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Abstract. Tight coupling between bone resorption and formation 
is essential for bone remodeling. Disruption of this equilibrium 
can lead to skeletal disorders. Osseous metastatic disease is a 
severe consequence of tumor cell dissemination from numerous 
primary cancer sites, including the prostate, lungs and breasts. 
Metastatic disease is one of the most common causes of mortality 
in patients with cancer. Rapid advances in the therapeutic 
options for bone disease, including the use of bisphosphonates, 
have achieved effective clinical effects. However, the overall 
survival time of patients with bone metastatic has not signifi-
cantly improved. Exosomes, which originate from tumor tissue 
and preferentially the bone, provide a reasonable way to under-
stand the mechanism of neoplastic bone metastasis. Recently, 
several studies have indicated that tumor‑derived exosomes are 
involved in cancer progression. However, the potential role that 
exosomes serve in the pathological communication between 
tumor and bone cells within the skeletal microenvironment 
remains an emerging field. The present review reports some 
recent findings on the detrimental roles of exosomes in bone 
metastasis. In addition, since exosomes are involved in meta-
bolic organ cross‑talk, this review highlights the involvement of 
cancer‑derived exosomes in the regulation of skeletal metastatic 
diseases. Lastly, the potential promising clinical applications 
and emerging therapeutic opportunities targeting exosomes are 
discussed as novel strategies for cancer therapy.
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1. Introduction

Malignant tumors have become the second‑leading cause of 
mortality worldwide, and it has been predicted that the number 
of newly diagnosed malignancies will increase to 23.6 million 
by 2030 (1). The transfer of tumor cells to distant metastases 
is the most common cause of cancer‑associated mortality (2). 
The bone is a major target for cancer metastasis, second 
only to the lungs and liver; it has unique anatomical and 
physiological pathological conditions, which facilitate cancer 
metastasis, especially from solid tumors (3), including those 
of the prostate, breasts, kidneys and lungs (4). Firstly, tumor 
cells themselves have the ability to migrate from the primary 
lesion to distant skeletal tissue; they can also accelerate tumor 
growth, infiltrate the surrounding tissues and cause distance 
metastases, which are all associated with tumor heteroge-
neity. Secondly, the anatomical characteristics of the skeletal 
system are unique. For example, the red bone marrow allows 
tumor cells to enter the bloodstream and remain within the 
bone marrow tissue (5). Thirdly, affected bones and meta-
static tumor cells cause various types of biological response, 
including adhesion molecules produced by tumor cells that 
bind to trabecular bone and stromal cells. Finally, tumor 
cells further produce angiogenic factors and bone resorption 
factors (6). In addition, hematological tumors might directly 
or indirectly affect the metabolism of bone. However, these 
cancer metastases remain incurable, and the 5‑year survival 
rate of patients with these types of metastasis is significantly 
reduced (7). This results in a series of complications, including 
severe bone pain, pathological fractures, hypercalcemia and 
spinal cord compression, which severely affects the quality 
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of life and the life expectancy of patients. Highly specific 
interactions between disseminating cancer cells and the bone 
microenvironment determine the metastatic process  (4,8). 
The equilibrium between the activity of bone resorbing 
osteoclasts and bone‑forming osteoblasts is interrupted by 
bone metastasis. Due to the abundant blood supply and special 
growth microenvironment in bone tissue (9), such permissive 
environments (pre‑metastatic niche formation) are in favor of 
metastatic development (10‑12). Cells can communicate with 
each other by secreting extracellular vesicles (EVs). These EVs 
display a diverse range of sizes. The present review specifically 
highlights the role of tumor‑derived exosomes (40‑100 nm 
diameter) in bone metastasis.

