
ONCOLOGY LETTERS  18:  3463-3470,  2019

Abstract. Lung squamous cell carcinoma (LSCC) exhibits 
a number of similarities with lung adenocarcinoma (LA) in 
terms of copy number alterations. However, compared with 
LA, the range of genetic alterations in LSCC is less under-
stood. In the present study, a large-scale literature-based 
search of LA-associated genes and LSCC-associated genes 
was performed to identify the genetic basis in common with 
these two diseases. For each of the LA-associated genes, a 
mega-analysis was performed to test its expression variations 
in LSCC using 11 RNA expression datasets, with significant 
genes identified using statistical analysis. Subsequently, a func-
tional pathway analysis was performed to identify a possible 
association between any of the significant genes identified 
from the mega-analysis and LSCC, followed by a co-expres-
sion analysis. A multiple linear regression (MLR) model was 
employed to investigate the possible influence of sample size, 
country of origin and study date on gene expression in patients 
with LSCC. Disease‑gene association data analysis identified 
1,178 genes involved in LA, 334 in LSCC, with a significant 
overlap of 187 genes (P<1.02x-161). Mega-analysis revealed 
that three LA-associated genes, such as solute carrier family 
2 member 1 (SLC2A1), endothelial PAS domain protein 1 
(EPAS1) and cyclin‑dependent kinase 4 (CDK4), were signifi-
cantly associated with LSCC (P<1.60x10-8), with multiple 
potential pathways identified by functional pathway analysis, 
which were further validated by co-expression analysis. The 
present MLR analysis suggested that the country of origin 
was a significant factor for the levels of expression of all three 
genes in patients with LSCC (P<4.0x10-3). Collectively, the 

present results suggested that genes associated with LA should 
be further investigated for their association with LSCC. In 
addition, SLC2A1, EPAS1 and CDK4 may be novel risk genes 
associated with LA and LSCC.

Introduction

Non-small-cell lung carcinoma (NSCLC) accounts for ~85% 
of all cases of lung cancer worldwide, and the most common 
histological subtypes of NSCLC are lung adenocarcinoma 
(LA) and lung squamous cell carcinoma (LSCC) (1). LA and 
LSCC cells originate from lung epithelial cells and differen-
tiate into glandular and squamous phenotypes, lining the larger 
airways and the peripheral small airways (2,3). LSCC exhibits 
many similarities with LA in terms of somatic copy number 
alterations (4), which raises the possibility of the presence of 
common genetic features between these two diseases (5,6). 
Clinical, genetic and biochemical evidence also suggest that 
different types of lung cancer may share similar molecular 
pathways (6). However, clinical or pathological phenotypes 
alone may be insufficient to understand the underlying mecha-
nisms of lung cancer (5,6).

Investigation of disease-associated genes can improve the 
understanding of disease etiology and development, thereby 
facilitating design and development of novel preventive and 
treatment strategies (7,8). Cross disease-gene studies and 
further pathway analyses provide an opportunity to resolve 
overlapping associations into discrete pathways and investi-
gate possible shared etiologies (9,10).

The aim of the present study was to identify shared risk 
genes and to improve the understanding of shared pathways 
and biological mechanisms involved in LA and LSCC using 
a mega-analysis of gene expression data. Considering that 
the range of genetic alterations in LSCC is less understood 
compared with LA, the present study investigated genes that 
were involved in LA but not with LSCC using LSCC gene 
expression datasets.

Materials and methods

Study design. First, a large-scale literature-based analysis of 
disease-associated genes was performed to identify genes 
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involved in LSCC and LA. Subsequently, for each of the 
LA‑associated genes identified, a mega‑analysis was performed 
using LSCC gene expression data. Pathway analysis was then 
performed to identify possible functional pathways associated 
with LSCC-specific genes. Finally, a co-expression-based 
protein-protein interaction (PPI) analysis was performed using 
LSCC expression data to evaluate the pathways identified. The 
workflow diagram is presented in Fig. 1.

