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Abstract. Feature selection in the framework of meta-analyses 
(meta feature selection), combines meta-analysis with a feature 
selection process and thus allows meta-analysis feature selec-
tion across multiple datasets. In the present study, a meta 
feature selection procedure that fitted a multiple Cox regres-
sion model to estimate the effect size of a gene in individual 
studies and to identify the overall effect of the gene using a 
meta-analysis model was proposed. The method was used to 
identify prognostic gene signatures for lung adenocarcinoma 
and lung squamous cell carcinoma. Furthermore, redundant 
gene elimination (RGE) is of crucial importance during 
feature selection, and is also essential for a meta feature selec-
tion process. The current study demonstrated that the proposed 
meta feature selection procedure with RGE outperforms that 
without RGE in terms of predictive ability, model parsimony 
and biological interpretation.

Introduction

Lung adenocarcinoma (AC) and lung squamous cell carcinoma 
(SCC) are two major histological subtypes of non‑small cell 
lung cancer (NSCLC) and accounted for ~70% of lung cancer 
(LC) cases worldwide in 2010 (1). For patients with NSCLC, 
the five‑year survival rate is less than 15% (2). At present, 
the most promising strategy is early diagnosis followed by 

surgical resection of the tumors (3). Postoperative adjuvant 
chemotherapy may improve the survival rate of patients 
with a poor prognosis. However, it is not recommended for 
patients with stage IA NSCLC, whose five‑year survival rate 
is approximately 70% (2). Therefore, using biomarkers to 
identify patients with NSCLC who may benefit from adjuvant 
chemotherapy is of clinical importance.

A biomarker is a measurable indicator of a biological 
state or condition (4). At present, biomarkers are used in 
numerous scientific fields. Previous studies have inves-
tigated the development of novel technologies for the 
accurate and easy detection and measurement of potential 
biomarkers (5‑7). Microarray technology may be used to 
monitor thousands of genes and measure their expression 
values simultaneously. Previous studies have demonstrated 
that the signatures obtained using gene expression values 
from microarray experiments may distinguish between AC 
and SCC with perfect accuracy (8-13), and may determine 
the prognosis of patients with NSCLC (14‑16). The identi-
fication of such gene signatures is generally accomplished 
with the aid of a feature selection algorithm, which reduces 
the number of genes under consideration, speeds up the 
learning process and improves the biological interpretation 
of resulting models (17).

RNA‑sequencing (RNA‑seq) technology has notable 
advantages over microarray technology, including increased 
precision for identification of differentially expressed genes 
(DEGs) (18), and it has replaced microarray technology as the 
first choice for gene expression profiling (19). However, the 
vast majority of existing statistical methods, including those 
used to identify the differentially expressed genes or select 
the relevant genes associated with the phenotypes of interest, 
were designed for continuous gene expression measures 
obtained from microarray experiments. The introduction of 
the R function voom (20) has allowed the count values of 
RNA‑Seq data to be transformed into continuous values that 
follow approximately normal distributions. Consequently, 
current statistical methods used to analyze data obtained from 
microarray experiments may be directly applied to RNA‑Seq 
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data. This allows the investigation of the generalization of a 
gene signature trained from one platform to another platform.

Regardless of the technology used, it is frequently observed 
that the resulting prognostic gene signatures rarely overlap 
when the same analytic procedure is applied to different 
datasets. The accumulation of NSCLC gene expression data 
and the integration of experiments using a specific statistical 
method, for example a meta‑analysis (21) or an integrative 
analysis (22,23), allow for one unique gene signature across 
multiple studies. In the present study, the overall prognostic 
value of a gene across three NSCLC microarray datasets was 
estimated using a meta‑analysis model, with the aims of iden-
tifying subtype‑specific prognostic signatures for AC and SCC 
and identifying the patients who may benefit from adjuvant 
treatment. Previous studies in the framework of meta‑analyses 
on NSCLC for the purpose of prognosis have mainly focused 
on either the identification of prognostic genes for one specific 
subtype (24) or both AC and SCC patients (25). By contrast, 
the present study takes into account that the genes associated 
with the survival time of patients with AC and SCC may 
differ (26‑28), with the aid of a feature selection algorithm 
capable of identifying subtype‑specific prognostic gene 
signatures known as the Cox‑filter method (27). The resulting 
subtype‑specific prognostic gene signatures were verified on a 
RNA‑seq dataset and an independent microarray dataset, and 
the biological relevance of those genes was investigated using 
the GeneCards database (www.genecards.org) (29).

