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Abstract. The present study aimed to identify the novel 
biomarkers and underlying molecular mechanisms of lung 
adenocarcinoma (LAC) to aid in its diagnosis, prognosis, 
prediction, disease monitoring and emerging therapies. Data 
from a total of 498 LAC samples were collected from The 
Cancer Genome Atlas and divided into two sets by stratified 
randomization based on pathological Tumor-Node-Metastasis 
stage. The training set was comprised of 348 samples and 
the validation set was comprised of 150 samples. A total of 
123 samples from the training set for patients who completed 
follow-up were analyzed by weighted gene co-expression 
network analysis. A module was identified that contained 
113 protein-coding genes that were positively associated with 
overall survival (OS). A least absolute shrinkage and selection 
operator (LASSO) Cox regression model was constructed and 
four survival-associated genes (OPN3, GALNT2, FAM83A 
and KYNU) were retained. Risk score, calculated by the linear 
combination of each gene expression multiplied by the LASSO 
coefficient, could successfully discriminate between patients 
with LAC exhibiting low and high OS time in both sets. The 
results from the present study indicate that this risk score may 
contribute to potential diagnostic and therapeutic strategies for 
LAC management.

Introduction

With an estimated 2.1 million new cases of lung cancer occur-
ring in 2018, accounting for ~11.6% of all cancer diagnoses, 
lung cancer is the most frequently diagnosed type of cancer 

and the leading cause of cancer-associated mortality world-
wide (1). During the 15-year period 2000-2014, the 5-year 
survival rate of lung cancer was 10-20% in most countries (2). 
Lung adenocarcinoma (LAC), a type of non-small cell lung 
cancer (NSCLC), is the most diagnosed histological subtype 
of lung cancer (3). Diagnostic imaging is currently the main 
detection method for NSCLC, and the recommended treatment 
and the prognosis for patients with NSCLC are largely based 
on clinical evidence or pathological Tumor-Node-Metastasis 
(TNM) stage (4-6). However, the prognoses of patients with 
same-stage tumors may differ (7) and the underlying tumori-
genic mechanism responsible for LAC remains unclear.

High-throughput technology has provided new methods 
for researching the molecular characterization and thera-
peutic targets of diseases. An improved understanding of 
the molecular characterization of LAC would contribute to 
its diagnosis, prognosis, prediction, disease monitoring and 
emerging therapies. The Cancer Genome Atlas (TCGA) (8) is 
a publicly available dataset containing genomic and clinical 
information on numerous types of cancer. The weighted gene 
co-expression network analysis (WGCNA) (9) is a free-scale 
network construction method suitable for dividing highly 
correlated genes into modules and joining these modules 
to external clinical traits (9), which has advantages over 
numerous methods in terms of global network construc-
tion (10), and has been used to assign highly co-expressed 
genes to several modules. The analysis has been applied in 
the construction of a gene network for numerous different 
types of cancer, such as breast (11), lung (12) and gastric (13) 
cancer.

In addition, the least absolute shrinkage and selection 
operator (LASSO) (14,15) is a penalized regression method 
that could be used to analyze gene expression profiles. Due 
to its high dimensionality and high collinearity (16), the 
LASSO Cox regression model could be combined with the 
WGCNA to identify biomarkers. A previous study investi-
gated the network-based signature of LAC in non-smokers 
using WGCNA and LASSO regression, and generated a 
17-gene-signature that could discriminate the high-risk 
subgroup from the low-risk subgroup by survival analysis (12). 
However, differentially expressed genes (DEGs) were filtered 
from assigned Gene Expression Omnibus (GEO) datasets and 
submitted to WGCNA, which may result in compromised 
scale-free topology assumption.

Survival‑related risk score of lung adenocarcinoma 
identified by weight gene co‑expression network analysis

HE WANG*,  DI LU*,  XIGUANG LIU*,  JIANJUN JIANG,  SIYANG FENG,  XIAOYING DONG,   
XIAOSHUN SHI,  HUA WU,  GANG XIONG,  HAOFEI WANG  and  KAICAN CAI

Department of Thoracic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China

Received November 3, 2018;  Accepted June 11, 2019

DOI:  10.3892/ol.2019.10795

Correspondence to: Dr Kaican Cai, Department of Thoracic 
Surgery, Nanfang Hospital, Southern Medical University, 1838 North 
Guangzhou Avenue, Guangzhou, Guangdong 510515, P.R. China
E-mail: doc_cai@163.com

*Contributed equally

Key words: lung adenocarcinoma, weighted gene co-expression 
network analysis, risk score, least absolute shrinkage and selection 
operator Cox regression model



WANG et al:  A RISK SCORE FOR LAC PROGNOSIS PREDICTION4442

Therefore, in the present study, genes of LAC samples from 
TCGA were filtered for WGCNA according to a threshold 
for average gene expression value, instead of via differential 
expression analysis, and the LASSO Cox regression model was 
used to detect potential prognostic markers from the selected 
module thereafter.

