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Abstract. Despite the fact that studies have revealed mecha-
nisms underlying tumor chemoresistance, the functions of 
numerous potential chemoresistance-associated genes have yet 
to be elucidated. A bioinformatics analysis was conducted to 
screen differentially expressed genes (DEGs) across four types 
of chemoresistant tumors and functional enrichment analysis 
was used to examine the biological significance of these genes. 
Furthermore, a gene network was constructed using weighted 
gene co-expression network analysis to identify hub genes. A 
total of 6,015, 2,074, 2,141 and 954 differentially expressed 
genes were identified in estrogen receptor-negative breast 
cancer, ovarian cancer, rectal cancer and gastric cancer, respec-
tively; however, only five of these DEGs were dysregulated in 
all four types of cancer. Functional enrichment analysis of the 
DEGs suggested that genomic stability and immune response 
are crucial determinants of tumor chemoresistance. In addition, 
14, 8, 6 and 1 co‑expressed gene modules were identified in 
estrogen receptor-negative breast cancer, ovarian cancer, rectal 
cancer and gastric cancer, respectively, and protein-protein 
interaction networks were created. The analysis identified only 
calcium-calmodulin-dependent protein kinase kinase 2, eryth-
ropoietin receptor, mitochondrial poly(A) RNA polymerase, 
α‑parvin, and zinc finger and BTB domain‑containing protein 44 
to be dysregulated in all four cancer types, indicating varying 

mechanisms of chemoresistance in different tumor types. 
Furthermore, our analysis suggests that type I collagen α1, fibro-
blast growth factor 14 and major histocompatibility complex, 
class II, DR β1 potentially serve key roles in the development 
of chemoresistance. In conclusion, the present study proposes a 
simple and effective strategy for identifying genes involved in 
chemoresistance and predicting their potential functional roles, 
which may guide subsequent experimental studies.

Introduction

The main obstacle to successful chemotherapy is multidrug resis-
tance, which involves the development of resistance to multiple 
chemotherapeutic agents with different structures and mecha-
nisms of action following exposure to a single chemotherapeutic 
agent or even upon initial exposure (1). Tumor chemotherapy 
resistance is a complex multifactor-mediated process, and the 
numerous mechanisms involved include abnormal expression of 
ATP-dependent transporters on the cell membrane, enhancement 
of cell detoxification and dysregulation of apoptosis‑associated 
mechanisms (2,3). A thorough understanding of the mechanisms 
of tumor resistance may provide a tool for overcoming the 
aforementioned, and based on a growing body of research into 
the genetic diversity among chemotherapy-resistant cell lines 
and clinical resistance, tumor chemosensitivity appears to be 
controlled by complex molecular networks.

Network approaches have been employed to study the 
development of various diseases, such as cancer and meta-
bolic disease, bridging the gap from individual genes to the 
occurrence and development of a disease by examining the asso-
ciations between differentially expressed genes (DEGs) (4,5). 
In the present study, bioinformatics analysis was used to 
reveal common properties of DEGs between chemoresistant 
and chemosensitive tumors across multiple cancers. A total 
of five co‑expressed genes were identified and their biological 
functions examined. In addition, weighted gene co-expression 
network analysis (WGCNA) was applied and 14 modules were 
identified in estrogen receptor‑negative breast cancer (EBC), 
8 in ovarian cancer (OVC), 6 in rectal cancer (RC), and 1 in 
gastric cancer (GC), and the differences in these modules 
among these tumors were examined. Therefore, the present 
study proposes a systematic context for identifying candidate 
genes that may be useful in the study of chemoresistance. 
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Furthermore, the construction of a co-expression network of 
weighted genes is an effective approach for associating differ-
ences in gene expression with insights into key functional 
chemosensitivity mechanisms.