2. Exosomes and microRNA (miRNA/miR)

Exosomes are small disc‑shaped vesicles, with a diameter of 
40‑100 nm, that contain mRNAs, miRNAs (13), lipids (14,15) 
and proteins (14). Exosomes are secreted by a wide variety 
of normal and malignant cells  (16), formed by the endo-
somal network and released from the cell via the fusion of 
multi‑vesicular bodies with the plasma membrane  (17,18). 
Exosomes are characterized by specific markers, including 
CD9, CD63, CD81, Alix and TSG101  (13,14). The role of 
exosomes in intercellular communication, via the transfer 
of proteins (19), bioactive lipids and miRNAs (20), has been 
confirmed in numerous studies (21). Exosomes are found in 
almost all body fluids, including the serum (22), saliva (23), 
breast milk  (24), cerebrospinal fluid  (25), urine  (14) and 
semen  (26). Furthermore, exosomes are largely found in 
the tumor microenvironment. Tumor‑derived exosomes 
have received considerable attention for their role in cancer 
progression and metastasis, and previous studies reported that 
they serve a pivotal role in cancer growth, development and 
metastasis (27‑32). A recent study revealed that the amount 
and contents of the exosomes secreted by tumor cells are 
much larger compared with that of normal cells (33). The vari-
able exosome contents therefore influence their behavior and 
strongly modify the entire microenvironment (34). Exosomes 
significantly contribute to the communication between cells 
and the subsequent reprogramming of the tumor microenvi-
ronment (35). Exosomes primarily promote tumor metastasis 
as follows: i) Exosomes secreted by tumor cells directly open 
the way for tumor invasion and metastasis (36); ii) tumor cells 
with high metastatic potential can promote the invasion and 
metastasis of tumor cells themselves, or other relatively low 
metastatic potential tumor cells through exosomes (30); iii) 
the cross‑talk between mesenchymal cells and tumor cells 
via exosomes ultimately promotes tumor metastasis (37); and 
iv) tumor‑derived exosomes regulate mesenchymal cells in 
the distant metastasis microenvironment to promote distant 
colonization and proliferation (10). Numerous specific tumor 
cells, including those of the prostate, lungs and breasts, are 
more prone to bone metastasis and have substantial crosstalk 
with bone cells in the bone microenvironment (38). Whether 
tumor‑derived exosomes are involved in interactions between 
tumor and bone cells, and the underlying mechanisms of such 
communication, remain unclear.

Long non‑coding RNAs and miRNAs constitute a class 
of small (19 to 25‑nucleotide) RNAs that serve crucial gene 

regulatory roles in humans  (39). Extensive research has 
revealed that miRNAs have regulatory roles in a wide range of 
pathological and physiological processes (13,40). For example, 
Van Balkom et al  (41) reported that human microvascular 
endothelial cell (EC)‑derived exosomes, containing miR‑214, 
promoted EC migration and angiogenesis. Furthermore, 
knockout of miR‑214 in ECs resulted in loss of the ability of 
EC‑derived exosomes to promote migration and angiogenesis. 
Cui  et  al  (42) reported that mouse embryonic osteogenic 
precursor cells secreted a variety of Wnt/β‑catenin signaling 
pathways that activate bone marrow mesenchymal stem cells 
(BMSCs) and osteogenesis‑associated miRNAs during osteo-
genic differentiation. Exosomes upregulated the expression of 
the osteogenesis‑associated genes and promoted the formation 
of mineralized nodules. These findings suggest that these 
miRNAs can be transferred to effector cells through exosomes 
to exert their gene regulatory functions, by enriching certain 
miRNAs in the source cells. Kumar and Reddy (20) reported 
that exosomes secreted by cells in disease states contain 
mainly disease‑specific or deregulated miRNAs, and that 
they can be used as diagnostic molecules. A previous study 
also demonstrated that exosomes from the plasma of patients 
with various types of cancer present with distinct miRNA 
signatures (43). However, these characteristics do not corre-
spond to those from the parent tumor cell (44), which suggests 
that exosomes selectively release miRNA from tumor cells. 
Growing evidence indicates that some exosomes isolated from 
cancer patients have distinct miRNA profiles, including those 
of lung cancer (45) and breast carcinoma (46), which suggests 
that these miRNAs might be considered as specific diagnostic 
markers for patients with cancer.