L A ‑ a n d  L S C C‑ a s s o c i a t ed  ge n e  d a t a .  L A-a nd 
LSCC-associated gene data were acquired from the Pathway 
Studio (version 12.1.0.9; www.pathwaystudio.com) (11) 
mammalian database, which is a group of real-time updated 
literature knowledge databases, including curated signaling 
pathways, cellular processes, megabolic pathways, ontologies, 
annotations, molecular interactions and functional associa-
tions (http://pathwaystudio.gousinfo.com/ResNetDatabase.
html). Association data were extracted from >41,000,000 
references, including PubMed (https://www.ncbi.nlm.
nih.gov/pubmed) abstracts and full-text articles. The 
Pathway database employs an automated natural language 
processing-based information extraction system, MedScan, 
with a precision >91% (12). Association data within the 
database are supported with one or more reference. The 
Pathway Studio ResNet Database is the largest literature data-
base (13). These data were organized into a genetic dataset 
termed ‘LA_LSCC’, which is available at the Bioinformatics 
Database (http://database.gousinfo.com). The download-
able excel spreadsheet containing the dataset is available at 
http://gousinfo.com/database/Data_Genetic/LA_LSCC.xlsx. 
The full lists of genes associated with LA and/or LSCC are 
presented in the groups ‘LA_alone genes’, ‘LSCC_alone 
genes’ and ‘Common genes’. In addition, the references for 
every disease-gene association are presented in the groups 
‘Ref for LA_alone genes’ for LA-specific genes, ‘Ref for 
LSCC_alone genes’ for LSCC‑specific genes and ‘Ref for 
common genes’ for shared genes. Information regarding 
the titles of the references and the sentences where the 
disease‑gene associations were identified are presented in the 
‘ LA_LSCC’ dataset.

Gene expression data selected for mega‑analysis. Following 
the initial search with ‘lung squamous cell carcinoma’, 158 
microarray expression datasets were identified on gene expres-
sion omnibus (https://www.ncbi.nlm.nih.gov/geo/) (14,15). 
Subsequently, the following criteria were applied: i) The 
organism used in the study was Homo sapiens; ii) the data 
type was microarray expression profiling; and iii) the studies 
were limited to comparison between LSCC and healthy 
controls. A total of 12 datasets satisfied the inclusion criteria 
for the mega-analysis. However, one dataset (GSE27489 (16); 
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE27489) was 
excluded from further investigation as each gene in this dataset 
demonstrated a small variation in expression level, which may 
lead to biased results in the mega-analysis. The 11 included 
datasets are listed in Table I (17-27).

Mega‑analysis models. The log2 fold-change (LFC) of the 
gene expression level was used to indicate the effect size. 
Both fixed‑effect and random‑effects models were employed 

to investigate and compare the effect size (28). The hetero-
geneity of the mega‑analysis was analyzed to study the 
variance within and between different studies. In the case 
that the total variance (Q) was equal to or smaller than the 
expected between-study variance (df), the within-study 
variance percentage (ISq) =100% x (Q-df)/Q was set at 0 
and a fixed‑effect model was selected for the mega‑analysis. 
Otherwise, a random-effects model was selected. Q-p 
represents the probability that the total variance was only 
due to within‑study variance. Significantly associated genes 
from this mega‑analysis were identified using the following 
criteria: i) P<1x10-7; and ii) |LFC| >1. When a gene exhibited 
a |LFC| >1 in the mega-analysis, the change in the expres-
sion level of the gene was >2-fold or <0.5-fold. The current 
study presented all the mega-analysis results identified 
in the ‘Mega-analysis’ group in the ‘LA_LSCC’ dataset; 
however, only genes with a |LFC| >1 were further discussed. 
All analyses were performed using Matlab (version R2017a; 
https://www.mathworks.com/products/matlab.html).

