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Abstract. Heme oxygenase (HO)‑1 is a heat shock protein 
induced by hyperthermia, responsible for cellular resistance to 
temperature. The aim of this in vitro study was to clarify the 
response of gastric and ovarian cancer cells to hyperthermic 
intraperitoneal chemotherapy, following the modulation 
of HO‑1 expression. AGS and OVCAR‑3 cells were treated 
with different temperature regimens, either alone or in 
combination with an IC50 dose of cisplatin for 1 h. Prior to 
treatment, HO‑1 expression was silenced by short interfering 
RNA transfection. In OVCAR‑3 cells, cisplatin increased 
HO‑1 mRNA expression by 3.73‑fold under normothermia 
and 2.4‑fold under hyperthermia; furthermore, these factors 
similarly increased HO‑1 protein expression levels. Exposure 
to cisplatin under hyperthermia reduced the viability of 
OVCAR‑3 cells by 36% and HO‑1‑silencing enhanced this 
effect by 20%. HO‑1‑silencing under normothermia increased 
apoptotic rates in cisplatin‑treated OVCAR‑3 cells by 
2.07‑fold, and hyperthermia enhanced the effect by 3.09‑fold. 
Semi‑quantitative polymerase chain reaction (PCR) cell 
analysis indicated that exposure to cisplatin decreased the cell 
index under normothermia, and that hyperthermia boosted 
this effect in OVCAR‑3. In AGS cells, only temperature 
increased cellular HO‑1 levels. Silencing HO‑1 in AGS cells 
at 37˚C reduced viability by 16% and increased apoptotic rates 
2.63‑fold. Hyperthermia did not affect AGS viability; however, 
apoptosis was increased 6.84‑fold. PCR analysis indicated 
no additional effects of hyperthermia on the AGS cell index. 
HO‑1 is induced in cancer cells by different stressors in a 
variable manner. In tumors with highly inducible HO‑1, prior 

silencing of this gene could improve the cellular response to 
hyperthermia and cisplatin.

Introduction

The treatment of cancer in the peritoneal cavity is a major 
problem in gastrointestinal and gynecological oncology 
worldwide (1,2). Globally, patients with gastric cancer with 
peritoneal carcinomatosis have a median survival time of 
3‑6 months, when the disease is left untreated  (3). In the 
majority of newly diagnosed ovarian cancer cases, peritoneal 
metastases are already present (4).

Hyperthermic intraperitoneal chemotherapy (HIPEC) is a 
promising treatment option for intraperitoneally disseminated 
cancer (5‑7). It has been reported to be more efficient compared 
with intravenous chemotherapy, however, as a treatment of 
peritoneal metastases it is limited by the plasma‑peritoneal 
barrier  (8,9). It has been previously suggested that hyper-
thermia can enhance the intraperitoneal application of 
cytotoxic agents  (10,11). Residual microtumors, following 
cytoreductive surgery, are treated by intraperitoneal chemo-
therapy in combination with hyperthermia up to 42‑43˚C (12). 
Overall, hyperthermia as part of HIPEC is thought to boost 
pharmacokinetics and increase DNA damage induced by the 
cytostatic agent (13). Cisplatin is an alkylating drug used to 
treat residual gastric and ovarian cancer in the peritoneal 
cavity (14). Previous in vitro studies produced controversial 
data about the additivity of hyperthermia to cisplatin (15,16).

The response and resistance of cancer cells to chemotherapy 
and hyperthermia depend on the induction and expression of 
a number of cytoprotective proteins, including Hsp70 and 
Hsp27 (17‑19). Therefore, the modulation of cytoprotective 
proteins may serve a crucial role in cancer treatment. One poten-
tial target is heme oxygenase (HO)‑1, particularly in HIPEC, 
since high temperatures are a component of HIPEC, and it has 
been reported that, under hyperthermia, cells enhance HO‑1 
expression for self‑protective purposes (19). HO‑1 is normally 
expressed at low levels in the majority of tissues, including the 
gastrointestinal tract, female reproductive organs, brain and 
bone marrow (20); however, it is highly inducible by a variety 
of stimuli, including cytokines, lipopolysaccharides (21) and 
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serine/threonine kinases  (22). Cellular levels of HO‑1 are 
known to be temperature‑dependent (23,24). HO‑1 is overex-
pressed under hyperthermic conditions, exerting a protective 
function (25,26).