Materials and methods

Microarray data and differential expression analysis. To inves-
tigate the genes involved in chemoresistance, Gene Expression 
Omnibus (GEO) database was searched comprehensively, and 
microarray data from human EBC, oVC, RC and GC were 
collected from four published studies (6-9). All raw data from 
these studies consist of RNA sequencing (RNA-Seq) datasets 
for the study of tumor chemotherapeutic resistance and are avail-
able in Gene Expression Omnibus (GEO), including 120 samples 
in GSE16446 (6), 58 samples in GSE30161 (7), 80 samples in 
GSE45404 (8) and 44 samples in GSE14209 (9) (ncbi.nlm.
nih.gov/geo/). EBC, oVC and RC samples were analyzed 
using Affymetrix hG-u133_Plus_2 microarrays (ncbi.nlm.
nih.gov/geo/query/acc.cgi?acc=GPL570); GC samples were 
analyzed using Affymetrix hG-u133A_2 microarrays (ncbi.
nlm.nih.gov/geo/query/acc.cgi?acc=GPL571). Samples where 
the chemotherapy effects were not clearly stated were removed.

The GSE16446, GSE30161, GSE45404 and GSE14209 
datasets were screened using the GEO2R tool (ncbi.nlm.nih.
gov/geo/geo2r/) to identify DEGs between chemoresistant and 
chemosensitive tumors (6‑9). P<0.05 was used to define a gene 
as a DEG.

Functional enrichment analysis. Database for Annotation, 
Visualization and Integrated Discovery (DAVID) v6.8 (david-d.
ncifcrf.gov/) was used to analyze functional enrichment among 
DEGs (10,11). Four representative terms from the top 10 most 
significant Gene ontology (Go) biological process (BP) terms 
were analyzed for each cancer. In addition, only those Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathways with 
P≤0.05 and ≥10 enriched genes were considered significant.

WGCNA. For each dataset, chemoresistant samples and DEGs 
were firstly checked with many missing values and the samples 
were subsequently clustered to identify obvious outliers. 
Following the removal of such samples, Pearson correlation 
coefficients were calculated for all pairwise comparisons of 
DEGs. A similarity (correlation) matrix was obtained using 
a power function (connection strength=|correlation|β), and a 
WGCna was constructed with power values of 12 in EBC, 
8 in OVC, 8 in RC and 5 in GC. Modules were obtained 
from four types of tumors using a dynamic tree-cutting algo-
rithm (12), and genes that were not assigned to modules were 
assigned the color gray. Due to the large amount of genetic 
analysis, additional steps were performed for each module, 
and WGCNA was employed to construct protein-protein 
interaction (PPI) networks based on the signed Pearson (12). 
Detailed R software code (https://labs.genetics.ucla. edu/ 
horvath/htdocs/CoexpressionNetwork/Rpackages/WGCNA/) 
and tutorials were used for generating co-expression networks 
for weighted genes (12).

Statistical analysis and visualization. Statistical analysis 
was performed using R-3.3.1 (https://www.r-project.org). The 

majority of visualizations were generated using R, except for 
KEGG network visualization, for which the (version 3.3.0; 
cytoscape.org/) and ClueGO tools (version 2.5.0) were 
used (13,14). For visualization of KEGG networks, the top 
five (top four for GC) were selected for each cancer to analyze 
pivotal links between KEGG pathways.

Results

DEGs. DEGs between chemoresistant and -sensitive samples 
were analyzed based on the criterion of P<0.05 and a total 
of 6,015, 2,074, 2,141 and 954 DEGs were identified in EBC, 
OVC, RC and GC, respectively. hierarchical cluster analysis 
was also performed to obtain an overview of the profile for 
DEGs in each cancer (Fig. 1). All heat maps revealed sepa-
ration if DEGs between chemoresistant and chemosensitive 
samples.