Multiple linear regression analysis. A multiple linear regres-
sion (MLR) model was employed to investigate the possible 
influence of sample size, country of origin and study date on 
the gene expression in LSCC. P-values and 95% CIs were 
reported for each of these factors.

Pathway analysis. To test the functional profile of the common 
genes associated with LA and LSCC, a Gene Set Enrichment 
Analysis (GSEA) was conducted using Pathway Studio 
(version 12.1.0.9; www.pathwaystudio.com) against Gene 
Ontology (GO; http://geneontology.org) and Pathway Studio 
Ontology (version 12.1.0.9; www.pathwaystudio.com). In 
addition, functional pathway analysis was performed to inves-
tigate potential biological associations between the identified 
risk genes and LSCC. The analysis was performed using the 
‘Shortest Path’ module of Pathway Studio in order to identify 
various ‘entities’, including complexes, proteins and functional 
classes, that were associated to both the genes and LSCC. The 
reference information included the types of associations, the 
number of underlying supporting references and the sentences 
where these associations had been identified and described.

Co‑expression analysis. For each pair of the genes and proteins 
identified in the aforementioned pathway analysis, another 
mega-analysis was performed to investigate their co-expression 
using the 11 LSCC expression datasets. The Fisher's Z-value 
(FisherZ) of Pearson's correlation was used to determine the 
effect size, and the following equation was used to calculate 
it: FisherZ=0.5 x log [(1+ Correlation)-(1- Correlation)]. The 
purpose of this analysis was to validate the associations 
identified in the pathway analysis. The present study used the 
following criteria for the selection of a non-random meaningful 
association: i) An absolute value of FisherZ >0.3; and ii) P<0.05. 
The detailed FisherZ values and P-values are presented in the 
‘Co-expression’ analysis.

Results

LA and LSCC genes. LA-and LSCC-associated gene analyses 
revealed 1,178 genes associated with LA, supported by 7,355 
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references, and 334 genes associated with LSCC, supported 
by 838 references. The full list of these genes and the associ-
ated references are presented in the ‘LA_LSCC’ dataset. A 
significant overlap of 187 genes, which are presented in the 
‘Common genes’ group, was identified for both LA and LSCC 
(right tail Fisher's Exact test; P=1.02x10-161). This accounted 
for 55.99% of all the LSCC-associated genes and 15.87% of all 
the LA-associated genes.

To test the functional profile of the 187 common genes asso-
ciated with both LA and LSCC, a GSEA was conducted using 
Pathway Studio against the GO and Pathway Studio Ontology. 
In total, nine pathways/gene sets (73 unique genes) associated 
with protein kinase, three pathways/gene sets (71 unique genes) 
associated with cell growth proliferation, two pathways/gene 
sets (nine unique genes) associated with cell apoptosis and 

one pathway/gene set (ten unique genes) associated with 
transcription factors were significantly enriched. The full list 
of the 39 pathways/gene sets enriched with P<1.7x10-5 (with 
144 out of 187 unique genes) are presented in the ‘Common 
pathways’ group contained in the ‘LA_LSCC’ dataset. The 
majority of these pathways were involved in LA and LSCC, 
indicating a shared genetic basis for these diseases.

Three novel common genes in LA and LSCC. Although an 
overlap was identified between LA-and LSCC-associated 
genes, the majority of the LA‑specific genes (991 genes, 84.13%) 
were not implicated in LSCC. A systematic mega-analysis was 
performed to collectively assess differential expressed mRNAs 
and determine whether previously investigated LA-associated 
genes were also linked to LSCC. Notably, certain datasets do 
not contain the three genes and therefore will not be included 
in the current study. However, the LFCs of the genes were 
estimated from the majority of the 11 studies (>9 studies). The 
associations between the LA‑specific genes with 11 LSCC 
gene expression datasets (Table I) were evaluated. A total 
of three genes, including solute carrier family 2 member 1 
(SLC2A1), endothelial PAS domain protein 1 (EPAS1) and 
cyclin-dependent kinase 4 (CDK4), passed the significant 
criteria (P<1x10-7 and |LFC| >1) and are presented in Table II. 
The detailed results are presented in the ‘Mega-analysis’ group 
in the ‘LA_LSCC’ dataset.