3. Cancer to the bone: A fatal attraction

‘Seed and soil’ doctrine. Over 100 years ago, Stephen Paget 
proposed the ‘seed and soil’ doctrine, suggesting that tumor 
metastasis was not random and emphasizing the interaction 
between tumor cells and target tissues, proposing that cancer 
cells were like ‘seeds’ and that the bone microenvironment 
was like the ‘soil’ (47). The environment provides the neces-
sary nutritional support for cancer cells, which have an affinity 
with the bone microenvironment (48). Tumor invasion into 
the bone is associated with the recruitment of osteoclasts 
and osteoblasts, resulting in the release of growth factors that 
accumulate in the bone matrix. This phenomenon eventually 
induces positive feedback for further tumor growth, and can 
be considered as a ‘vicious circle’ of bone metastasis (49,50). 
Simultaneously, bone marrow also serves as a repository 
for dormant tumor cells that are resistant to chemotherapy, 
and these cells can then be transferred to the bone or other 
organs (51,52).

Osteolytic bone metastases and osteoblastic metastases. 
Normal bone homeostasis depends on osteoblastic bone 
formation and osteoclastic bone resorption (53). Bone metas-
tasis is a complex cascade of processes (54). Firstly, tumor 
cells have a tendency to travel into the bone through specific 
migration and invasion processes. Secondly, these tumor cells 
gain bone‑like properties and reach the bone marrow. Finally, 
tumor cells interact with osteoclasts and osteoblasts. This 
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interaction determines whether subsequent bone metastases 
become osteolytic or osteogenic. Clinically, 65 to 70% patients 
with bone metastases exhibit osteolytic metastasis. Previous 
studies reported that tumor‑derived microvesicles, known as 
exosomes, facilitate the initial communication between the 
primary tumor and the metastatic site (43,55). Cancer cell 
metastasis to bone tissue results in osteolytic destruction. This 
phenomenon is not only caused by the direct effect of cancer 
cells on bone cells, but also through the secretion of cytokines 
that interact with the bone microenvironment, which results 
in osteoclast activation and subsequent bone destruction (41). 
This vicious cycle between cancer cells and the bone micro-
environment results in tumor cell proliferation and continuous 
bone mass destruction. Receptor activator for nuclear 
factor‑κB ligand (RANKL), which is a member of the tumor 
necrosis factor family, is expressed and released by osteoblasts 
and BMSCs. Parathyroid hormone‑related protein (PTH‑rP) 
secreted by cancer cells directly stimulates osteoblasts to 
secrete RANKL (42). RANKL and macrophage colony‑stimu-
lating factors signaling molecules, which are necessary for the 
differentiation of osteoclast precursors into osteoclasts. Once 
bone metastasis occurs, cancer cells can secrete cytokines that 
enhance RANKL expression, which inhibits osteoblast func-
tion and expression of other tumor‑associated cells, including 
fibroblasts, immune cells and osteoprotegerin (OPG). As a 
result, RANKL enhances osteoclast activity, which leads 
to bone destruction, and causes increases in the levels of 
insulin‑like growth factors  (IGFs), transforming growth 
factor‑β (TGF‑β), fibroblast growth factors (FGFs) and other 
cytokines released in the bone matrix that further stimulate 
tumor growth (56). In addition, osteolytic lesions increased 
extracellular calcium (Ca2+) concentration, which stimulates 
PTH‑rP secretion, resulting in increased osteoclast activity 
and the formation of the aforementioned vicious cycle (57).

Osteoblastic metastases are characterized by increased 
pathological osteogenesis. These new bones do not have the 
function of normal bone and destroy the normal structure of 
healthy bone. Vascular endothelial growth factor (VEGF), 
platelet‑derived growth factor (PDGF) and endothelin‑1 (ET‑1) 
are secreted by tumor cells themselves, which can stimulate 
osteoblast proliferation (58‑60). ET‑1 serves an important role 
in the formation of bone metastases in prostate cancer. This 
protein has a dual role in stimulating proliferation and activa-
tion of prostate cancer cells and osteoblasts (61). In addition, 
ET‑1 stimulates not only the growth of prostate cancer cells 
but also the response to growth factors, including IGF and 
PDGF (Fig. 1) (62).