An in vitro study was conducted to clarify the underlying 
mechanism of how cisplatin and hyperthermia induce HO‑1 
expression in ovarian and gastric cancer cells. In addition, the 
present study investigated the response of these cancer cells to 
cisplatin and hyperthermia following the modulation of HO‑1 
protein expression.

Materials and methods

Cell lines and conditions. Human gastric adenocarcinoma, 
AGS, and ovarian adenocarcinoma, OVCAR‑3, cell lines were 
purchased from the American Type Tissue Culture Collection 
(Manassas, VA, USA). OVCAR‑3 cells were cultivated in 
RPMI‑1640 medium (Gibco; Thermo Fisher Scientific, Inc., 
Waltham, MA, USA) with 20% fetal bovine serum (FBS; 
Gibco; Thermo Fisher Scientific, Inc.), 1% penicillin/strepto-
mycin and 0.01 mg/ml bovine insulin (Gibco; Thermo Fisher 
Scientific, Inc.). AGS cells were harvested in Ham's F‑12K 
medium with 10% FBS and 1% penicillin/streptomycin at 
37˚C and 5% CO2.

Experimental design. Cells were harvested for 24 h in the 
conditions described previously. The cells were subjected to 
conditions of normothermia (37˚C) or 43˚C and/or an IC50 

dose of cisplatin. The IC50 dose was determined for each cell 
line individually in an experimental manner. The IC50 doses 
of cisplatin for AGS and OVCAR‑3 cells were determined 
(at 37˚C) to be 111 and 152 µM, respectively. Hyperthermia 
and/or cisplatin exposure lasted for 1 h; this step began once 
the media reached the desired temperature (37 or 43˚C), as 
measured by a digital thermometer in a humid incubator with 
a set temperature of 43˚C. Following treatment, the medium 
was changed and cells were harvested after 48 h of incubation 
in a humidified atmosphere at 37˚C with 5% CO2. AGS and 
OCAR‑3 cell viability, apoptosis, and cell index were all subse-
quently measured. Additionally, these cell lines were used in 
real time cell analysis, western blotting and semi‑quantitative 
polymerase chain reaction (qPCR) assays.

Silencing of HO‑1. HO‑1 small interfering RNA (siRNA; 
30 nM HMOX1; sense 5'‑UGAACACUCUGGAGAUGAC‑3', 
and antisense 5'‑GUCAUCUCCAGAGUGUCCA‑3') was 
obtained from Ambion; Thermo Fisher Scientific, Inc., and 
negative control (30 nM AllStars Negative Control siRNA; 
sense 5'‑UUCUCCGAACGUGUCACGU‑3' and antisense 
5'‑ACGUGACACGUUCGGAGAA‑3') was obta ined 
from Qiagen GmbH (Hilden, Germany). Lipofectamine® 
RNAiMAX (Invitrogen; Thermo Fisher Scientific, Inc.) 
and Opti‑MEM™ media (Gibco; Thermo Fisher Scientific, 
Inc.) were used according to the manufacturer's protocols. 
The efficiency of transfection was verified using BLOCK‑iT 
Alexa Fluor (Invitrogen; Thermo Fisher Scientific, Inc.). 
The efficiency of knockdown was verified by western blot 
analysis. HO‑1‑silencing was performed 72 h prior to imple-
mentation of the experimental temperature and treatment 
with cisplatin.