The effect sizes, 95% CIs and weights of different studies 
for the three identified genes (SLC2A1, EPAS1 and CDK4) 
are presented in Fig. 2. EPAS1 and CDK4 exhibited signifi-
cant variances between studies (ISq >0% and Q-test P<0.1). 
Therefore, the random-effects model was selected for their 
mega-analysis. By contrast, no significant between-study 
variance was observed for SLC2A1 (Q-test P>0.4), and 
the fixed‑effect model was selected for SLC2A1 (Fig. 2). 
Notably, multiple line regression analyses demonstrated that 
the country of origin was a significant factor that influenced 
the LFC of all three genes in the case of LSCC (P<0.004; 
Table II).

Figure 1. Workflow diagram of the cross LA-LSCC analysis. LA, lung 
adenocarcinoma; LSCC, lung squamous cell carcinoma; PPI, protein-protein 
interaction.

Table I. Datasets used for lung squamous cell carcinoma-gene association mega-analysis.

Study name Dataset GEO ID Control (n) Case (n) Study age (years) Country (Refs.)

Nazarov et al, 2017 GSE84784 9 9 2 Luxembourg (17)
Tong et al, 2016 GSE67061 8 69 3 China -
Mascaux et al, 2014 GSE33479 27 14 5 USA -
Rousseaux et al, 2014 GSE30219 14 61 5 France (18)
Girard et al, 2012 GSE32036 59 12 7 USA (19,20)
Philipsen et al, 2010 GSE19188 65 27 9 Netherlands (21)
Boelens et al, 2009 GSE12472 28 35 10 Netherlands (22)
Ishikawa et al, 2009 GSE2088 30 48 10 Japan (23)
Boelens et al, 2008 GSE12428 28 34 11 Netherlands (24)
Rosskopf et al, 2006 GSE6044 5 14 13 Germany (25)
Takeuchi et al, 2009 GSE11969 5 35 10 Japan (26,27) 

GEO, gene expression omnibus; -, unavailable. Study age =current year -publication year+1. 
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Functional pathway analysis. According to the approach used 
to identify the genes associated with LSCC, SLC2A1, EPAS1 
and CDK4 exhibited no direct link with LSCC. However, 
functional pathway analysis revealed multiple potential 
pathways through which these three genes may serve roles 
in the pathology of LSCC (Fig. 3). Each edge in Fig. 3 was 
supported by ≥1 references, and details of these associations 
are presented in the ‘LSCC-3Genes_potential pathways’ group 
in the ‘LA_LSCC’ dataset.

To confirm the associations presented in Fig. 3, a 
co-expression PPI analysis was conducted with the purpose 
of validating the associations between CD4K4, EPAS1 and 
SLC2A1, and the 13 other genes presented in Fig. 3. The 
majority of the entities presented in Fig. 3 also exhibited 
significant associations in the co‑expression analysis (Fig. 4), 
supporting the pathway analysis results. Co-expression 
analysis results are presented in the ‘Co-expression’ group in 
the ‘LA_LSCC’ dataset.

Figure 2. Effect size, 95% CI and weights for the genes SLC2A1, EPAS1, and CDK4. Results from a mega‑analysis using (A) a fix‑effect model for SLC2A1, 
and a random-effects model for (B) EPAS1 and (C) CDK4. SLC2A1, solute carrier family 2 member 1; EPAS1, endothelial PAS domain protein 1; CDK4, 
cyclin-dependent kinase 4.

Table II. Statistically significant genes identified from the mega‑analysis of lung squamous cell carcinoma.