Another feature of the present study was the control over 
redundant genes by evaluating the Pearson's correlation coef-
ficients (PCCs) of a specific gene with all selected genes in a 
forward stepwise regression manner. The term ʻredundancyʼ 
refers to the hidden associations or grouping structures that 
exist among genes, and therefore a gene may be erroneously 
included in the final gene signature due to its high correlation 
with the true relevant gene/s (30). Redundant genes do not 
contribute to the discriminative ability of a final model, and in 
numerous cases they hinder this ability. Therefore, the inclu-
sion of redundant genes substantially influences the quality of 
a final gene signature (30).

Materials and methods

Experimental data. The Gene Expression Omnibus (GEO; 
www.ncbi.nlm.nih.gov/geo) repository of the National 
Institutes of Health was searched for the potential microarray 
experiments using the following keywords: ʻlung cancer ,̓ 
ʻadenocarcinoma ,̓ ʻsquamous cell carcinoma ,̓ ʻsurvivalʼ and 
A̒ffymetrix chip .̓ Subsequently, the selected datasets were 
further examined to identify whether patients with AC and 
SCC were included and whether survival information was 
available. The studies that did not include both were excluded. 
In total, four experiments were selected for inclusion in the 
present study: GSE3141 (31), GSE37745 (32), GSE30219 (33) 
and GSE50081 (16). The characteristics of each dataset are 
summarized in Table I.

The RNA‑Seq data were downloaded from the lung 
Adenocarcinoma (LUAD; for AC subtype) and lung squa-
mous cell carcinoma (LUSC; for SCC subtype) cohorts on 
The Cancer Genome Atlas (TCGA; level 3, tcga‑data.nci.
nih.gov/tcga). The data of patients at the early stages of the 

disease that had not undergone any adjuvant treatment and 
that included survival information were selected. A total of 
70 patients with AC and 55 patients with SCC were identified.

Pre‑processing procedures. The raw data (CEL files) of 
the three microarray data sets, GSE37745, GSE30219 and 
GSE50081, served as the training set. They were down-
loaded from the GEO repository. The expression values were 
obtained using the frozen robust multiarray analysis (frma) 
algorithm (34), and subsequently normalized using quantile 
normalization using R frma package (34). In cases where 
multiple probe sets matched to one specific gene, the probe 
set with the largest fold change was selected. Subsequently, 
the pre‑processed gene expression matrix of GSE3141 was 
downloaded from the GEO repository, and was considered as 
one of the test sets. This test set was used to investigate the 
effects that different pre‑processing procedures may have on 
the downstream analyses.

For the second test set, the RNA‑seq data, the 
counts‑per‑million values were calculated and log2 trans-
formed by the Voom function (20) in R limma package (35). 
The purpose of having this test set was to examine the applica-
bility of a gene signature trained on one platform to a different 
platform. The downstream analysis was performed on the 
14,573 genes in the microarray data and the RNA‑seq data.

Statistical methods
Cox‑filter. The Cox‑filter method (27) was used to identify 
genes associated with the survival rates of patients with the 
AC/SCC histology subtype. In this method, a Cox model is 
fitted on each gene, and the hazard function of patient i for 
gene g (g=1, …, p) is calculated as follows:

Where Xij=(Xij1,..., Xijp)T represents actual expression values for 
the p genes under consideration. λ0g(t) is an unknown baseline 
hazard function for the AC group while λ0g(t)exp(β1g) is the 
baseline hazard function for the SCC group. The two groups 
have different baseline hazard functions, with β1g representing 
the difference between the SCC and AC groups in terms of 
log baseline hazard function. I(j=1) is an indicator, taking the 
value of 1 if the histology subtype j of patient i is SCC, or the 
value of 0 if patient i has AC. Both β2g and β3g are the param-
eters of interest, with β2g representing the change in log hazard 
rate associated with 1‑unit increase in the actual expression 
value of gene g among AC and β3g representing the additional 
change in log hazard rate associated with the SCC subtype. 
The values of βACg, i.e., β2g, and βSCCg, i.e., β2g+β3g, determine 
whether subtype‑specific prognostic genes exist. For example, 
βACg≠0 and βSCCg=0 correspond to an AC‑specific gene, and 
βSCCg≠0 and βACg=0 correspond to an SCC‑specific gene.

Overall effect size estimation using meta‑analysis. The 
overall effect sizes were calculated using a meta‑analysis 
model. The general model in a meta‑analysis setting is 
written as follows:
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Where Ygj represents the estimated β coefficient (either βAC 
or βSCC) for study j ( j=1, …, J) for a specific gene g. θgi is 
the study‑specific hazard ratio for gene g, and εgi

 is an error 
term which is assumed to follow a normal distribution σ2

gi 
represents the within‑study variance of gene g for study j. Ygj 
and σ2

gi were estimated by the Cox‑filter models for each study 
and thus considered to be known or more precisely observed. 
Furthermore, θgi is assumed to be drawn from a superpopula-
tion with an overall mean of µg and a variance of τg

2. Of note, 
µg is the average of the hazard ratio over all studies for gene 
g, which is the parameter of interest. δgi is the error term for 
a superpopulation. τg

2 is the between‑study variance, which 
represents the variability between studies and is estimated by 
the DerSimonian and Laird method (36). Under a fixed‑effect 
model, τg

2=0, and τg
2 >0 corresponds to a random-effect 

model. The Cochran's Q statistic that follows a χ2
n-1 distribution 

under the null hypothesis (H0: τg
2=0 vs. H1: τg

2 >0) was used 
to determine whether a fixed‑effect or a random‑effect model 
was more appropriate (37).

If a fixed‑effect model was selected, the estimated µg was 
standardized by its standard errors to obtain the Z-score, 
By contrast, the Z‑score was the ratio of the estimated µg, 
(represented by µg

^), to the square root of τg
2 +se (µg

^)2 in the 
random-effect model. The Z-score was assumed to follow a 
standard normal distribution and the adjusted P‑values of the 
Z‑score determined whether the specific gene was associated 
with the survival rate. In the present study, a gene with an 
adjusted P‑value<0.05, where the Benjamini and Hochberg 
procedure (38) was used for the multiple comparison correc-
tion, and an integrated effect size (log hazard ratio)>0.5 was 
considered to indicate a statistically significant difference.

Redundant gene elimination (RGE). The expression values 
of genes are not independent from one another as there are 
relationships or grouping structures among genes. The correla-
tions among genes result in numerous redundant genes and the 
removal of the redundant genes may lead to improved predic-
tion accuracy and model stability (30). In the present study, in 
order to eliminate redundant genes in the resulting gene lists 
identified using the Cox‑filter meta‑analysis, the genes were 
arranged in an ascending order according to their adjusted 
P‑values in the Cox‑filter models, and a null set S was defined. 
The gene with the most significant P‑value was placed into 
the newly‑defined set S and the PCCs of the kth gene (k=2, …, 

p, where p is the number of genes in the list) with the genes 
inside set S were subsequently calculated for each study. If the 
absolute PCCs of one specific gene with the genes inside S 
for all studies were <0.4 (based on the sensitivity analysis), 
this gene was placed into S, otherwise the gene was omitted. 
The PCCs were calculated for each gene in the list. The final 
prognostic gene signature with RGE was the resulting set S. 
The proposed procedures are referred to as the meta Cox‑filter 
method with RGE (for the procedures with the add-on step 
of redundant gene elimination, the cut‑off of PCCs is set at 
0.4 based on a sensitivity analysis over values from 0.2 to 0.5, 
with an increment of 0.1 and 1. A multiple Cox regression 
model was fitted with all identified genes as covariates when 
the sizes of the resulting gene signatures were small enough, 
otherwise a multiple Cox regression model was fitted with the 
first five PCs of all identified genes as covariates and the meta 
Cox‑filter method without RGE hereafter.