Materials and methods

Gene expression data and clinical data. Gene expression 
data and clinical data for patients with LAC were obtained 
from TCGA (https://cancergenome.nih.gov/) on May 20, 
2018, including data from 515 LAC samples. The retrieval 
condition was (Program Name IS TCGA) AND (Project Id 
IS TCGA‑LUAD) AND (Workflow Type IS HTSeq‑FPKM) 
AND (Experimental Strategy IS RNA-Seq). Information 
on gene expression levels measured via RNA sequencing, 
denoted by fragments per kilobase of transcript per million 
mapped reads (FPKM), was collected. FPKM=109 x number 
of reads mapped to the gene/(number of reads mapped to 
all protein-coding genes x length of the gene in base pairs). 
Clinical information, including pathological TNM stage and 
follow-up information, was also collected.

WGCNA
Network construction and module detection. A WGCN 
was constructed using the package WGCNA 1.63 in R 
(version 3.5.2). The adjacent coefficient (aij) was calculated by 
the absolute value of Pearson's correlation coefficient of genes 
i and j to the βth power, aij=|cor (xi, xj)|β, where xi is the series 
of expression values for gene i. P<0.05 in the Pearson's corre-
lation analysis was considered statistically significant. The 
lowest power β was chosen when the scale‑free topology fit 
index curve flattens out upon reaching a high value. In addition 
to considering the connection between two correlated genes, 
WGCNA also takes into account associated genes, and the 
topological overlaps (Tij) are calculated from aij as follows, to 
compose a topological overlap matrix (TOM), as a similarity 
evaluation reflecting relevancy and overlap between genes:

In these formulae, u represents common genes linking genes i 
and j together, and Tij takes into account the overlap between 
neighboring genes of genes i and j. TOM was subtracted from 
one and converted into a topological overlap dissimilarity 
matrix referred to as the corresponding dissimilarity of TOM 
(dissTOM). A hierarchical clustering tree (dendrogram) 
of genes was then created based on the dissTOM. Finally, 
modules of highly correlated and co-expressed genes were 
created via a Dynamic Tree Cut algorithm (17).

Associating modules with external clinical traits and identi‑
fying hub genes. Correlations between modules and clinical 
traits, including pathological stage and survival time, were 

estimated using Spearman's correlation tests. Significantly 
correlated module was preserved and visualized using 
Cytoscape 3.6.1 (18). Genes with multiple associations were 
defined as hub genes.

Gene Ontology (GO) and pathway‑enrichment analysis. The 
present study investigated the potential biological functions 
and signaling pathways of the genes in the selected module 
by assessing enrichment using Gene Ontology (GO) terms and 
Kyoto Encyclopedia of Genes and Genomes (KEGG) path-
ways in Metascape (http://metascape.org) (19).

LASSO Cox regression model construction. LASSO Cox 
regression models were constructed using the package glmnet 
2.0-16 in R. By utilizing several hub genes from the selected 
module, the function returns a series of values of λ and 
models. The coefficients of the majority of the original genes 
were penalized to zero in line with the increasing values of 
the tuning parameter λ. The λ was chosen when the partial 
likelihood deviance reached its lowest. A suitable model was 
chosen based on the 10-fold cross-validation of the function 
cv.glmnet. Using the function lambda.min, the remaining 
genes with non‑zero LASSO coefficients were obtained. The 
risk score for each patient with LAC was calculated using the 
linear combination of each FPKM of the gene (Gk) multiplied 
by the LASSO coefficient (ck): Risk score=Σn

k=1 Gk x ck.