  MLR analysis results (P-values)
 Mega-analysis results ------------------------------------------------------------------
Gene Random effects Datasets ----------------------------------------------------------------------- Sample Population Study
name model included (n) LFC SD of LFC P‑value size  region age 

SLC2A1 0 11   1.63 0.25 4.31x10-11 0.59 4x10-3 0.69
EPAS1 1 9 -1.50 0.26 1.27x10-8 0.49 2x10-5 0.09
CDK4 1 11   1.02 0.18 1.60x10-8 0.87 6x10-5 0.98 

SLC2A1, solute carrier family 2 member 1; EPAS1, endothelial PAS domain protein 1; CDK4, cyclin-dependent kinase 4; LFC, log-fold 
change; SD, standard deviation. D Study age =current year -publication year+1.
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Figure 3. Potential pathways associating SLC2A1, EPAS1 and CDK4 to lung squamous cell carcinoma. Network was generated using Pathway Studio. Each 
association (edge) has ≥1 supporting reference. SLC2A1, solute carrier family 2 member 1; EPAS1, endothelial PAS domain protein 1; CDK4, cyclin‑dependent 
kinase 4; PTGS2, prostaglandin‑endoperoxide synthase 2; CDH1, cadherin 1; NOS2, nitric oxide synthase 2; GLI1, GLI family member zinc finger 1; FGFR, 
fibroblast growth factor receptor; BCL2L1, BCL2‑like 1; FOXM1, forkhead box M1; WNT5A, Wnt family member 5A; BIRC5, baculoviral IAP repeat 
containing 5; MIR21, microRNA-21; GPC3, glypican 3; GSK3B, glycogen synthase kinase 3β.

Figure 4. Co‑expression analysis. Each edge represents a significant association between the corresponding two entities (P<0.05). Positive associations are 
highlighted in green and negative associations are highlighted in red. Nodes in red indicate decreased expression and green nodes indicate increased expression. 
SLC2A1, solute carrier family 2 member 1; EPAS1, endothelial PAS domain protein 1; CDK4, cyclin-dependent kinase 4; PTGS2, prostaglandin-endoperoxide 
synthase 2; CDH1, cadherin 1; NOS2, nitric oxide synthase 2; GLI1, GLI family member zinc finger 1; BCL2L1, BCL2‑like 1; FOXM1, forkhead box M1; 
CD274, cluster of differentiation 274; WNT5A, Wnt family member 5A; BIRC5, baculoviral IAP repeat containing 5; MIR21, microRNA-21; GPC3, glypican 3.
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Discussion

The cross-analysis of different lung cancer phenotypes may 
facilitate the development of novel strategies and approaches for 
the treatment of lung cancer. In the present study, LA‑specific 
genes were systematically mega‑analyzed with LSCC differ-
ential expression data and three genes, including SLC2A1, 
EPAS1 CDK4, were identified as potential risk genes for LSCC. 
Importantly, whether these associations between the genes and 
LSCC indicate causality requires further investigation.

It is a major concern that a disease-gene association derived 
from experiment-based literature is heavily dependent on the 
quality and access of the text data, and the efficiency of the 
mining algorithms. Candidate disease-gene analysis is more 
appropriate for monogenic diseases because the association 
between genotype and phenotype is clearer (11,12). In lung 
cancer, a complex disease, the etiology can be attributed to 
tobacco smoking, sex, ethnicity, age, diet, obesity, infections 
and numerous genes that work in combination to elicit the 
disease phenotype (29-31). It has also been observed that when 
individually investigated, the genes potentially responsible for 
the disease may not result in disease in certain patients (32-35).

In this context, cross-disease analysis based on 
mega‑analysis can overcome the limitations of sample size 
and identify more reliable and robust common genes between 
LA and LSCC through the quantitative combination and 
assessment of multiple studies (36,37). In the present study, 
disease-gene association data were retrieved from the Pathway 
Studio database and mega-analysis was performed to detect 
their significance in terms of gene expression levels. All of 
these analyses can provide a more reliable and robust result.