Pathway enrichment analysis. The Search Tool for the 
Retrieval of Interacting Genes/Proteins (STRING, version 
11.0, www.string‑db.org) (39) was used to search for the Gene 
Ontology (GO; geneontology.org) terms (40) and the Kyoto 
Encyclopedia of Genes and Genomes (KEGG; https://www.
genome.jp/kegg/) pathways (41) that were enriched by the 
AC‑and the SCC‑specific prognostic signatures. The STRING 
software (39) is a stand‑alone online server used to construct 
the gene‑to‑gene interaction networks based on the data of 
gene fusion, co‑occurrence, co‑expression, experiments, 
various curated pathway databases and text mining.

Performance statistics. The censoring‑adjusted C‑statistic (42) 
over the follow‑up period (0, τ) was used to evaluate the perfor-
mance of a resulting prognostic gene signature. The C‑statistic 
is defined as follows:

Where g(Xi) is the risk score for patient i with predictor vector 
Xi, representing the expression values of the selected prognostic 
genes. The risk scores for patients were constructed by fitting 
an extra multiple Cox regression model with either all genes 
or the first five principal components (PCs) of all identified 
genes as covariates, with β representing the coefficients before 
the covariates. Ti and Tj were the survival/censoring time for 
patient i and patient j, respectively. A C‑index value between 

Table I. Characteristics of the microarray datasets used in the current study. 

     Number of Number of
     events/ events/
  Raw  Normalization Number of Number of
Dataset Study  data  Platform  method  AC patients   SCC patients  (Refs.)

GSE3141a Bild et al, 2006  No  HGU 133 Plus 2  MAS5  32/58 26/53 (31)
GSE30219 Rousseaux et al, 2013  Yes  HGU 133 Plus 2  FRMA 43/85 19/22 (33)
GSE37745 Botling et al, 2013  Yes  HGU 133 Plus 2  FRMA 27/40 20/24 (32)
GSE50081 Der et al, 2014  Yes  HGU 133 Plus 2  FRMA  51/127 16/42 (16) 

Yes, the corresponding data/information were available; FRMA, frozen robust multiarray analysis. a, dataset used as a test set. 
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0.6 and 0.7 indicates a prognostic signature has satisfactory 
performance (43).

Furthermore, using the median of those risk scores, that 
is g(Xi), as a cut‑off, the patients were classified into either 
a low‑or high‑risk group. The Kaplan‑Meier curves for these 
two groups were obtained, and log‑rank tests were used to 
compare these two curves. A smaller P‑value suggested a 
more significant difference between the survival curves of the 
low‑and the high‑risk groups.

Statistical language and packages. All statistical analyses 
were conducted in R language (version 3.3; www.r‑project.
org).

Results and Discussion

In the present study, the data of three microarray experiments 
(GSE37745, GSE30219 and GSE50081) were used as the 
training sets, and the GSE3141 dataset and RNA‑seq data from 
the TCGA database were used as the test sets to validate the 
performance of the resulting prognostic gene signatures.

First, a sensitivity analysis was conducted in order to 
determine the optimal cut‑off for the absolute PCCs, which 
identifies the genes that are regarded as redundant genes and 
may thus be excluded from the final gene lists. The C‑statistics 
of the resulting gene signatures were calculated for each 
study and are presented in Table II. Based on these statistics 
and the size of the final gene lists, the cut‑off was set at 0.4, 
which corresponded to the largest C‑statistics for all studies 
taken together and the smallest number of selected genes. 
Furthermore, it was observed that the proportion of redundant 
genes existing within a gene list selected by a filter method, 
such as the Cox‑filter method, was substantial. Following 
RGE, the size of the AC‑specific prognostic signature was 
reduced from 131 to 24, indicating that approximately 80% 
of identified genes were redundant. Similarly, the size of the 
SCC‑specific prognostic signature was reduced from 203 
to 12, indicating that the percentage of redundant genes for 
the SCC subtype was even higher than the AC subtype. The 
131‑gene signature for AC and the 203‑gene signature for SCC 
identified by the proposed method without RGE are listed in 

Table SI, along with the significance levels of those genes and 
the labels for redundancy.