Statistical analysis. Statistical analyses were conducted using 
SPSS software (version 20.0; IBM Corp.). Receiver operating 
characteristic (ROC) curves were drawn and the area under 
the curve (AUC) was calculated to predict 3-year survival rate. 
The cut-off risk score was decided when the Youden index 
(sensitivity + specificity‑1) in the ROC curve was highest. The 
samples were then divided into high- and low-risk groups 
according to the cut-off. Survival was compared between the 
high- and low-risk groups using Kaplan-Meier analysis and 
log-rank tests. Hazard ratios (HRs) were calculated using 
univariate and multivariable Cox regression analysis. In a 
multivariate Cox regression analysis using backward selection 
to test the independent significance of different factor, P>0.10 
was used to remove non‑significant variables from the analysis.

Results

Data preprocessing. A total of 515 samples from patients 
diagnosed between the ages of 33 and 88 years and classified 
as stage IA-IV were collected from TCGA, and 498 samples 
with both gene expression and clinical information were used 
for subsequent study. Based on the pathological TNM stage, 
these samples were divided into a training set and a validation 
set by stratified randomization, in a ratio of 7:3. A total of 127 
samples from patients in the training set who completed the 
follow-up were subjected to sample clustering, and 4 outlier 
samples were removed prior to the network construction 
(Fig. 1A). The threshold for average gene expression value was 
set as 1. Protein-coding genes with average expression values 
less than the threshold value in all samples were excluded. 
The final training set was comprised of 348 samples and 
the validation set was comprised of 150 samples. Data for a 
total of 123 samples, including the expression levels of 12,914 
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protein-coding genes and clinical information, were obtained 
for the WGCNA.

WGCN of LAC. When the soft thresholding power β was set as 
7, the scale‑free topology fit index curve flattened out at 0.90 
(Fig. 1B and C). The constructed weighted gene co-expression 
network included 42 modules, including 39-1,360 genes. The 
grey module included genes that did not belong to any other 
modules (Fig. 2A).

Identifying modules with clinical significance. The present 
study analyzed the correlations between each module and 
clinical traits, including pathological TNM stage and survival 
information. In the modules, the pale turquoise module was 
positively and the light yellow, light green, royal blue, red, light 
cyan modules were negatively correlated with pathological 
TNM stage, whereas the light green module was positively 
and the violet, dark red, pink, yellow green, white, orange red 
modules were negatively correlated with survival time. P<0.05 
in the Spearman's correlation tests was considered statistically 
significant (Fig. 2Ba and b).

The dark red module was further analyzed, and it was 
revealed to have the strongest negative correlation with 
survival time (Spearman's correlation-0.33; P<0.01), but was 
not considered significantly correlated with pathological TNM 
stage (Spearman's correlation 0.18; P=0.05). Therefore, it was 
possible to detect prognostic factors independent of staging in 
the dark red module. A total of 20 genes with >20 associations 

were defined as hub genes in the dark red module, including 
C5AR2, MUCL1, MME, KRT16, S100A12, ACKR3, SYDE1, 
CDK5RAP2, DIO2, SOWAHC, COA6, PTGR1, OPN3, 
GALNT2, FAM83A, RSPO3, ZC3H12A, KRT6A, CD36 and 
KYNU. The gene network of the dark red module was visual-
ized using Cytoscape (Fig. 3).

Functional characterization of genes in the dark red module. 
In order to investigate the functional significance of the identi-
fied genes in the dark red module, 113 genes were subjected to 
GO term and KEGG pathway enrichment analyses. Among the 
genes most negatively correlated with survival time, ‘multicel-
lular organismal homeostasis’ (logP, -15.2), ‘adenylate cyclase 
activating pathway’ (logP, -15.1) and ‘fatty acid metabolism’ 
(logP, ‑14.8) were also the most significantly enriched genes in 
the GO term and KEGG pathway enrichment analyses (Fig. 4).

Prognostic signature construction via LASSO Cox regression 
model using the training set. The LASSO Cox regression 
model was constructed using the glmnet package in R by 
utilizing several hub genes in the dark red module. Based 
on the 10-fold cross-validation, the value 0.087 was chosen 
as the minimum criteria for λ. At the λ parameter, the total 
absolute of non‑zero coefficients was 0.0214 and there were 
four genes (OPN3, GALNT2, FAM83A and KYNU) obtained 
with non‑zero coefficients (Fig. 5A and B). Based on the genes 
with non‑zero coefficients, the risk score of every patient was 
calculated according to the linear combination of each gene 

Figure 1. Sample clustering and β decision. (A) Clustering dendrogram. Clustering dendrogram of samples based on their Euclidean distance. There were four 
outlier samples that were removed. (B) Scale‑free topology fit R2 and series of soft thresholds. The red line indicates an R2 value of 0.90. (C) Mean connectivity 
and series of soft thresholds. The red line indicates a mean connectivity value of 0.