The present study used MLR analysis to demonstrate 
that lung cancer outcome varies among different populations 
and ethnicities. In addition, the present study identified that 
the country of origin may be associated with the expression 
levels of SLC2A1, EPAS1 and CDK4 in the case of LSCC. 
It is therefore necessary to assess the generalizability of the 
present results in different ethnic groups. Socioeconomic and 
cultural differences among different racial groups may account 
for some degree of the current disparities and a personalized 
molecular approach may help to resolve such problems (38-41).

The current literature-based functional pathway analysis 
revealed several possible pathways that link the three novel 
genes identified to LSCC. For example, CDK4, a member of 
the serine/threonine protein kinase family, may contribute 
to the development of LSCC via a CDK4-forkhead box M1 
(FOXM1)-LSCC pathway. It has been reported that CDK4 
activity can increase the transcriptional activity of FOXM1 
without phosphorylating FOXM1 (42), while the expression of 
FOXM1 has been suggested to contribute to the development 
or progression of LSCC (43). A previous study also suggested 
that CDK4 can stimulate the BRCA1 promoter in an E2F 
transcription factor 1-dependent manner, regulating cell cycle, 
DNA replication and cell proliferation processes (44). BRCA1 
serves an important role in LSCC via cell cycle and DNA 
replication signaling pathways (44), which indicates a potential 
CDK4-BRCA1-LSCC pathway.

EPAS1 can bind to and inhibit the expression of the 
calcium-dependent cell adhesion molecule cadherin 1 
(CDH1) (45,46). CDH1 has been reported to serve a dual role in 

the maintenance of the LSCC phenotype (47). These previous 
studies indicate that the EPAS1-CDH1-LSCC pathway may 
serve a complex role in LSCC development. EPAS1 regu-
lates the production of prostaglandin-endoperoxide synthase 
(PTGS) (48), which has been indicated to promote the carcino-
genesis of LSCC, suggesting a potential EPAS1-PTGS-LSCC 
pathway.

SLC2A1 is a major glucose transporter responsible for 
constitutive or basal glucose uptake, which can bind with 
glypican 3 (GPC3) to decrease glucose transport activity (49) 
and transport quercetin to balance the glucose efflux (50). 
Mechanisms associated with glucose efflux are also identified 
in the pathological process of LSCC (51,52), suggesting the exis-
tence of SLC2A1-GPC3-LSCC and SLC2A1-quercetin-LSCC 
pathways.

Co-expression analysis revealed that the majority of the 
identified genes were associated with each other in terms 
of expression. The majority of the literature-based pathway 
identified was validated by the expression data‑based asso-
ciations found. However, a certain number of the associations 
identified in the present study may not be consistent with the 
present co-expression analysis. For example, SLC2A1 inhibits 
the expression of baculoviral IAP repeat containing 5 (BIRC5) 
in the pathway analysis; however, SLC2A1 and BIRC5 exhibit 
positive co-expression in the co-expression analysis, which 
indicates the presence of a more complex genetic network 
including more regulators.

The present cross-disease analysis between LA and LSCC 
suggested common genes may contribute to disease comor-
bidities and trait manifestations. The novel common genes 
identified may facilitate the development of novel strategies 
targeting shared mechanisms across diseases. However, the 
conclusion of the current study was only based on a statistical 
analysis of previous experimental data and a literature-based 
pathway study. Therefore, further biological experiments, 
including gene-knockout or knockdown experiments, are 
required to validate the associations between the three genes 
identified and LSCC.

In conclusion, cross-disease analysis could provide a 
powerful tool to investigate new targets and reveal common 
biological mechanisms. Genes associated with LA require 
further analysis to identify their association with LSCC. 
SLC2A1, EPAS1 and CDK4 genes identified in the present 
study may be novel common risk genes associated with both 
LA and LSCC.
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