MTT assay. Cell viability was determined using an MTT 
assay (Invitrogen; Thermo Fisher Scientific, Inc.). Cells were 
incubated for 4 h at 37˚C following the addition of 5 mg/ml 
MTT reagent. The supernatant was subsequently removed 
and dimethyl sulfide was added (Carl Roth GmbH Co KG, 
Karlsruhe, Germany). Absorbance was measured at a wave-
length of 570 nm and the reference was measured at 650 nm 
using a Sunrise spectrophotometer (Tecan Austria GmbH, 
Grödig, Austria).

qPCR. Cellular RNA was extracted using a PureLink® RNA 
Mini kit (Ambion; Thermo Fisher Scientific, Inc.), according to 
the manufacturer's protocols. Purified RNA was measured and 
verified for purity using ultraviolet (UV) spectrophotometry 
(NanoDrop; Thermo Fisher Scientific, Inc.). Using the Super 
Script Vilo Master Mix (Invitrogen; Thermo Fisher Scientific, 
Inc.) with 2 µg RNA, cDNA was generated, according to the 
manufacturer's protocols. RNA amplification was performed 
in a 20 µl reaction volume, which contained 1X PCR Master 
Mix, primers, and 2 µl cDNA template. Thermocycling condi-
tions were as follows: initial step at 95˚C for 10 min (1 cycle), 
denaturation at 95˚C for 15  sec and annealing/extending 
at 60˚C for 1  min (40  cycles), followed by a final exten-
sion step at 72˚C for 2 min. HO‑1 primers were obtained 
from Invitrogen (Thermo Fisher Scientific, Inc.): forward, 
5'‑TGCTCAACATCCAGCTCTTTGAGGA‑3'; and reverse, 
5'‑CAGGCAGAGAATGCTGAGTTC‑3'. The products were 
loaded on 1.5%  agarose gels. Ethidium bromide staining 
and UV light (Gel Doc™ XR+ Gel Documentation System; 
Bio‑Rad Laboratories, Inc., Hercules, CA, USA) were used 
for visualization. Analysis was performed using ImageLab 
software (version 6.0.0; Bio‑Rad Laboratories, Inc.).

Flow cytometry. Apoptosis was evaluated by flow cytometry 
using Annexin V‑PE and 7‑aminoactinomycin D. A Guava 
Nexin Annexin V Assay kit (Merck KGaA, Darmstadt, 
Germany) was used according to the manufacturer's proto-
cols. Analysis was performed with the Guava Personal Cell 
Analysis Flow Cytometer (Guava; EMD Millipore, Billerica, 
MA, USA) and CytoSoft software (version 2.1.4; Guava; EMD 
Millipore).

Western blot analysis. Lysates were prepared using radioim-
munoprecipitation lysis buffer (Abcam, Cambridge, UK) 
containing protease inhibitors (Roche Diagnostics, Basel, 
Switzerland). A bicinchoninic acid protein assay kit (Thermo 
Fisher Scientific, Inc.) was used to determine the protein concen-
tration, according to the manufacturer's protocols. Following 
heating at 97˚C for 5  min, protein samples (50  µg) were 
subjected to 4‑12% SDS‑PAGE and transferred to polyvinyli-
dene fluoride membranes at 30 V for 50 min. Membranes were 
blocked with a blocking buffer (20% diluent A, 30% diluent B; 
WesternBreeze Blocker/Diluent; Invitrogen; Thermo Fisher 
Scientific, Inc.) at room temperature for 1 h and incubated with 
the primary antibodies rabbit anti‑HO‑1 (dilution, 1:2,000; 
cat. no., EP1391Y; Abcam) and mouse anti‑GAPDH (dilution, 
1:1,000; cat. no., AM4300; Ambion; Thermo Fisher Scientific, 
Inc.) at 4˚C overnight. The following day, the blots were incu-
bated with ready to use secondary antibodies against rabbit 
(cat. no. WP20007; Invitrogen, Thermo Fisher Scientific, Inc.) 
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or mouse immunoglobulin G (cat. no. WP20006; Invitrogen; 
Thermo Fisher Scientific, Inc.) for 1 h at room temperature. 
Chemiluminescence substrate (CDP‑Star; Invitrogen; Thermo 
Fisher Scientific, Inc.) was added and the ChemiDoc imaging 
system (Bio‑Rad Laboratories, Inc.) was used for visualiza-
tion. ImageJ software (version 1.48; National Institutes of 
Health, Bethesda, MD, USA) was used for quantification of 
western blots (27).