The meta Cox‑filter method with RGE identified a 24‑gene 
AC‑specific prognostic signature and a 12‑gene SCC‑specific 
prognostic signature. The Kaplan‑Meier plots of the two 
signatures on the three training sets are presented in Fig. 1 and 
those on the two test sets are presented in Fig. 2. Using two 
independent studies, the GSE3141 dataset (31) and the TCGA 
RNA‑Seq data (under the cohorts of LUAD and LUSC), the 
resulting gene lists were demonstrated to have a good predictive 
performance. Therefore, the results of the present study have 
good generalization. The genes of the 24‑gene AC‑specific 
prognostic signature and the 12‑gene SCC‑specific prognostic 
signature are presented in Fig. 3 with those directly associ-
ated with lung cancer underlined. Using these two gene lists, 
clinicians may design corresponding diagnostic kits to calcu-
late the risk score for a patient with NSCLC and predict the 
prognosis, and ultimately allow for the possibility of a more 
ʻpersonalizedʼ treatment. Therefore, the results of the present 
study are clinically important.

The Venn‑diagram in Fig. 3 indicates there five genes 
[retinol dehydrogenase 13 (RDH13), zinc finger protein 
24 (ZNF24), LSM11 U7 small nuclear RNA associated 
(LSM11), down‑regulator of transcription 1 (DR1) and zinc 
finger protein 385D] overlapping between the two sets of 
signatures. According to the GeneCards database (29), none 
of the five overlapped genes are directly associated with lung 
cancer. However, all of them are indirectly associated with 
lung cancer as shown by the GeneCards database (29). For 
example, RDH13 and ZNF24 interact with a well‑known 
cancer‑associated gene tumor protein 53 (TP53) which 
encodes a tumor suppressor protein that contains tran-
scriptional activation, DNA binding and oligomerization 
domains. Mutations in TP53 are associated with a several 
types of of human cancer. Furthermore, the GeneCards data-
base (29) indicates these five genes are associated with other 
well‑known cancer‑associated genes. Specifically, LSM11 
is associated with KRAS proto‑oncogene GTPase (KRAS), 
epidermal growth factor receptor (EGFR) and signal trans-
ducer and activator of transcription 3. RDH13 interplays with 
EGFR and MET proto‑oncogene, receptor tyrosine kinase, 

Table II. Sensitivity analysis to determine the cut‑off value of average absolute Pearson's correlation coefficients over three 
microarray studies. 

  Size GSE30219 GSE37745 GSE50081
 --------------------------------- --------------------------------------- --------------------------------------- --------------------------------------
Cut‑off value AC SCC AC SCC AC SCC AC SCC

0.2     2     3 0.708 0.665 0.529 0.682 0.701 0.671
0.3     9     6 0.628 0.593 0.682 0.701 0.755 0.940
0.4   24   12 0.804 0.903 0.921 0.864 0.814 0.910
0.5a   54   28 0.638 0.541 0.792 0.630 0.751 0.870
1a 131 203 0.605 0.652 0.751 0.735 0.739 0.778

aSince the size of resulting gene signature is increasing, resulting in a multiple Cox regression model fitting problem, the first five principal 
components were used as covariates to fit multiple Cox models. Based on this, the cut‑off value of absolute Pearson correlation coefficients is 
set as 0.4. AC, adenocarcinoma; SCC, squamous cell carcinoma. 
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and ZNF24 interplays with KRAS and vascular endothe-
lial growth factor (VEGF) A and phosphatase and tensin 
homolog, and DR1 is targeted by Jun proto‑oncogene, AP‑1 
transcription factor subunit. All these well‑known genes 
are associated with lung cancer. For example, EGFR was 
revealed to be involved in the development and progression 
of lung cancer (44) and VEGF gene polymorphism serves a 
role in the development of lung cancer (45).

