracy.

Probabilistic Neural Networks (PNN) model. An artificial neural 
network is a type of artificial intelligence; it has been recently 
widely used in numerous fields, including clinical diagnosis, 
screening and prognosis prediction (24). As PNNs use the advan-
tages of a radial basis network and classical probability density 
estimation theory, they offer particularly significant advantages 
in pattern classification. The PNN classification was therefore 
used in the present study as the model for classification problem.

The MATLAB Neural Network tool cabinet provides the 
function ‘newpnn’ to create probabilistic neural networks. 
Assuming that the input vector is P and the target is T, a 
two‑layer neural network named ‘net’ can be created by 
using net = newpnn (P, T, SPREAD), where P is a matrix of 
R feature quantities of the input vector of the Q group, R rows 
and Q columns, T is a target matrix of S rows and Q columns 
composed of Q group classification vectors, S is a classification 
number, and S is 2 if it is a class 2 problem. If the sample of the 
Jth column belongs to the class i, the element of the Jth column 
of the ith row of the matrix T is 1, and the remaining columns 
of the row are ~0. SPREAD is the spreading coefficient of the 
Gaussian radial basis function. The default value is 0.1. If the 
SPREAD value is ~0, the created probabilistic neural network 
can be used as the nearest neighbor classifier.

The MATLAB tool cabinet provides the function y=sim 
(net, q) by using the probabilistic neural network model 
created by newpnn, which predicts the target value y of the 
input vector q using the sim function. This function can there-
fore be used to verify and check the network model.

The MATLAB tool cabinet also provides the function plot-
confusion (y, T), where y is the target output value predicted 
by the network model and T is the known target value for 
comparison. In case the target value has only two categories 
and the function calculates the predictive values as 0 and 1, 
this function will calculate the number of correct samples and 
false samples, the accuracy and the error rate.

By using the three functions aforementioned provided 
by the MATLAB tool cabinet, the classification problem of 
predicting the target value of 1 (NRCs) or 0 (CRs) based on the 
four eigenvalues of the provided cases can be accomplished.

The data from the 71 patients were first divided into two 
parts as follows: 43 patients were used for modeling and the 
remaining 28 were used for prediction. The data from the 43 
patients were divided into two parts by 1, 3, 5 ..., 2, 4, 6 ..., 
each of which is 22 lines and 21 lines, and the 22 lines were 
then further interlaced to obtain two lines of 11, 11 of which 
were combined with 21 rows into a 32‑line dataset (74.4% of 
the total samples) for modeling, and the remaining 11 patients 
(25.6% of the total samples) were used for model validation.

Statistical analysis. The clinical and follow‑up data were 
analyzed using SPSS 24.0 (IBM Corp.). The χ2 test and Fisher's 
exact test were used to assess the association between patient 
clinical characteristics and the expression of α‑SMA, p‑AKT, 
p‑ERK and survivin. P<0.05 was considered to indicate a 
statistically significant difference.

Results

Patient general characteristics. A total of 71 patients with 
pathologically confirmed aCRC who received oxaliplatin 
plus 5‑FU chemotherapy were enrolled in the present study. 
Amongst them, 26 patients were defined as NRCs and 
45 patients were defined as CRs (Table I). There were 38 men 
and 33 women, and the median age of these patients was 
62 years old. There was no significant difference between 
pathology type or primary tumor location and the chemo-
therapy response (P=0.144 and P=0.853, respectively). A 
flowchart describing the study design is presented in Fig. 1.

Association between α‑SMA, p‑AKT, p‑ERK and survivin 
expression and the chemotherapy response. The expression of 
α‑SMA, p‑AKT, p‑ERK and survivin was analyzed by IHC in 
paraffin‑embedded specimens from the patients (Fig. 2). The 
results detailed in Table I demonstrated that the high expres-
sion levels of α‑SMA, survivin and p‑AKT in patients with 
CRC were associated with oxaliplatin plus 5‑FU resistance 
(NCRs; P<0.001, P<0.001 and P=0.023, respectively). There 
was no significant difference between p‑ERK expression and 
chemotherapy response (P=0.227).