Current status of treatment for bone metastatic carcinoma. 
The morbidity and mortality rates of bone metastatic carci-
noma are persistently high, which severely affects the survival 
time and quality of life of patients with bone metastases (63). 
Targeted therapy for bone metastasis aims to reduce or delay 
the occurrence of bone‑associated events, including patho-
logical fracture and bone pain, therefore improving the quality 
of life of patients and extending their survival time. Advances 
in the therapeutic options for the treatment of bone disease 
include the use of bisphosphonates (64), denosumab (65) or 
RANKL‑antibodies that target osteoclastogenesis, which have 
significantly reduced the complications of bone metastasis 

and offered good clinical effects (66‑68). However, the overall 
survival time of patients with bone metastases has not signifi-
cantly improved with these treatments  (69). Inhibiting the 
occurrence of bone metastases, in particular in patients with 
extremely severe bone pain, therefore remains a major chal-
lenge for clinicians.

4. Exosomes and the pre‑metastatic niche

The ‘pre‑metastatic niche’ is a supportive microenvironment 
providing nutritional supplies for tumor cells before they 
metastasize from the primary organ to the distal organ (70). It 
has been demonstrated that BMSCs are crucial for the genera-
tion of an appropriate microenvironment for the primary 
tumor, and for the development of metastasis (71), through the 
process of pre‑metastatic niche formation (72,73). Previous 
studies have demonstrated that the serum of patients with 
cancer contains high exosome levels, which are positively 
correlated with the malignant behavior of the cancer (74‑77). 
Tumor cells affect surrounding cells through direct contact, 
paracrine secretion, self‑secretion, and by direct cross‑talk 
via exosomes. This newly discovered cell interaction via 
exosomes serves an important role in tumor metastasis and 
invasion (78). Although some secreted factors recruit BMSCs 
to both the primary tumor and the pre‑metastatic niche (79‑81), 
studies about the role of exosomes in bone metabolism and 
the bone microenvironment have been limited until recently. 
Thanks to the emergence of fluorescence exosome‑labeling 
technology and the determination of specific markers of 
exosomes, the research on the association between exosomes 
and endothelial cells, angiogenesis and metastatic promotion 
has made significant advances (70). Methods for identification 
and characterization of exosomes include the observation 
of morphology by transmission electron microscopy, the 
measurement of diameter by dynamic light scattering, and 
the analysis of characteristic surface marker proteins by flow 
cytometry or western blot analysis. Furthermore, fluorescent 
dye kits for general cell or exosome membrane labeling, such 
as green fluorescent dyes PKH67 (14) or red fluorescent dyes 
PKH26 (82) (both Sigma‑Aldrich; Merck KGaA) can be used 
to label exosomes in vitro. 1,1‑dioctadecyl‑3,3,3'3'‑tetramethy-
lindotricarbocyanine‑iodide (83) fluorescent dye can be used 
to label exosomes in vivo. A previous study reported that the 
systemic delivery of fluorescent exosomes from metastatic 
B16F10 melanoma cells localizes to the lungs and other tissues, 
including the bone (84). Tumor‑derived exosomes are impor-
tant mediators of tumorigenesis that are able to educate stem 
cells for neoplastic transformation and tumor metastasis (50). 
Exosomes from highly metastatic melanomas have been 
reported to increase the in vivo metastatic behavior of primary 
tumors via permanently ‘educating’ bone marrow progeni-
tors, via MET receptor tyrosine kinase upregulation in bone 
marrow cells. Notably, this reprogramming effect of exosomes 
on BMSCs is enduring, which may explain how tumors that 
have been dormant for decades suddenly develop metastatic 
disease (84). This research may help to clarify the ‘seed and soil’ 
hypothesis, and to determine the mechanism of organ‑specific 
transfer theory (47). In the ‘seed and oil’ theory, exosomes 
may be the real seeds of cancer. Hoshino et al (85) revealed 
that tumor exosome integrins can establish a pre‑metastasis 
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microenvironment by organ‑specific colonization, and that 
they can therefore determine organ‑specific cancer metastasis. 
In this study, ~10 different tumors were analyzed and the levels 
of ~1,000 proteins in the exosomes were determined, looking 
for key proteins that could be a special ‘zip code’. Exosomes 
can be considered as ‘signal vessels’, and integrins, which are 
closely associated with cancer in the lung and liver metastasis, 
are present at the surface of exosomes. This special ‘labeling’ 
of exosomes may allow them to enter specific organs and 
continuously accumulate to further promote metastasis. This 
study also demonstrated that, when treated with lung metastatic 
tumor‑derived exosomes (such as those from breast cancer 
cells), metastatic tumor cells that are prone to metastasize to 
the bone are no longer transferred to this region, but are instead 
redirected to the lungs. This finding suggests that the meta-
static characteristics of tumor cells are not autonomous and 
are influenced by external factors. In addition, exosomes that 
target different organs have distinctive cell adhesion receptor 
proteins and cell‑surface integrins. Exosomes have a tendency 
to enter organs with large numbers of ligands corresponding 