Choi et al (46) conducted a multivariate analysis that 
demonstrated a significant correlation between strong trans-
glutaminase 2 (TGM2) expression and shorter disease‑free 
survival in patients with NSCLC and the non‑adenocarcinoma 
subtype, and the correlation in the patients with the adeno-
carcinoma was not significant. However, the present study 

identified TGM2 as a hazardous gene for the AC subtype by 
the meta Cox‑filter methods with and without RGE. The forest 
plot for this gene is presented in Fig. 4 and it demonstrates 
that the hazard ratios of TGM2 in all individual studies were 
positive, but only that of the GSE30029 dataset was significant 
(P<0.05). A meta‑analysis model increases statistical power, 
so that consistently hazardous but not statistically significant 
effects across studies become statistically meaningful when 
taken together. Further investigation on the prognostic value 
of TGM2 for the AC subtype is required.

In the present study, STRING software (39) was used to 
search for the GO terms (40) and the KEGG pathways (41) 
that were enriched by the AC‑and the SCC‑specific prognostic 
signatures. The results are presented in Fig. 5. The figure 

Figure 1. Kaplan‑Meier plots of the AC‑and SCC‑specific prognostic signatures for the training sets. The training sets included three microarray studies: 
GSE30029, GSE37745 and GSE50081. Based on the risk scores, patients were divided into two categories (a low‑risk group and a high‑risk group) using the 
medians of the risk scores as cut‑offs. The P‑values of the log‑rank tests comparing the survival curves of the low‑and high‑risk groups are presented in each 
plot. AC, adenocarcinoma; SCC, squamous cell carcinoma.
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shows that there is no overlap between the two sets of enriched 
gene sets for GO terms and KEGG pathways, respectively. 
Therefore, the pathways enriched by these two gene signatures 
are subtype‑specific.

Subsequently, gene‑to‑gene interaction networks for the 
AC‑ and SCC‑specific gene signatures were constructed using 
the String database, which show how the genes identified in 
the present study are connected or interplay, and are shown 
in Fig. 6. If the genes used to construct a network are highly 
associated with each other, there would be a number of edges 
(lines to connect a gene pair) in the resulting network instead 
of numerous isolated genes. As shown in Fig. 6, the majority 
of the subtype‑specific genes identified are isolated from one 
another, indicating that these genes are independent from 
each other and thus have independent prognostic values. This 
implies that the RGE step screens out numerous highly associ-
ated genes, which are more likely to be redundant, from the 
final gene lists. Therefore, the proposed procedure for RGE is 
effective.

Compared with the meta Cox‑filter method without RGE, 
the meta Cox‑filter method with RGE was superior with 
regards to the two performance statistics under consideration, 
particularly for the AC subtype. Thus, the RGE step is of critical 
importance in the process of feature selection. The estimates 
of these performance statistics on the two test sets for both the 
meta Cox‑filter method and the meta Cox‑filter method with 
RGE are presented in Table III. Based on these statistics, the 
gene signatures trained from the data on one platform can be 
applied to a different platform. Similarly, the generalization 

Figure 3. Venn‑diagrams of the AC‑and SCC‑specific prognostic signatures 
identified by the meta Cox‑filter method. In this method, the Cox‑filter method 
was used to estimate the respective b coefficients for each cohort separately 
and then the integrated effect sizes were calculated using a meta‑analysis 
model with redundant gene elimination. The underlined genes are directly 
associated with lung cancer according to the GeneCards database. AC, 
adenocarcinoma; SCC, squamous cell carcinoma.

Figure 2. Kaplan‑Meier plots of the AC‑and SCC‑specific prognostic signatures for the test sets. The test sets include one microarray study (GSE3141) and one 
RNA‑seq study (the lung adenocarcinoma and lung squamous cell carcinoma cohorts in The Cancer Genomic Atlas database). Based on the risk scores, patients 
were divided into two categories (low‑and high‑risk groups) using the medians of the risk scores as cut‑offs. The P‑values of the log‑rank tests comparing the 
survival curves of the low‑and high‑risk groups are presented in each plot. AC, adenocarcinoma; SCC, squamous cell carcinoma; RNA‑seq, RNA‑sequencing.
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Figure 4. Forest plot for one specific gene, TGM2. The meta Cox‑filter method indicated that TGM2 is a hazardous gene, as a higher expression value was 
associated with a short survival time of patients with AC. TGM2, transglutaminase 2.