Association between α‑SMA, p‑AKT, p‑ERK and survivin 
expression and patient PFS, DFS and OS. Among the 71 patients, 
there were 61 patients (NRCs:CR ratio, 16:45) with stage IV 
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CRC receiving oxaliplatin and 5‑FU as first‑line chemotherapy, 
and 10 patients (NRC:CR ratio, 9:1) with stage III with CRC 
receiving oxaliplatin and 5‑FU as adjuvant chemotherapy. Since 
stage IV patients with CRC and stage III patients with CRC had 
different prognoses, the association between PFS, DFS and OS 
and α‑SMA, p‑AKT, p‑ERK and survivin expression for these 
patients were separately analyzed using Kaplan‑Meier curves.

The results presented in Figs. 3 and 4 demonstrated that 
in patients with stage IV CRC, the high expression of α‑SMA 
was associated with a significantly reduced PFS time (5.5 vs. 
15.0 months; P=0.005; Fig. 3A), and although a shorter OS time 
was observed (30.7 vs. 35.0 months; P=0.218; Fig. 4A), this 
difference was not statistically significant. Furthermore, high 
survivin expression was associated with a significantly reduced 
PFS time (5.5 vs. 15.0 months; P=0.001; Fig. 3C) and a signifi-
cantly reduced OS time (15.0 vs. 50.0 months; P<0.001; Fig. 4C). 
There was no significant association between p‑AKT and p‑ERK 
expression and PFS (6.0 vs. 11.0 months and 6.0 vs. 11.0 months; 
P=0.516 and P=0.466, respectively; Fig. 3B and D) or OS 
(26.7 vs. 35.0 months and 32.7 vs. 35.0 months; P=0.429 and 
P=0.446, respectively; Fig. 4B and D) times.

Figure 1. Flowchart describing the study design. Of the 185 patients screened 
for eligibility, 71 patients were enrolled in the present study, including 
46 chemotherapy responders and 25 non‑responders to chemotherapy. 
α‑SMA, α‑smooth muscle actin; p‑, phosphorylated.

Table I. Clinical and pathological characteristics of the 71 patients with colorectal cancer who received oxaliplatin plus 
5‑fluorouracil chemotherapy and were classified as responders (n=46) and non‑responders (n=25).

 Number of Chemotherapy Non‑responders to 
Patient characteristics patients responders chemotherapy P‑value

Sex, n (%)    
  Male 38 (53.5) 23 (50.0) 15 (60.0) 0.701
  Female 33 (46.5) 23 (50.0) 10 (40.0) 
Mean age, years 62 62 62.5 0.163
Pathological type, n (%)    
  Highly differentiated   4   (5.6)   1   (2.2)   3 (12.0) 0.144
  Middle differentiated 52 (73.2) 34 (73.9) 18 (72.0) 
  Poorly differentiated 10 (14.1) 7 (15.2)   3 (12.0) 
  Undifferentiated   5   (7.0)   4   (8.7)   1   (4.0) 
Primary location, n (%)    
  Left colonic carcinoma 51 (71.8) 33 (71.7) 18 (72.0) 0.853
  Right colonic carcinoma 17 (23.9) 11 (23.9)   6 (24.0) 
  Left and right colonic carcinoma   3   (4.2)   2   (4.3)   1   (4.0) 
α‑SMA expression, n (%)    
  High 36 (50.7) 15 (32.6) 21 (84.0) <0.001
  Low 35 (49.3) 31 (67.4)   4 (16.0) 
p‑AKT expression, n (%)    
  High 22 (31.0) 10 (21.7) 12 (48.0) 0.023
  Low 49 (69.0) 36 (78.3) 13 (52.0) 
Survivin expression, n (%)    
  High 36 (50.7) 16 (34.8) 20 (80.0) <0.001
  Low 35 (49.3) 30 (65.2)   5 (20.0) 
p‑ERK expression, n (%)    
  High 23 (32.4) 13 (28.3) 10 (40.0) 0.227
  Low 48 (67.6) 33 (71.7) 15 (60.0) 