Real time cell analysis. The xCELLigence® RTCA DP 
Real‑Time Analyzer (ACEA Biosciences Inc., San Diego, 
CA, USA) was used to investigate the PCR cellular response 
to treatment. To present the real time cell analysis data 
obtained by xCELLigence system, the cell index was used. 
The determination of the cell index parameter is an automatic 
system feature and is based on the rapid measurements of 
impedance between gold electrodes in the analyzer wells (28). 
Cell‑free medium (RPMI‑1640; Gibco; Thermo Fisher 
Scientific, Inc.) and medium with cells have different cell 
impedance and proliferation indices, which is reflected in 
changes in impedance value and CI; this is calculated as follows: 
(impedancetime point n‑impedancebackground)/nominal 
impedance value. Delta cell index was measured immediately 
when cells reached the electronic microplate. Cells were 
evaluated for 48  h following the experiment and/or 72  h 
following HO‑1‑silencing.

Statistical analysis. SPSS v.21.0 software (IBM Corp., 
Armonk, NY, USA ) and GraphPad (version 6.01; GraphPad 
Software Inc., La Jolla, CA, USA) were used for statistical 
evaluation. The Mann‑Whitney test and one‑way analysis 
of variance with a Bonferroni post hoc test were performed 
to assess clinical significance. Data are presented as the 
mean ± standard deviation of three independent experiments, 
performed in triplicate. P<0.05 was considered to indicate a 
statistically significant difference.

Results

Hyperthermia and cisplatin differentially induce HO‑1 mRNA 
and protein expression in ovarian and gastric cancer cells. 

Enhanced expression levels of HO‑1 mRNA were only observed 
in OVCAR‑3 cells. The exposure of OVCAR‑3 cells to cisplatin 
resulted in a significant increase of HO‑1 mRNA expression. 
Cisplatin induced a 3.75‑ and 2.4‑fold increase of HO‑1 expres-
sion in conditions of normothermia (37˚C) and hyperthermia 
(43˚C), respectively (P<0.05). While hyperthermia at 43˚C 
boosted HO‑1 expression by 1.34‑fold, the addition of cisplatin 
increased the effect on HO‑1 expression by 3.22‑fold (P<0.05; 
Fig. 1A). In AGS cells, HO‑1 expression was not significantly 
affected by temperature or cisplatin (Fig. 1B).

Furthermore, cisplatin significantly increased HO‑1 
protein expression in OVCAR‑3 cells (P<0.05). HO‑1 expres-
sion was increased 9.5‑fold, following cisplatin treatment 
under normothermia. At 43˚C, this effect was slightly higher, 
with a 9.77‑fold increase (P<0.05). The exposure of OVCAR‑3 
cells to hyperthermia alone had no effect on HO‑1 protein 
expression levels. However, the combination of cisplatin and 
hyperthermia increased HO‑1 protein expression by 11‑fold 
compared with the control (untreated cells in normothermia; 
P<0.01; Fig. 2A).

In AGS cells, cisplatin had no notable effect on HO‑1 
expression. At 37˚C, cisplatin increased HO‑1 protein expres-
sion in AGS cells by 1.2‑fold; however, this increase was not 
statistically significant, whereas the exposure of cells to 43˚C 
in the absence of cisplatin increased HO‑1 protein expression 
levels by 2.75‑fold (P<0.05). HO‑1 expression dropped slightly 
when cisplatin was added at 43˚C. Therefore, concomitant 
treatment of AGS cells with cisplatin and hyperthermia at 
43˚C resulted in a 2.14‑fold increase in HO‑1 protein compared 
with the control (Fig. 2B). Furthermore, HO‑1 knockdown was 
assessed by western blotting (Fig. 2C and D).

HO‑1‑silencing does not influence AGS cell viability. The 
results of the MTT assay revealed that HO‑1‑silencing in 
OVCAR‑3 cells does not affect viability in response to cisplatin 
at 37˚C. The exposure of OVCAR‑3 cells to cisplatin and 
hyperthermia (43˚C) resulted in a 36% drop in cell viability 
(P<0.05). HO‑1‑silencing enhanced this effect by an additional 
20% (P<0.05; Fig. 3A).