Figure 5. Venn‑diagrams of the enriched GO terms and the KEGG pathways in the 24‑gene AC‑specific prognostic signature and the 12‑gene SCC‑specific 
prognostic signature using the Search Tool for the Retrieval of Interacting Genes/Proteins database. GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes 
and Genomes; AC, adenocarcinoma; SCC, squamous cell carcinoma; CC, cellular component; BP, biological process.
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of the gene signatures to the expression values obtained using 
different pre‑processing procedures was achieved.

Feature selection in the framework of meta-analysis 
combines meta-analysis with the feature selection process 
and thus performs meta-analysis feature selection for 
multiple datasets. It has a notable advantage over the 
methods of implementing a specific feature selection algo-
rithm for individual studies and then taking the intersection 
of the gene signatures given by individual studies. Namely, 

it can select the same set of genes across multiple experi-
ments. The proposed procedure in the present study and the 
meta threshold gradient descent regularization (MTGDR) 
method (47) belong to the meta feature selection category. 
However, the proposed procedure, a simple combination of 
the Cox‑filter method and a meta‑analysis on the summary 
statistics (i.e., β coefficients), is not as complicated as the 
MTGDR method. Compared with the MTGDR method, 
therefore, the proposed procedure is easier to understand and 

Table III. Performance statistics of the proposed procedure on two independent test sets. 

  C‑index P‑value
 ------------------------------------------------------------------------------ -------------------------------------------------------------------------------------------
 GSE3141 RNA‑seq  GSE3141 RNA‑seq
 ---------------------------------- ---------------------------------- ------------------------------------- --------------------------------------
Method AC SCC AC SCC AC SCC AC SCC

mCox‑filter with RGE  0.857 0.659 0.814 0.680 1.50x10-5 0.159 1.89x10-5 0.105
mCox‑filter without RGE 0.752 0.714 0.797 0.742 0.016 0.323 0.041 0.322 

mCox‑filter with RGE corresponds to the meta Cox‑filter method with RGE, where the cut‑off value of absolute Pearson's correlation coef-
ficient between two genes is set at 0.4. mCox‑filter without RGE corresponds to the meta Cox‑filter method. RGE, redundant gene elimination; 
RNA‑seq, RNA‑sequencing; AC, adenocarcinoma; SCC, squamous cell carcinoma. 

Figure 6. Gene‑to‑gene interaction networks of the AC‑and SCC‑specific prognostic signatures constructed using the Search Tool for the Retrieval of 
Interacting Genes/Proteins database. Edges with different colors indicated that the evidence of interaction was from different sources. For example, a light 
blue edge is predicted from a curated database and a purple edge is based on experimentally determined interactions. These two networks demonstrated that 
the identified genes are rarely connected to each other, indicating that the redundant gene elimination screened out highly associated genes from the final gene 
lists. The overlapped genes that are in both signatures are circled in red. AC, adenocarcinoma; SCC, squamous cell carcinoma.
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implement. The proposed method is potentially a superior 
choice when a researcher aims to identify the subtype‑specific 
prognostic genes using multiple related gene expression data-
sets. Therefore, the results of the present study have potential 
for clinical application.

RGE is an important aspect of the feature selection 
process (48). Consistent with previous studies (49‑51), the 
present study demonstrated that the RGE step is beneficial 
by improving the predictive performance, downscaling 
the sizes of the final gene signatures and increasing model 
parsimony, thus facilitating the experimental validations. 
Therefore, the additional consideration of deleting redun-
dant genes is highly recommended, particularly when a 
filter method is utilized to perform feature selection. This is 
because filters generally screen genes one by one according 
to their relevance scores with the outcome of interest and 
thus lead to a high false positive rate by including numerous 
redundant genes (52).
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