Among all DEGs, 1,335 genes were differentially 
expressed between any two of the cancer types. Only 
121 DEGs were altered in more than two types of cancer 
(Fig. 2a). among these 121 DEGs, the following five were 
dysregulated in all four cancer types examined (Fig. 2A): 
Calcium-calmodulin-dependent protein kinase kinase 2 
(CaMKK2), erythropoietin receptor (EPOR), mitochondrial 
poly(A) RNA polymerase (MTPAP), α-parvin (PARVA) and 
zinc finger and BTB domain‑containing protein 44 (ZBTB44).

Functional enrichment analysis. To reveal the biological 
significance of DEGs in regulating cancer chemoresistance at 
the unitary level, DAVID v6.7 was used to perform biofunc-
tional enrichment analysis for each tumor type, including 
Go BP terms, Go cellular component terms, Go molecular 
functions terms and KEGG pathways. Fig. 2B displays four 
representative BP terms for each tumor type. Fig. 3 lists 
the top 10 KEGG pathways with P≤0.05 and enriched gene 
counts ≥10 for each tumor type.

The DEGs were divided into two sections according to 
major biological processes. On the one hand, as observed 
in Fig. 2B, the DEGs in the four tumors were significantly 
enriched in processes associated with DNA replication, tran-
scription and regulation of these pathways. On the other hand, 
a number of chemoresistance-associated genes were enriched 
in pathways involved in immune activity and stimulation, 
including pathways associated with antigen processing and 
presentation via MhC class II and negative regulation of 
megakaryocyte differentiation. Based on the cellular compo-
nent and molecular function terms that DEGs' were enriched 
in (data not shown), the main functional sites and specific 
effects of the DEGs appear to be involved in the regulation of 
tumor chemotherapy resistance.

DaViD‑based enrichment analysis identified KEGG path-
ways for the DEGs among the four types of tumors (Fig. 3), 
including some carcinogenic signaling pathways, including the 
Notch, RAP1 GTPase-activating protein 1, mitogen-activated 
protein kinase (MAPK) and PI3K-AKT pathways. Despite that 
associations between these pathways and chemoresistance have 
already been established (15-17), the approach of the present 
analysis systematically identified the biological functions of 
DEGs involved. in addition, within defined KEGG pathways, 
immune response-associated pathways were indicated to be 
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Figure 2. (a) Venn plot diagram of differentially expressed genes in four cancer types. (B) The four representative terms of biological processes for each tumor 
type. rRNA, ribosomal RNA; SRP, signal-recognition particle. 

Figure 1. hierarchical cluster analysis based on DEGs for each cancer type. (A) The heatmap of 6,015 DEGs in estrogen receptor-negative breast cancer. 
(B) The heatmap of 2,074 DEGs in ovarian cancer. (C) The heatmap of 2,141 DEGs with rectal cancer. (D) The heatmap of 954 DEGs in gastric cancer. 
The color bar of the heatmap represents the sample groups: Blue indicates a chemosensitive sample, and orange represents a chemoresistant sample. 
DEGs, differentially expressed genes.
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associated with chemoresistance in tumors via processes, 
including antigen processing and presentation. In particular, 
different mechanisms of chemoresistance were identified 
in the individual tumor types. For instance, cell adhesion, 
including extracellular matrix (ECM)-receptor interactions 
and focal adhesions, was indicated to be associated with the 
regulation of drug resistance in OVC. To further visualize these 
associations between the DEGs in KEGG pathways, a KEGG 
signaling pathway map was generated, which revealed that a 
number of genes constitute pivotal links between KEGG path-
ways (Fig. 4). In addition, it was indicated that nodes involved 
in the formation of tumor chemoresistance are simultaneously 
involved in multiple KEGG pathways (Table I).