α‑SMA, α‑smooth muscle actin; p‑, phosphorylated.
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The results presented in Fig. 5 demonstrated that in patients 
with stage III CRC, there was no significant association between 
α‑SMA, p‑AKT, survivin and p‑ERK expression and PFS time 
(6.2 vs. 6.6 months, 5.0 vs. 6.6 months, 6.6 vs. 3.0 months and 
5.0 vs. 6.6 months; P=0.949, P=0.158, P=0.427 and P=0.280, 
respectively; Fig. 5A‑D). The results from Fig. 6 also revealed 
that in patients with stage III CRC, there was no significant 
association between p‑AKT, survivin and p‑ERK expression 
and OS time (15.0 vs. 31.0 months, 24.0 vs. 38.0 months and 
12.0 vs. 31.0 months; P=0.207, P=0.264 and P=0.353, respec-
tively; Fig. 6A‑C). In patients with stage III CRC, only 1 patient 
had high α‑SMA expression (Fig. 6D) and since this patient 
was still alive during the study, the association between α‑SMA 
expression and median OS could therefore not be determined.

Predictive model of α‑SMA, p‑AKT, p‑ERK and survivin 
expression for oxaliplatin plus 5‑FU chemotherapy response 
in patients with aCRC. The error rates of α‑SMA, p‑AKT, 
survivin and p‑ERK expressions were first analyzed as 
predictive biomarkers for chemotherapy response in the 
43 patients involved in this model. The error rates of indi-
vidual feature were 28, 35 and 30% for α‑SMA, p‑AKT and 

survivin expression, whereas p‑ERK expression did not have 
discriminating ability (Table II) and was not satisfactory 
for predicting chemotherapy response. Two features with 
the lowest error rate, α‑SMA and survivin expression, were 
selected from the four features and were used to detect the 
predictive accuracy of the integrated model. The error rate 
of the combined model was 26% (Table III). When p‑AKT 
expression was added to this model, the error rate decreased 
to 21% (Table IV). When p‑ERK expression was added to 
this model, the error rate decreased to 16% and the accuracy 
was >80% (Table V).

Based on these results, the PNN module of the MATLAB 
tool cabinet was used to establish the model regarding the clas-
sification problems. The data from 32 patients were used for 
modeling, the data from 11 patients were used for validation 
and the data from 28 patients were used for prediction. The 
results of modeling, validation and prediction are presented 
in Table VI. The results demonstrated that the modeling accu-
racy involving a single feature was ~70%. When the features 
number increased to 4, the modeling accuracy was 83.7%, the 
validation accuracy was 92.9% and the prediction accuracy 
was 85.7%.

Figure 2. Immunohistochemistry staining for α‑SMA, p‑AKT, p‑ERK and survivin. (A) Low α‑SMA expression and an SI value of 1 (1x1). (B) High α‑SMA 
expression and an SI of is 6 (2x3). (C) Low p‑AKT expression and an SI of 0 (0x0). (D) High p‑AKT expression and an SI of 6 (2x3). (E) Low p‑ERK expression 
and an SI of 0 (0x0). (F) High p‑ERK expression and an SI of 6 (2x3). (G)  Low Survivin expression and an SI of 0 (0x0). (H) High Survivin expression and 
an SI of 6 (2x3). The numbers into brackets represent the staining intensity x the proportion of positive cells; low expression was defined as an SI of 0 to 2 and 
high expression was defined as an SI of 3 to 6. Magnification, x400. α‑SMA, α‑smooth muscle actin; p‑, phosphorylated; SI, staining index.
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Figure 3. Kaplan‑Meier survival curves for PFS in patients with stage IV colorectal cancer. (A) Patients with high α‑SMA expression exhibited a significantly 
reduced PFS time compared with that of patients with low α‑SMA expression (median PFS time, 5.5 vs. 15.0 months; P=0.005). (B) p‑AKT and (D) p‑ERK 
expression in these patients was not associated with PFS time. (C) Patients with high survivin expression exhibited a significantly reduced PFS time compared 
with that in patients with low survivin expression (median PFS time, 5.5 vs. 15.0 months; P=0.001). α‑SMA, α‑smooth muscle actin; p‑, phosphorylated; 
PFS, progression‑free survival.