WANG et al:  A RISK SCORE FOR LAC PROGNOSIS PREDICTION4444

expression multiplied by the LASSO coefficients: (0.0004 x 
OPN3) + (0.0042 x GALNT2) + (0.0055 x FAM83A) + (0.0077 
x KYNU).

Survival analysis. ROC curves were used to assess the prog-
nostic power based on OS at 3 years (Fig. 6A). The cut-off 
risk score was determined to be 0.216. Patients in the high-risk 
group had significantly poorer OS time than those in the 
low-risk group. The mean OS time was 44.6 months [95% 
confidence interval (CI), 35.9-53.3] in the high-risk group 
and 95.0 months (95% CI, 73.2-116.9) in the low-risk group 
(P<0.001; Fig. 6B).

The results were similar for the validation set. The mean 
OS time was 48.4 months (95% CI, 35.0-61.7) in the high-risk 
group and 93.2 months (95% CI, 71.7-114.6) in the low-risk 
group (P=0.016; Fig. 6C).

Risk was then verified as an independent prognostic factor 
for OS. Univariable and multivariable analyses of potential 
prognostic factors in the total set for OS were performed. 
The risk score and TNM stage were associated with OS in 

Figure 2. All 42 modules and their module‑trait associations identified by the WGCNA. (A) The WGCN of LAC identified 42 modules with correlated 
genes. A dendrogram was produced based on the WGCNA package in R by average linkage hierarchical clustering of 12,914 protein-coding genes. 
(Ba and b) Module-trait associations. Each column represents a module eigengene and each row represents a clinical trait. Each cell contains the correlation 
coefficient (first line) and P‑value (in parentheses). The figures are drawn according to the color legend: Pale turquoise module was positively correlated with 
pathological TNM stage; light yellow, light green, royal blue, red and light cyan modules were negatively correlated with pathological TNM stage; light green 
module was positively correlated with survival time; and violet, dark red, pink, yellow green, white, and orange red modules were negatively correlated with 
survival time. P<0.05 in the Spearman's correlation tests was considered to indicate a statistically significant result. WGCNA, weighted gene co‑expression 
network analysis; LAC, lung adenocarcinoma; TNM, Tumor-Node-Metastasis; ME, module eigengene.

Figure 3. Co-expression network of the dark red module. There were 
63 connected genes in the dark red module. Nodes are genes and lines repre-
sent their connections. The 20 yellow nodes are the hub genes of the network. 
There were 50 genes not presented in the network, as their connections with 
other genes were not strong enough to reach the threshold.
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the univariable analysis. Following the multivariable analysis, 
the risk score and TNM stage remained prognostic factors for 
OS (Table I). Patients with LAC who had a high-risk score 
experienced poorer OS time (HR, 1.699; 95% CI, 1.242-2.324; 
P=0.001).

Figure 4. Top 20 clusters in the dark red module. Heatmap of top 20 clusters, colored according to P-value.

Figure 6. Cut-off risk score decision and LASSO Cox regression model 
validation. (A) The receiver operator characteristic was drawn and the AUC 
was calculated. The AUC was 0.71 (95% CI, 0.61-0.81) to predict 3-year 
survival using the training set. The cut-off risk score was determined to be 
0.216. (B) Survival comparison between the high- and low-risk groups of 
the training set using Kaplan-Meier analysis and log-rank tests. (C) Survival 
comparison between the high- and low-risk groups of the validation set using 
Kaplan-Meier analysis and log-rank tests. LASSO, least absolute shrinkage 
and selection operator; AUC, area under the curve.