Gene co‑expression networks. Identifying genes with highly 
correlated expression levels may help elucidate shared biolog-
ical processes or common regulatory mechanisms that could 
be targeted (18,19). Therefore, DEGs between chemoresistant 
and chemosensitive tumors were investigated by applying 
WGCNA to microarray datasets for four types of tumors. To 
ensure high-quality data, strict quality control procedures 
were implemented to eliminate non‑specific and mis‑targeted 
probes on the microarray and to remove outlier samples from 
the dataset prior to generating expression values (data not 
shown). To facilitate the identification of gene modules (groups 
of highly co-expressed genes), a WGCN based on pairwise 
Pearson correlations was constructed for DEGs for these four 
types of cancer. The WGCNA was intended to identify modules 
with highly topologically overlapping co-expressed genes, and 
a pairwise approach was applied to describe the similarity of 
two co-expressed genes with all other genes in the network. 
The highest number of modules for gene co-expression was for 
EBC samples, with 14 genes; in contrast, the lowest number of 
modules was obtained for GC samples, with only one. Eight 

and six gene co-expression modules were generated for OVC 
and RC samples, respectively (Fig. 5). Each model across the 
four types of tumors included ≥30 genes.

highly relevant hub genes are thought to serve an impor-
tant role in the biological behavior of tissues, and central 
hub genes in a network are more likely to be key drivers of 
aberrant behavior compared with peripheral genes (12,20). 
Therefore, the hub genes were identified for each module of 
the four tumor types and the top 30 nodes for that module were 
subsequently selected with the highest degree as the central 
gene. To visualize these results, a list of the network diagrams 
of these hub genes was compiled for each of the modules 
(data not shown). The centrality of the ‘hub’ genes obtained 
indicates that they may serve roles that are more crucial in 
the generation of chemoresistance compared with other genes 
in that module. The gene with the highest degree from each 
module is listed in Table II. Among them, the hub gene type I 
collagen α1 (COL1A1) is involved in the PI3K-AKT signaling 
pathway, focal adhesions and ECM-receptor interactions. The 
hub gene fibroblast growth factor 14 (FGF14) is associated 
with both the PI3K-AKT signaling pathway and the MAPK 
signaling pathway. The hub gene major histocompatibility 
complex, class II, DR β1 (HLa‑DRB1) is associated with 
the phagosome, antigen processing and presentation and the 
intestinal immune network for IgA production. In addition, 
MTPAP was differentially expressed among the four tumors 
and was also the hub gene in one of the models.

Discussion

Although an increasing number of studies have revealed the 
important roles served by certain genes and signaling pathways 
in the development of tumor chemoresistance (21-24), the roles 
of a number of potential chemoresistance-associated genes 

Figure 3. The top 10 Kyoto Encyclopedia of Genes and Genomes pathways in (a) estrogen receptor‑negative breast cancer, (B) ovarian cancer, (C) rectal cancer 
(D) and gastric cancer.
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have not yet been uncovered. The purpose of the current study 
was to mine the RNA-Seq data from patients with chemore-
sistant tumors in GEO using WGCNA to identify potential 
genes associated with chemoresistance. DEGs were screened 
for four types of chemoresistant tumors using the GEO2R tool 
and functional enrichment analysis was used to examine the 
biological importance of the DEGs identified. Furthermore, a 
gene network was constructed using WGCNA to identify hub 
genes.

The majority of the DEGs identified in this study, to the 
best of our knowledge, have not been previously reported to 
be associated with chemotherapy-resistant cancers. During 
differential expression analysis, it was indicated that only 
five genes were differentially expressed in all four types of 
tumors, indicating varying mechanisms of chemoresistance 
among tumor types. When consulting previous studies, it 
was indicated that all five of these oncogenes have been 
reported to be involved in tumorigenesis. In prostate cancer, 
the CaMKK2-AMP-activated protein kinase axis controls 
glucose metabolism, tumor cell growth and migration (25). 
A number of studies have also reported that CaMKK2 is 
located at the top of the key molecular node that shapes the 
cancer ecosystem, highlighting that it is a potential candidate 
for therapeutic cancer intervention (25,26). Studies of EPOR 
signaling cascades in tumor cells have revealed that numerous 
patients with cancer are anemic, with persistent and wors-
ening effects (27). MTPAP governs 3' nucleotide addition to 
microRnas (miRnas) in a miRna‑specific manner and can 
influence miRna stability and efficiency for target repres-
sion (28). PARVA localizes to focal adhesions and serves 
critical roles in a number of cellular functions, including 