to their surface integrins. In conclusion, exosomes appear to 
serve a crucial role in the establishment of the pre‑metastatic 
niche. These findings provide some directions for the identifi-
cation of novel anticancer targets in the later stage, and for the 
development of novel anticancer therapies.

5. Tumor‑derived exosomes and bone disease

Recently, there has been growing interest in the cell‑cell commu-
nication roles of exosomes in cancer. Tumor‑derived exosomes 
serve a crucial role in cancer survival, apoptosis, invasion, angio-
genesis and resistance to chemotherapy; they are also involved in 
the establishment of the metastatic niche (86). Numerous specific 
tumor cells, including those of the prostate, lungs and breasts, 
are prone to bone metastasis and have substantial cross‑talk with 
bone cells in the bone microenvironment (Fig. 2).

Multiple myeloma (MM). Increased osteoclastic activity is a 
major element of bone disease in MM (87‑90). The increased 
number and activity of osteoclasts further promote the 

Figure 1. Complex vicious cycle of bone metastasis involving mutual interactions between tumor cells, bone cells (osteoclasts and osteoblasts) and the bone 
matrix. The majority of tumor cells have a tendency to travel into the bone through blood vessels. These cells secrete PTH‑rP, which stimulates osteoblasts 
to secrete RANKL. The expression of RANKL is necessary for the differentiation of osteoclast precursors into osteoclasts. As a result, RANKL activates 
osteoclasts, which leads to bone destruction, and causes increases in the levels of IGFs, TGF‑β, FGFs and other cytokines that are released in the bone matrix. 
In addition, osteolytic lesions increase the concentration of Ca2+. Subsequently, all these factors stimulate osteoclast activity and tumor growth. The complex 
interaction between the bone microenvironment and tumor cells leads to the so‑called ‘vicious cycle’. FGFs, fibroblast growth factors; IGFs, insulin‑like 
growth factors; PTH‑rP, parathyroid hormone‑related protein; RANKL, receptor activator for nuclear factor‑κB ligand; TGF‑β, transforming growth factor‑β.
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progression of MM via direct and indirect mechanisms, thus 
maintaining a vicious cycle between bone destruction and 
tumor cell survival. Furthermore, Raimondi et al (91) indicated 
that MM‑derived exosomes have a positive role in modulating 
migration and pro‑differentiation of the pre‑osteoclast. In 
addition, MM‑derived exosomes induce osteoclast formation 
and promote bone resorption in the mature osteoclast‑like cell. 
Moreover, Garimella et al (92) demonstrated that the highly 
aggressive and metastatic osteosarcoma 143B cells produce 
exosomes primarily through mechanisms that actively mobi-
lize intracellular calcium or cyclic adenosine monophosphate 
(cAMP) levels, in the presence of ionomycin and forskolin, 
thereby increasing intracellular calcium or cAMP levels. 
Raimondo et al  (93) reported that amphiregulin (AREG) is 
specifically enriched in exosomes from MM samples and that 
exosome‑derived AREG lead to the activation of epidermal 
growth factor receptor ligands (EGFR) in pre‑osteoclasts, 
participating in MM‑induced osteoclastogenesis. These results 
suggest that exosomes are important mediators of the cross‑talk 