Figure 5. LASSO Cox regression model construction. (A) λ selection by 
10-fold cross-validation. Continuous upright lines are partial likelihood 
deviance ± SE; dotted lines are depicted at the optimal values by minimum 
criteria (lambda.min, left vertical dotted line) and 1-SE criteria (lambda.1se, 
right vertical dotted line). The partial likelihood deviance with changing of 
log (λ) was plotted. The value 0.087 was chosen for λ by 10-fold cross-vali-
dation with the minimum criteria. (B) Processes of LASSO Cox model 
fitting. Each curve represents a gene. The trend of each coefficient against the 
L1-norm is plotted when λ changes. L1-norm is the total absolute of non-zero 
coefficients. LASSO, least absolute shrinkage and selection operator; SE, 
standard error.
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Clinical and pathological TNM staging serves an impor-
tant role in predicting the prognosis of patients with LAC. 
The 5-year survival rate is 77-92% for clinical stage IA, 68% 
for stage IB; 60% for stage IIA and 53% for stage IIB. For 
pathological stage, the 5-year survival is 80-90% for stage IA, 
73% for stage IB, 65% for stage IIA and 56% for stage IIB (6). 
In the present study, when comparing TNM stage on multi-
variable analysis, stage II (HR, 2.111), stage III (HR, 2.973) 
and stage IV (HR, 3.355) patients had poorer OS compared 
with stage I patients (all P<0.001). Age had no effect on LAC 
prognosis (Table I).

Discussion

In the present study, a survival-associated risk score for LAC 
was identified using the combination of WGCNA and the 
LASSO Cox regression model in order to investigate a new 
molecular characterization of LAC that was associated with 
prognosis, and a risk model was produced to aid its diagnosis 
and management. A training set consisting of 348 LAC 
samples with gene expression and clinical information was 
analyzed to detect survival-associated biomarkers, and the 
results were verified in a validation set comprising 150 LAC 
samples. The results from the present study suggested that 
these four novel markers could effectively be of diagnostic and 
therapeutic value for the management of LAC.

WGCNA provides a comprehensive set of functions 
for performing a weighted correlation network analysis, 
and is designed to construct a gene network at very large 
scales (9). The Cox regression model (20) is used for 
regression analyses of censored survival data. However, the 
standard maximum Cox partial likelihood method cannot 
be applied directly to genes with very high dimensionality 
and highly correlated expression levels (16). Tibshirani (14) 
expanded the LASSO method for variable selection in 
the Cox model and proposed minimizing the log partial 
likelihood subject to the sum of the absolute values of the 
parameters being bounded by a constant in order to obtain 
the parameter estimates. This method facilitates model 
fitting in situations where there are as many, or even more, 
explanatory variables than there are observations, and only 
a few variables are relevant to explaining the data (21). As 
long as the training set is not smaller than the number of 

predictors, this procedure can be applied directly to the 
genes selected by WGCNA.

Recent research constructed prognostic models for LAC 
based on the gene expression data, with the aim of improving its 
early diagnosis and personalized treatment (22). Zhao et al (23) 
integrated differential expression and regression analyses for 
LAC datasets from TCGA and GEO. The AUCs of their 4-gene 
and 20-gene models were 0.5731 and 0.615, respectively. 
Mao et al (12) considered DEGs in non-smokers with LAC 
and defined the threshold for DEGs as a fold‑change >2, with 
an adjusted P-value of <0.05. DEGs from the assigned datasets 
were submitted to WGCNA. This study highlighted two gene 
modules associated with non-smoking LAC through WGCNA 
and built a prognostic signature with 17 candidate genes, 
which provided a novel compendium of biomarkers to act as 
a guide for therapy in non-smokers with LAC (12). However, 
these previous models did not consider protein-coding genes 
that were below the threshold for DEGs. Being designed to 
be an unsupervised analysis method, WGCNA clusters genes 
based on their expression profiles. Since low‑expression or 
non-varying genes usually represent noise, it is suggested to 
filter genes by mean expression or variance. Filtering genes 
by differential expression is not recommended, as it would 
invalidate the scale-free topology assumption leading to the 
creation of a few highly correlated modules. In addition, it fails 
to select soft thresholding power by scale-free topology (24).

Studies regarding the use of liquid biopsies, such as 
tumor-educated platelets, cell-free DNA, circulating tumor 
cells and extracellular vesicles, have markedly increased in 
number and may radically change the future management 
of tumors (22,25,26). In the present study, the LASSO Cox 
regression model construction of the hub genes in the dark red 
module identified OPN3, GALNT2, FAM83A and KYNU as 
the most valuable genes associated with LAC survival. The 
risk score tends to be larger with increasing expression of 
these genes, and patients with LAC that had high risk scores 
had significantly poorer OS times. However, to the best of our 
knowledge, there are relatively few studies regarding these 
genes, particularly OPN3. It cannot yet be concluded that they 
play an important role in the survival of patients with LAC. 
OPN3 is highly expressed in the brain and testes, and weakly 
expressed in the liver, placenta, heart, lung, skeletal muscle, 
kidney and pancreas (27). Acquired resistance to 5‑fluorouracil 

Table I. Univariable and multivariable Cox regression analysis of prognosis factors in the total set for OS.