HO‑1‑silencing in AGS cells enhanced the cisplatin 
effect and reduced cell viability by 16% at 37˚C (P<0.05). 

Figure 1. HO‑1 expression is differentially induced by hyperthermia and cisplatin treatment in ovarian adenocarcinoma, OVCAR‑3, and gastric adenocarci-
noma, AGS, cell lines. (A) HO‑1 expression was activated by cisplatin in OVCAR‑3 cells, whereas hyperthermia was not indicated to have an additional effect. 
(B) In AGS cells, only hyperthermia indicated to induce HO‑1 expression. *P<0.05, compared with the control group (not treated with cisplatin, normothermia). 
HO‑1, heme oxygenase‑1.
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Hyperthermia potentiated cisplatin cytotoxicity in AGS cells: 
viability dropped by 24% compared with 37˚C. However, 
HO‑1‑silencing had no significant additional effect, whereas 
viability rates were similar in HO‑1‑silenced or unsilenced 
AGS cells following cisplatin treatment at 43˚C (Fig. 3B).

HO‑1‑silencing prior to concomitant hyperthermia and 
cisplatin treatment increases ovarian and gastric cancer 
cell apoptosis. The exposure of OVCAR‑3 and AGS cells to 
hyperthermia resulted in a better cell response to cisplatin 
with respect to apoptosis. Prior HO‑1‑silencing under normo-
thermia increased cisplatin‑induced apoptosis in OVCAR‑3 
and AGS cells by 2.07‑ and 2.63‑fold, respectively. In addition, 
silencing of HO‑1 under hyperthermia enhanced the apoptosis 
of OVCAR‑3 and AGS cells by 3.09‑ and 6.84‑fold, respec-
tively (P<0.05; Fig. 4).

Hyperthermia enhances the effect of cisplatin on OVCAR‑3, 
but not on AGS cells, following modulation of HO‑1 expres‑
sion. PCR analysis for 48 h following treatment indicated 

that exposure to cisplatin resulted in a gradual decrease in 
the cell index of AGS and OVCAR‑3 (HO‑1‑silenced) cells 
at 37˚C. Hyperthermia at 43˚C boosted this effect by inducing 
a gradual decrease of the OVCAR‑3 (HO‑1‑silenced) cell 
index. However, the cell index of AGS (HO‑1‑silenced) cells 
following cisplatin treatment at 37 or 43˚C remained similar 
(Fig. 5).

Discussion

In the present study, the HO‑1 protein was variably expressed 
at the basal level and variably induced following exposure 
to cisplatin and hyperthermia in OVCAR‑3 and AGS cells. 
Cisplatin increased the expression levels of HO‑1 in OVCAR‑3 
cells, while hyperthermia at 43˚C had no effect. In AGS cells, 
HO‑1 expression was slightly increased under hyperthermia, 
with no significant induction following exposure to cisplatin, 
indicating that the modulation of HO‑1 may serve a role in 
the response of cancer cells to cisplatin and hyperthermia and 
affect cancer treatment outcomes.

Figure 2. HO‑1 protein expression is activated by cisplatin or hyperthermia. (A) HO‑1 expression increased following cisplatin treatment of OVCAR‑3 
cells. Hyperthermia‑dependent activation of HO‑1 expression did not indicate any significant differences between 37 and 43˚C. (B) In AGS cells, hyper-
thermia induced expression of HO‑1, while treatment with cisplatin had no significant effect. HO‑1‑knockdown decreased expression levels of HO‑1 protein 
in (C) OVCAR‑3 and (D) AGS cells compared with corresponding cells treated under normothermia and without cisplatin. *P<0.05, compared with the control 
group (not treated with cisplatin, normothermia). Western blotting data is shown by selecting the most representative experiment. HO‑1, heme oxygenase‑1; 
siRNA, small interfering RNA.