between MM cells and the bone marrow microenvironment. 
These data further support the role of tumor cell‑derived 
microvesicles in cancer progression and disease aggressiveness.

Prostate cancer (PCa). Bone metastases are common in 
patients suffering from PCa (94). The recent emergence of 
exosomes provides a novel explanation for bone metastasis in 
PCa. Bone metastases in PCa can be categorized as osteogenic 
or osteolytic metastases. Exosomes from PCa may therefore 
affect osteoblasts and osteoclasts. Karlsson et al (95) reported 
that exosomes isolated from PCa cells markedly decreased the 
fusion and differentiation of monocytic osteoclast precursors into 
mature and multinucleated osteoclasts. The presence of tumor 
cell‑derived exosomes also clearly decreased the expression of 
the established osteoclast fusion and differentiation markers, 
including dendritic cells‑specific transmembrane proteins, 
transmembrane AMPAR regulatory proteins, cathepsin K and 
matrix metalloproteinase‑9 (95). A study by Inder et al (96) 
indicated that exosomes isolated from the conditioned medium 

Figure 2. Exosomes secreted by MM, NSCLC and PCa tumors carry different and abundant contents, which serve a key role in osteoclasts or osteoblasts, 
resulting in different metastatic lesions. AREG in MM‑derived exosomes leads to the activation of EGFR in pre‑osteoclasts, participating in MM‑induced 
osteoclastogenesis. NSCLC‑derived exosomes containing AREG induce EGFR pathway activation in pre‑osteoclasts. PCa‑derived exosomes contain Ets1, 
hsa‑miR‑940 and miR‑141‑3p, which ultimately lead to extensive osteoblastic lesions. AREG, amphiregulin; EGFR, epidermal growth factor receptor; miR, 
microRNA; MM, multiple myeloma; NSCLC, non‑small cell lung cancer; PCa, prostate cancer.
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of the PC3 cell line were internalized into osteoclast precursors 
and osteoblasts, which stimulated osteoclastogenesis and osteo-
blast proliferation 37‑ and 1.5‑fold, respectively; however, EVs 
derived from cavin‑1‑expressing PC3 cells failed to induce multi-
nucleate osteoblast or human osteoblast proliferation. Cavin‑1 
was not detected in EVs, indicating an indirect mechanism of 
action. Furthermore, it was demonstrated that cavin‑1 was not 
present in the vesicles, which revealed that cavin‑1 modulated 
cargo vesicle recruitment rather than release (96). A vicious cycle 
has also been established between PCa cells and osteoblasts. 
In osteoblastic metastasis, the osteoblastic microenvironment 
acts as a pre‑metastatic niche by attracting bone‑metastasizing 
tumors (97). In the past few years, research has indicated that 
PCa cells provide osteoblasts with osteogenic cytokines (BMPs, 
PDGF, ET‑1 and VEGF) and supply osteolytic factors (TGF‑β 
and IGFs) to osteoclasts, which indicates that these PCa cells 
communicate with each other and thereby regulate tumor growth 
in a careful and complex manner (98). However, the effects of 
PCa‑derived exosomes on osteoblast function remain unclear. 
Itoh et al  (99) isolated exosomes from hormone refractory 
PCa cells, and reported that PCa‑derived exosomes prepared 
from either PC3 or DU145 cell cultures significantly facilitated 
osteoblast differentiation; however, PCa‑derived exosomes from 
LNCaP cells did not have this effect. The subsequent study 
further indicated that higher expression levels of Ets1, which is 
an osteoblast differentiation‑associated transcriptional factor, is 
a potential candidate than can induce osteoblast differentiation. 
Hormone refractory PCa cell‑derived exosomes containing Ets1 
were transferred into osteoblasts, and Ets1 was released into 
the cytoplasm and induced differentiation (99). Ye et al (100) 
demonstrated that exosomal miR‑141‑3p increased OPG expres-
sion, which resulted in a significant increase in OPG/RANKL 
levels. Furthermore, miR‑141‑3p suppressed the protein levels 
of the DLC1 target gene in  vitro through activation of the 
p38/MAPK signaling pathway. In addition, in animal experi-
ments, miR‑141‑3p specifically targeted the bones and promoted 
osteoblast activity. Recently, Hashimoto et al (101) revealed 
the overexpression of hsa‑miR‑940 in tumor exosomes and its 
ability to induce the osteogenic differentiation of host mesen-
chymal cells, ultimately leading to extensive osteoblastic lesions 
in the resulting tumor. Morhayim et al (102) demonstrated that 
human osteoblasts‑derived exosomes could promote PCa cell 
proliferation in vitro. Cancer cell‑derived exosomes therefore 
mediate cell‑cell communication in osteoblastic metastasis, and 
osteoblast‑derived exosomes may regulate cancer cell prolif-
eration in the metastatic microenvironment. Pro‑metastatic 
exosomes represent a novel way for osteoclasts or osteoblasts to 
communicate with cancer cells, and may offer a novel tool for 
therapeutic intervention in patients with cancer.