Figure 4. Kaplan‑Meier survival curves for OS in patients with stage IV colorectal cancer. (A) Patients with high α‑SMA expression experienced a reduced 
OS time compared with that of patients with low α‑SMA expression, although this difference was not significant (median OS, 30.7 vs. 35.0 months; P=0.218). 
(B) p‑AKT and (D) p‑ERK expression in these patients was not associated with OS time. (C) Patients with high survivin expression exhibited a significantly 
reduced OS time compared with that of patients with low survivin expression (median OS, 15.0 vs. 50.0 months, P<0.001). α‑SMA, α‑smooth muscle actin; 
p‑, phosphorylated; OS, overall survival.
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Figure 6. Kaplan‑Meier survival curves for OS in patients with stage III colorectal cancer. (A) α‑SMA, (B) p‑AKT, (C) survivin and (D) p‑ERK expression in 
stage III patients was not associated with OS time. α‑SMA, α‑smooth muscle actin; p‑, phosphorylated; OS, overall survival.

Figure 5. Kaplan‑Meier survival curves for DFS in patients with stage III colorectal cancer. (A) α‑SMA, (B) p‑AKT, (C) survivin and (D) p‑ERK expression in 
stage III patients was not associated with DFS time. α‑SMA, α‑smooth muscle actin; p‑, phosphorylated; DFS, disease‑free survival.
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Table IV. Predictive potential of the combination of α‑SMA, survivin and p‑AKT expression for chemotherapy response in 
patients with advanced CRC.

Classification  Classification Classification Cases of Cases of 
of α‑SMA of survivin of p‑AKT non‑responders to chemotherapy Error rate,
expression expression expression chemotherapy , n responders, n %

1 1 1 0 10 21
1 1 2 0 4 
1 2 1 0 3 
1 2 2 2 0 
2 1 1 2 2 
2 1 2 9 7 
2 2 1 0 1 
2 2 2 3 0 

In the probabilistic neural networks model, the predictive potential of the combination of α‑SMA, survivin and p‑AKT expression was analyzed 
for chemotherapy response. In the classification of each feature (α‑SMA expression, survivin expression and p‑AKT expression), 1=low 
expression, 2=high expression. The number of non‑responders to chemotherapy or chemotherapy responders in different combinations of 
α‑SMA expression, survivin expression and p‑AKT expression was depicted in this table. Error rate (%) = error samples number/total number. 
Error rate (%) of these features was as follows: Error rate (%) = (2 + 7)/43 = 21%. α‑SMA, α‑smooth muscle actin; p‑, phosphorylated.

Table III. Predictive potential of the combination of α‑SMA expression and survivin expression for chemotherapy response in patients with 
advanced colorectal cancer.a

Classification of  Classification of survivin Cases of non‑responders to Cases of chemotherapy Error rate, 
α‑SMA expression expression chemotherapy, n responders, n %

1 1 0 13 26
1 2 2 4 
2 1 2 3 
2 2 12 7 

aIn the probabilistic neural networks model, the predictive potential of the combination of α‑SMA expression and survivin expression was 
analyzed for chemotherapy response. In the classification of each feature (α‑SMA expression or survivin expression), 1=low expression, 
2=high expression. The number of non‑responders to chemotherapy or chemotherapy responders in different combinations of α‑SMA expres-
sion and survivin expression is depicted in the table. Error rate (%) = error samples number/total number. Error rate (%) of these features was 
as follows: Error rate (%) = (2 + 2 + 6 + 1)/43 = 26%. α‑SMA, α‑smooth muscle actin.

Table II. Predictive potential of individual features for chemotherapy response in patients with advanced colorectal cancer.a

 Classification of Cases of non‑responders to feature Cases of chemotherapy 
Protein each feature chemoeach each feature responders, n Error rate, %