regulation of cytoskeletal activity in connection with the ECM, 
with involvement by paxillin and integrin-linked kinase (29). 
The transcriptional regulator ZBTB44 interacts with Smad 
pathway proteins, including Smad-specific E3 ubiquitin 
ligase 2, mediating resistance to MAPK pathway inhibi-
tors (30). However, these five DEGs have only been studied in 
individual cancer types; therefore, no experimental evidence 
or clinical data, to the best of our knowledge, exist to support 
their associations with cancer chemoresistance. The expres-
sion levels of individual genes differed across the four types 
of tumor, again confirming that the same gene may induce 
chemoresistance through differential mechanisms in different 
tumors. A limitation of the present study however is that these 
five DEGs were not further validated in cells or tissues.

According to functional enrichment analysis, multiple 
processes associated with gene expression and regulation and 
classical tumor signaling pathways were enriched, including 
many carcinogenic signals (31). These findings indicate 
that aberrant growth signals regulate the cell cycle and cell 
growth (32,33), and also promote chemotherapy resistance. 
Research on these DEGs has partially demonstrated that 
transcription factor forkhead box 3 and hepatocyte growth 
factor are highly expressed in tumors and are closely associ-
ated with chemosensitivity, indicating that they may serve as 
indicators of prognosis and chemotherapy efficacy (34,35). 
Despite a number of studies having reported that genomic 
stability has an important function in the development of 
tumor resistance (36-38), the function of the majority of 
chemoresistance-associated genes has yet to be revealed. The 
analysis in the present suggests that during the formation of 
tumor chemotherapy tolerance, DEGs have an important role 

Figure 4. Map of the DEGs associated with the top four Kyoto Encyclopedia of Genes and Genomes signaling pathways in gastric cancer. Maps for estrogen 
receptor-negative breast cancer, ovarian cancer and rectal cancer are not shown. Different colors indicate different gene clusters.
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in the most fundamental functions, including gene expression 
and regulation, providing further support of previous find-
ings (34,35). in addition, BP and KEGG pathway analyses of 
DEGs confirmed the important link between tumor immune 
function and chemoresistance. Previous studies have reported 

only individual mechanisms, for instance, macrophage-derived 
cathepsin regulation of tumor progression and direct regu-
lation of tumor cell chemoresistance (39,40). In addition, 
expression of CxC chemokine receptor 4 may contribute 
to tumor cell immune escape, potentially affecting tumor 

Table II. The gene with the highest degree from each module of four cancer types.

Tumor type Genes with the highest degree

Estrogen receptor‑negative ZMYM2, DCaF15, ZnF160, ERBB2, PaRD3, aCan, VanT, BaG6, PiK3C2a, 
breast cancer CnTRoB, GTF3C2, aRPC5L, PDE2a, FaSTK
ovarian cancer PaK7, CoL1a1, SEMa3a, nEaT1, FGF14, MaLaT1, MYH14, WSB1
Rectal cancer RPaP3, MTPaP, HLa‑DRB1, EiF5, RPS16, FBXo7
Gastric cancer RPL3

Figure 5. Clustering dendrogram of DEGs, with dissimilarity based on topological overlap, together with assigned module colors. The grey module represents 
a group of genes that have no study significance. (a) Estrogen receptor‑negative breast cancer, (B) ovarian cancer, (C) rectal cancer and (D) gastric cancer.

Table I. Key genes involved in multiple KEGG pathways in four types of cancer.