Non‑small cell lung cancer (NSCLC). NSCLC cells release 
factors that alter bone remodeling and increase osteoclast 
activity through a shift in the normal balance of RANKL and 
OPG (103). In a study by Taverna et al (104), it was demon-
strated that NSCLC‑derived exosomes that contain AREG 
could induce EGFR pathway activation in pre‑osteoclasts 
through activation of EGFR phosphorylation, which subse-
quently causes the increased expression of RANKL. This 
phenomenon induces the increase of MMP9 and TRAP 
expression, which triggers a vicious cycle in osteolytic 

bone metastasis. A previous study by Valencia et al  (105) 
demonstrated that miR‑192 elicits pleiotropic functions that 
cooperatively attenuate osseous metastasis. This alters the 
cargo of cancer cell‑derived exosomes via the overexpression 
of a single anti‑angiogenic miRNA (miR‑192), and represses 
the tumor‑induced angiogenesis, which leads to a reduction 
in the number of bone metastatic lesions in mice. Targeting 
one or more miRNAs may therefore represent a potentially 
beneficial strategy to block the metastatic process. However, 
changing the miRNA‑cargo content in exosomes could repre-
sent a novel mechanism that may have a large positive impact 
on bone metastases.

Acute myelocytic leukemia (AML). The ability of malignant 
blood cells to transform the blood microenvironment niche 
remains currently unknown. Kumar  et  al  (106) recently 
revealed a novel mode of niche transformation. The study 
demonstrated that acute leukemia cells are able to change the 
hematopoietic microenvironment, and can transform a normal 
niche into a malignant niche through the transfer of exosomes 
[via dickkopf WNT signaling pathway inhibitor 1 (DKK1) 
gene], which provides a suitable environment for their prolif-
eration. Furthermore, the grafting or injection of AML‑derived 
exosomes can increase mesenchymal progenitor cells and 
block osteogenesis and bone formation in the body. In addi-
tion, they can accelerate AML cell proliferation. Conversely, 
AML‑derived exosomes can be destroyed by the targeted inhi-
bition of Rab27a, which can significantly delay the development 
of leukemia (106). Since DKK1 is a normal hematopoietic and 
osteogenic inhibitory factor, subsequent studies demonstrated 
that AML‑derived exosomes stimulate DKK1 to cause osteo-
cyte loss (106). Targeting exosomes may therefore represent 
a novel strategy in cancer therapy. Effective inhibition of the 
hematopoietic microenvironment may be an important new 
direction to control the growth of malignant blood cells.