α‑SMA 1 2 17 28
 2 14 10 
p‑AKT 1 11 23 35
 2 5 4 
Survivin 1 2 16 30
 2 14 11 
p‑ERK 1 11 15 53.5
 2 5 12 

aIn the probabilistic neural networks model, the predictive potential of individual features were first analyzed. In each feature classification 1=low 
expression, 2=high expression. According to the probabilistic neural networks model, error rate (%) = error samples number/total number. The 
error rates (%) of each feature were as follows: α‑SMA = (2 + 2 + 6 + 1 + 1)/43 = 28%; p‑AKT = (1 + 2 + 2 + 8 + 1 + 1)/43 = 35%; surviving 
= (2 + 2 + 2 + 6 + 1 ) ÷ 43 = 30%; p‑ERK = (6 + 2 + 2 + 2 + 8 + 1 + 1 + 1)/43 = 53.5%. α‑SMA, α‑smooth muscle actin; p‑, phosphorylated.
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Discussion

The first‑line chemotherapy used for patients with aCRC is an 
oxaliplatin plus 5‑FU regimen; however, the response rate is 
limited. It is therefore necessary to identify biomarkers that 
could help oncologists to accurately select patients who can 
benefit from this specific regimen.

As illustrated in the ‘seed and soil’ hypothesis, supportive 
tumor stroma (the soil) is important for tumor cell (the seed) 
progression (25,26). CAFs are large and spindle‑shaped mesen-
chymal cells that represent the major components of tumor stroma. 
Numerous studies have demonstrated that CAFs serve crucial 
roles in cancer progression and resistance to chemotherapeutic 

agents (27,28). However, the association between CAFs and 
traditional chemotherapy in CRC remains unclear. Previous 
studies reported that cytokines secreted by CAFs, including 
interleukin (IL)‑8, IL‑1β, vascular endothelial growth factor, 
TNF‑α, IL‑17 and IL‑6, can predict a poor response to chemo-
therapy in CRC cells (29). Gonçalves‑Ribeiro et al (11) revealed 
that CAFs have a protective effect on CRC cells. It has also been 
reported that the expression of CAFs‑associated fibronectin 1 
and collagen 3A1 can predict the absence of response to neoad-
juvant treatment in locally advanced rectal carcinoma (30). 
The potential mechanisms involved are as follows: i) CAFs can 
secrete collagen type I, which can decrease chemotherapeutic 
drug uptake in tumors and then induce drug resistance (31,32); 

Table V. Predictive potential of α‑SMA, survivin, p‑AKT and p‑ERK expression for chemotherapy response in patients with 
advanced colorectal cancer.a

Classification  Classification Classification Classification Cases of no Cases of 
of α‑SMA of survivin of p‑AKT of p‑ERK responders to chemotherapy Error rate, 
expression expression expression expression chemotherapy, n responders, n %

1 1 1 1 0 4 16
1 1 1 2 0 6 
1 1 2 1 0 2 
1 1 2 2 0 2 
1 2 1 1 0 1 
1 2 1 2 0 2 
1 2 2 1 2 0 
1 2 2 2 / / 
2  1 1 1 0 2 
2 1 1 2 2 0 
2 1 2 1 8 6 
2 1 2 2 1 1 
2 2 1 1 / / 
2 2 1 2 0 1 
2 2 2 1 1 0 
2 2 2 2 2 0 

aIn the probabilistic neural networks model, the predictive potential of the combination of α‑SMA, survivin, p‑AKT and p‑ERK expression 
was analyzed for chemotherapy response. In classification of each feature (α‑SMA expression, survivin expression, p‑AKT expression and 
p‑ERK expression), 1=low expression, 2=high expression. The number of non‑responders to chemotherapy or chemotherapy responders in 
different combinations of α‑SMA expression, survivin expression, p‑AKT expression and p‑ERK expression was depicted in this table. Error 
rate (%) = error samples number/total number; Error rate (%) of these feature was as follows: Error rate (%) = (6 + 1)/43 = 16%. α‑SMA, 
α‑smooth muscle actin; p‑, phosphorylated.

Table VI. Results of modeling, verification and prediction of 4 features for chemotherapy response in patients with advanced 
colorectal cancer.