Tumor type Key genes

Estrogen receptor-negative AKT2, AKT3, MAPK3, PIK3CD, CBLB, PIK3R2, BRAF, MAP2K2, DVL3, CTBP1,
breast cancer EP300, DVL2, CREBBP, MDM2, PML2, VHL, XiaP, ELoB, DiaS2 BiRC2,SoCS3, 
 SOCS1, ARAF, PRKACA SOS1, CALM3, CALM2, PRKCZ, INSR INS, RAPGEF1,
 CaLM1, CaLM6, PGF FGF7, FGF18, VEGFB, RaC1, aDCY1 EGFR, CTnnB1, 
 aDCY8, HGF, FGF10, LPaR5, iTGB1, FGFR2, RaSGRP2, GnaS, RaLGDS, FGFR1,
 RaLB, VEGFa, FGF12, aDCY2, LPaR3, iTGa2B, LPaR2, RaSSF5
Ovarian cancer CDC42, AKT2, SOS2, PIK3CB, COL6A3, LAMC1, COL1A1, COL6A1, FN1, 
 LAMB1, ITGA3, THBS2, ITGB4, COL4A1, LAMA4, ITGB1, ITGB5, ITGA1, 
 ITGB6, ITGA1, ITGB6, ITGB8, ITGA2B, COL9A2, JUN, TNXB, FGF14, 
 FGF12, RaSGRF1, GnG12, FGF23, FGF18, FGF7, YWHaZ, CREB3L1, MDM2, 
 YWHaB, aCTn1, SYK, PGF, HGF, MET
Rectal cancer HLA‑DQA1, HLA‑DPA1, HLA‑DRB5, HLA‑DRB4, HLA‑DQA2, HLA‑DPB1, 
 HLA‑DRA, HLA‑DRB3, HLA‑DRB1, CCND2, ATM, CDKN1A, CDK2, CALR, TAP2
Gastric cancer PDIA3, CALR

Genes in bold participate in ≥3 KEGG pathways; other genes participate in two KEGG pathways. KEGG, Kyoto Encyclopedia of Genes and 
Genomes.
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chemosensitivity (34). Based on the aforementioned results of 
previous studies, targeting the activity and pathways associ-
ated with DEGs via conventional chemotherapy is clinically 
important, since this approach may facilitate the combination 
with other immunotherapies to achieve maximum antitumor 
efficacy during clinical treatment.

Predictive networks have the potential to identify 
hundreds of genes that drive disease and can serve as points 
for therapeutic intervention (41). Our results offer a number 
of such gene targets. In KEGG analysis, it was indicated that 
multiple genes serve important roles in divergent signaling 
pathways, indicating that deregulation of these genes affects 
multiple tumor signatures, which may help in establishing the 
therapeutic potential of the target genes in these pathways in 
clinical settings. Furthermore, multiple PPI networks were 
constructed for different tumors using WGCNA and hub 
genes were screened via large-scale molecular analysis. The 
combined KEGG analysis and PPI network revealed that 
CoL1a1, FGF14 and HLa‑DRB1 are simultaneously involved 
in multiple signaling pathways and likely serve key roles in 
the development of chemoresistance. Furthermore, the current 
results suggest that a number of genes and signaling pathways 
have not yet been fully investigated and that their potential 
association with chemoresistance requires further validation. 
Further targeting of these genes in disease may, ultimately, 
involve targeting the entire network, as opposed to current 
therapeutic strategies that focus on one or two genes only.

In conclusion, the present study comprehensively exam-
ined the chemoresistance-associated genes and investigated 
the functions of these genes across multiple cancers based 
on Rna‑Seq data. Despite that the biological significance of 
unreported DEGs in the development of tolerance to tumor 
chemotherapy warrants further evaluation, the findings of 
the present study propose a simple and effective strategy to 
identify genes involved in chemoresistance and to predict their 
potential functional roles, which may be useful for guiding 
subsequent experimental and therapeutic designs.
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