Together, these studies demonstrated that tumor‑derived 
exosomes serve a role in the cross‑talk between osteoclasts and 
tumor cells, which highlights the importance of exosome cargo 
in cancer regulation. Furthermore, these findings significantly 
enhance our understanding of intercellular communication 
in bone metastasis by demonstrating that tumor cells release 
biologically active exosomes that are responsible inside the 
metastatic niche for the recruitment, migration and differentia-
tion of osteoclast precursors through re‑expression of miRNA 
inhibition. In addition, these studies highlight the role of cargo 
contained in tumor‑derived exosomes in osteoclast differentia-
tion, which may allow the development of novel therapeutic 
strategies to inhibit the fatal attraction between cancer and 
bone. The roles of the different tumor‑derived exosomes in 
bone constituting development and progression are summa-
rized in Table I. Breast cancer can also easily translocate into 
the bones (107); however, the role of breast cancer cell‑derived 
exosomes in bone metastasis has not yet been reported.

6. Conclusions

Bone microenvironment facilitates tumor‑induced bone 
destruction, and reduction of bone mass and strength. Tumor 
cells have developed numerous mechanisms to counteract the 
effects of chemotherapy drugs and prevent their elimination 
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from the organism. One of these mechanisms involves highly 
specific exosomes. Exosomes serve a crucial role in the regu-
lation of the local microenvironment surrounding the tumor 
and in cell‑cell communication. However, the components 
of cell‑derived exosomes require further investigation. The 
underlying mechanisms of tumor‑derived exosomes in bone 
metastasis are not yet fully understood.

Although there is debate among experts, in general, 
tumor‑derived exosomes have more deleterious effects than 
beneficial effects as tumor‑secreted vesicles. The exosomes 
can stimulate tumor growth and development, and promote 
the process of bone metastasis. The role of exosomes in cancer 
progression and metastasis has drawn increasing attention, 
with studies essentially focused on their potential role as 
biomarkers and targets. Emerging evidence on exosome func-
tions in bone metastasis may allow the discovery of novel 
ways to treat bone metastases. Overall, the results of therapies 
focusing on tumor‑derived exosomes are discouraging. These 
exosomes usually carry numerous tumor activator molecules, 
which subsequently stimulate tumor growth and metastasis, 
induce host immunosuppression. Thus, the inhibition of 
exosome secretion may play a role in anticancer therapy. 
Tumor‑derived exosomes therefore lead to cancer treatment 
failure, and the elimination of these exosomes seems to be 
applicable to the tumor and its metastatic treatment.

Tumor metastasis mechanisms are very complex and 
involve factors such as tumor cells, osteoblasts, osteoclasts 
and the bone microenvironment. Positive outcomes of anti-
cancer treatment are therefore difficult to obtain. Further 
research on bone metastasis mechanisms will thus establish 
new experimental models, which could lead to more investi-
gation on metastasis‑associated factors, including exosomes 
and metastasis mechanisms. However, certain issues remain 
and need to be solved in the future, including the functions 
of components tumor‑derived exosomes, including, RNA 
and DNA, in determining bone‑specific metastasis, whether 
inhibiting the secretion of tumor‑derived exosomes can 
prevent tumor metastasis, in particular bone metastasis, and 
other functional damage to the body, and how to translate 
future findings into clinical applications. Addressing these 
questions will help highlight the underlying mechanisms of 
bone metastasis. Future therapeutic strategies may involve the 
combination of several drugs that could block multiple targets 
or pathways at the same time, in order to improve quality of 
life, increase survival time and provide a greater therapeutic 
benefit for patients with bone metastases.
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