Figure 3. Modulating HO‑1 expression differentially influences the viability of OVCAR‑3 cells, however not AGS cells. (A) HO‑1‑silencing had no significant 
effect on the viability of OVCAR‑3 cells treated with cisplatin in conditions of normothermia. HO‑1‑silencing enhanced the reduction of cell viability, 
following treatment with cisplatin and hyperthermia. (B) HO‑1‑silencing slightly decreased AGS cell viability, following treatment with cisplatin under 
normothermia, however there was no significant effect with hyperthermia. *P<0.05, compared with the cells treated with cisplatin under normothermia. Data 
are equalized to untreated cells‑100%. HO‑1, heme oxygenase‑1; siRNA, small interfering RNA.
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HIPEC is widely used in clinical settings, and promising 
results have been reported in the treatment of peritoneal 
dissemination of gastric and ovarian cancer (29,30). To the best 
of our knowledge, to date, there has been a lack of evidence 
regarding the synergy of chemotherapy and hyperthermia. 
In our previous studies, it was observed that gastrointestinal 
and ovarian cancer cells responded unpredictably following 
exposure to cisplatin and hyperthermia (16,31). One of the limits 
of this response may be the induction of cytoprotective enzymes 
associated with chemotherapy and/or hyperthermia, in particular 
HO‑1. HO‑1 is known to be highly expressed in human gastric 
and ovarian cancer tissue (32). Anticancer treatment options, 
including chemotherapy and radiotherapy may increase HO‑1 
expression (33). HO‑1 serves an important role in a number of 
pathophysiological conditions, including temperature rise and 
inflammation, and has been reported to be associated with 
cancer  (34,35). HO‑1 expression is associated with cancer 
growth and progression by promoting angiogenesis in the tumor 

itself and metastases and pro‑proliferation in different types of 
tumors, including renal cell carcinoma, prostate and pancreatic 
cancer, melanoma, and hepatoma (36‑40). Numerous studies 
have highlighted that cancer cells with high expression levels 
of HO‑1 are less sensitive to cisplatin treatment compared with 
cancer cells with low HO‑1 expression levels (41,42).

The mechanism underlying this cytoprotective effect 
relies on the ability of HO‑1 to catabolize free heme and 
prevent it from sensitizing cells to undergo programmed cell 
death (43). HO‑1 under normal conditions has various cellular 
functions, including catalyzing the heme molecule to form 
bile pigments (44). When stimulus (heat) is present, cellular 
HO‑1 synthesis is enhanced (45). Therefore, the present study 
suggests that HO‑1 is crucially important when dealing with 
intraperitoneally‑spread cancer, particularly treating it with 
HIPEC. Following the administration of heated chemotherapy 
drugs into the abdominal cavity, tumor cells should start to 
defend themselves, by activating heat shock proteins, particu-

Figure 4. Prior HO‑1‑silencing and subsequent hyperthermia/cisplatin treatment enhances apoptosis in OVCAR‑3 and AGS cells. (A) HO‑1‑silencing enhanced 
apoptosis in OVCAR‑3 cells treated with cisplatin at 37˚C. This effect was even more evident under conditions of hyperthermia. (B) HO‑1‑silencing sig-
nificantly enhanced apoptosis in cisplatin‑treated AGS cells under hyperthermia compared with normothermia. Dot plots represent the raw data of the 
corresponding bar. Dashed lines indicate apoptosis in control (untreated) cells. *P<0.05. The data were obtained from five independent experiments. HO‑1, 
heme oxygenase‑1; siRNA, small interfering RNA.

Figure 5. Hyperthermia enhances the effect of cisplatin only on OVCAR‑3 cells. Exposure to cisplatin gradually decreased the cell index of OVCAR‑3 and 
AGS (HO‑1 silenced) cells under normothermia. Hyperthermia enhanced this effect in OVCAR‑3 cells, while the AGS cell index did not change. The data are 
shown by selecting the most representative experiment. HO‑1, heme oxygenase‑1; siRNA, small interfering RNA.
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larly HO‑1. The aim of the present study is to achieve better 
treatment results by downregulating HO‑1 expression.