 Modeling  Validation  Prediction  Total modeling 
Features accuracy, % accuracy, % accuracy, % and validation, %

α‑SMA 72.1 78.6 85.7 82.1
α‑SMA, survivin 72.1 78.6 85.7 82.1
α‑SMA, survivin, p‑AKT 79.1 78.6 78.6 78.6
α‑SMA, survivin, p‑AKT, p‑ERK 83.7 92.9 85.7 89.3

α‑SMA, α‑smooth muscle actin; p‑, phosphorylated.
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ii) soluble factors secreted by CAFs can induce the activation 
of PI3K/AKT/survivin and JAK/STAT pathways, which may 
provide protection from cell death, ensure correct DNA repair 
and eventually induce resistance to oxaliplatin and 5‑FU; and 
iii) chemotherapy‑treated CAFs can secrete specific cytokines 
and chemokines, including IL‑17A, which may promote 
cancer‑initiating cell self‑renewal and tumor resistance (33).

Increasing evidence has demonstrated that chemotherapy 
resistance may be associated with the activation of two important 
Ras downstream pathways, the MAPK and the PI3K‑AKT‑mTOR 
signaling pathways (12‑14). The MAPK pathway regulates 
numerous physiological processes in cancer cells, including cell 
proliferation, metastasis and chemoresistance (34). Previous 
studies revealed that MAPK signaling pathway activation serves 
key roles in drug resistance, notably in gastric cancer, breast 
cancer, prostate cancer and CRC. The PI3K/AKT/mTOR pathway 
also regulates cancer progression and is recognized as a major 
cause of multidrug resistance in various types of cancer (15‑18). 
This pathway has also been identified as a potent contributor 
to drug resistance in CRC, particularly resistance to 5‑FU and 
oxaliplatin (35). Inhibition of the PI3K/AKT signaling pathway 
can reduce insulin‑induced chemotherapeutic drug resistance. 
AKT phosphorylation serves a pivotal part in the activation of the 
PI3K/AKT/mTOR signaling pathway (36,37).

Survivin is a member of the inhibitor of apoptosis proteins 
family. Numerous studies have demonstrated that survivin over-
expression is associated with drug resistance in different cancer 
types (19,38‑40). The potential mechanisms involved in survivin 
overexpression‑induced drug resistance are as follows: i) Nuclear 
survivin serves a pivotal role in the formation of spindle fiber 
assembly via stabilization of microtubule formation leading to 
cell growth (41); ii)  survivin can upregulate the molecular sensor 
of DNA damage named ku70 and subsequently enhance the repair 
of DNA double‑stranded breaks (42); and iii) survivin can interact 
with the apoptosis‑inducing molecules caspase‑3 and casapase‑9 
and inhibit their apoptotic function (43). Additional evidence 
has revealed that regulation of survivin expression may be a 
downstream effect of the MAPK (44‑46) or PI3K‑AKT‑mTOR 
signaling pathways (45) in different types of cancer.

Based on this evidence, the present study established a 
predictive model of α‑SMA, p‑AKT, p‑ERK and survivin 
expression in patients with CRC in order to anticipate the 
potential intrinsic resistance to the oxaliplatin plus 5‑FU 
regimen. The results from this study demonstrated that 
α‑SMA and survivin overexpression in patients with CRC was 
significantly associated with oxaliplatin plus 5‑FU resistance, 
which was not the case for p‑AKT and p‑ERK overexpres-
sion; this result was in agreement with previous studies and 
hypotheses (19,43‑45). From these different patterns, the 
model comprising α‑SMA, p‑AKT, p‑ERK and survivin 
overexpression was the best predictive pattern. The predictive 
model of α‑SMA, p‑AKT, p‑ERK and survivin overexpression 
was of great efficacy (81.3%) and accuracy (81.8%), and could 
aid oncologists in determining whether an individual could 
benefit from the oxaliplatin plus 5‑FU chemotherapy regimen.

In conclusion, the multifactorial predictive biomarker model 
of α‑SMA, p‑AKT, p‑ERK and survivin expression in patients 
with CRC used to predict intrinsic resistance to the oxaliplatin 
plus 5‑FU regimen in the present study was efficient and accu-
rate. These results suggested that patients with high expression 

of this predictive model may be intrinsically resistant to an 
oxaliplatin plus 5‑FU regimen. This predictive model may be of 
great help to screen cancer patients who have intrinsic chemore-
sistance and to prescribe them personalized treatments.
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