To the best of our knowledge, there are no published data on 
the efficacy of HIPEC treatment while modulating the expres-
sion of HO‑1. The results of our study demonstrate the impact 
of HO‑1 expression modulation in the combination treatment 
of hyperthermia at 43˚C and cisplatin in OVCAR‑3 cells.

Zhao  et  al  (46) reported that the basal level of HO‑1 
expression is higher in ovarian cancer cells compared with 
normal ovarian tissues. A high level of HO‑1 expression 
has also been associated with aggressive tumors and poor 
clinical outcomes (46). The ability of cisplatin to increase 
the expression of HO‑1 was also observed in different cancer 
types, including pancreatic and hepatic cancer  (43,47,48). 
Was et al (37) reported the different abilities of tumor tissues 
to produce heat shock proteins. Nonetheless, a high level 
of HO‑1 is known to be associated with the reduced tumor 
growth observed in some types of cancers, including breast 
and prostate cancer and non‑small‑cell lung carcinoma (37).

The results of the present study indicate that the viability 
of HO‑1‑silenced OVCAR‑3 cells decreased significantly 
following cisplatin treatment at 43˚C. However, in AGS cells, 
the inhibition of HO‑1 did not improve the response to cisplatin 
treatment. These results are associated with the expression of 
HO‑1. It is possible that the inhibition of HO‑1 only increases 
the effect of cisplatin in cancer cells, where HO‑1 is highly 
expressed. This is in accordance with the data reported by 
Lv et al (41), where cisplatin significantly induced the expression 
of HO‑1. The study modulated HO‑1 expression using hemin 
(an inducer of HO‑1) and ZnPPIX (an inhibitor of HO‑1), and 
reported that hemin strongly inhibited cisplatin‑induced cell 
death, while ZnPPIX significantly increased cell death (41,49). 
These effects following HO‑1 modulation can be explained 
by the cytoprotective ability of this protein. HO‑1 activates a 
cellular defense mechanism against oxidative stress through 
its catalytic products, including ferrous iron, carbon monoxide, 
and biliverdin (37). In addition, growing evidence has suggested 
that HO‑1 protects cells from chemotherapeutic agent‑induced 
apoptosis, and the targeted knockdown of HO‑1 gene expression 
or suppression of HO‑1 activity in vitro significantly enhances 
the chemosensitivity of cancer cells (50). Furthermore, it has 
been reported that the inhibition of HO‑1 can increase cellular 
response to anticancer treatment (26).

Cisplatin can effectively induce and promote apoptosis in 
a wide range of solid tumors, including head and neck cancer, 
esophageal carcinoma, non‑small cell lung carcinoma, and 
testicular, cervical, and ovarian cancer (51). Inhibition of HO‑1 
may strengthen the pro‑apoptotic effects of cisplatin (41). In 
the present study, the inhibition of HO‑1 increased the number 
of apoptotic cells in OVCAR‑3 and AGS cell lines, however 
these results did not indicate any significant differences 
associated with HO‑1 expression and cell viability. This could 
be explained by the fact that the present study measured the 
number of cells in both early and late apoptosis, and early 
apoptosis can be reversible (52). Geske et al (52) reported that 
the early stages of apoptosis are reversible if the apoptotic 
stimulus is removed, which is the reason that PCR analysis 
was performed in the present study.

In this experimental model, hyperthermia alone did not 
induce the upregulation of HO‑1 expression in the tested cancer 

cell lines. Nevertheless, HO‑1‑silencing resulted in the optimal 
response to cisplatin treatment in terms of cell viability in 
OVCAR‑3 cells, and apoptosis in both OVCAR‑3 and AGS cells, 
under conditions of hyperthermia. Therefore, a novel finding 
regarding the role of HO‑1 in HIPEC is presented in this study. 
In conclusion, the cytoprotective protein HO‑1 is induced in 
cancer cells by different stressors in a variable manner. In 
tumors with highly inducible HO‑1, the present study indicated 
that prior silencing of this gene may significantly improve the 
cellular response to hyperthermia and cisplatin.
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