 Univariate analysis Multivariable analysis
 ---------------------------------------------------------------------------------- --------------------------------------------------------------------------------
OS variable HR 95% CI P-value HR 95% CI P-value

Risk score (high vs. low) 1.989 1.478-2.679 <0.001 1.699 1.242-2.324   0.001
TNM stage 
  (Stage II vs. I) 2.468 1.710-3.562 <0.001 2.111 1.437-3.103 <0.001
  (Stage III vs. I) 3.623 2.473-5.307 <0.001 2.973 2.009-4.399 <0.001
  (Stage IV vs. I) 3.880 2.234-6.740 <0.001 3.355 1.929-5.845 <0.001
Age (≥60 vs. <60 years) 1.007 0.723‑1403   0.967

HR, hazard ratio; CI, confidence interval; OS, overall survival; TNM, Tumor‑Node‑Metastasis.
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in hepatocellular carcinoma cells can be reversed by overex-
pression of OPN3 (28). Yoshimoto et al (29) identified that 
OPN3-knockdown reversed the effect of decreased colon 
cancer cell viability following blue LED irradiation. GALNT2 
encodes the polypeptide N-acetylgalactosaminyltransferase 
2, which is involved in O-linked protein glycosylation (30). 
GALNT2 has been identified as a candidate gene in lipid 
metabolism by genome-wide association studies, and its 
single nucleotide polymorphisms may be correlated with 
plasma lipids (31,32). The overexpression of GALNT2 can 
promote the invasive potential of oral squamous cell carci-
noma (OSCC) cells by modifying the O-glycosylation of 
proteins and increasing the activity of epidermal growth factor 
receptor (EGFR), which plays an important role in the invasive 
behavior of OSCC cells (33). Imielinski et al (34) confirmed 
the high mutation rate of EGFR (17%) in LAC. Therefore, 
whether the role of GALNT2 in the glycosylation of O-protein 
is involved in the occurrence and development of LAC disease 
remains to be further studied. FAM83A encodes the protein 
family member with sequence similarity 83 (FAM83A), also 
known as tumor antigen BJ-TSA-9. Lee et al (35) identified 
that FAM83A was a candidate cancer-associated gene capable 
of conferring resistance to EGFR-tyrosine kinase inhibitors, 
and that FAM83A interacted with and caused phosphorylation 
of c-RAF and phosphoinositide 3 kinase p85, upstream of 
MAPK and downstream of EGFR in breast cancer cells and 
in mice (35). Li et al (36) identified a tumor‑specific antigen, 
TSA-9, which was highly expressed in lung cancer tissues. 
Liu et al (37) detected circulating cancer cells in lung cancer 
patients using a panel of marker genes including BJ-TSA-9. 
In addition, cigarette smoking can induce the expression 
of FAM83A (38). KYNU encodes kynureninase, which is 
involved in the biosynthesis of nicotinamide adenine dinu-
cleotide cofactors from tryptophan. KYNU expression was 
demonstrated to be decreased in invasive ductal carcinoma 
and osteosarcoma cell lines compared with normal fibro-
adenoma (39,40). KYNU may be associated with metabolic 
transformation in cancer development. The transition from 
oxidative phosphorylation to aerobic glycolysis is a sign of 
stem cell function in normal tissue growth and differentiation. 
Overall, further in vivo and in vitro experiments are required 
in order to clarify the roles of OPN3, GALNT2 and KYNU in 
lung cancer, and the clinical significance of FAM83A in LAC 
requires further investigation.

However, the prognostic model of the present study had 
certain limitations. First, further validation, such as a reverse 
transcription-quantitative PCR validation, in an independent 
set is required in order to confirm the diagnostic value of the 
model used. Secondly, other clinical information that may 
have influenced OS was not obtained, such as primary health 
problems and follow-up treatment. Thirdly, it is uncertain as 
to whether the risk score is feasible for use with metastatic 
tumors, as the samples used in the present study were from 
primary tumors, the initial site of cancer. The risk score was 
obtained from the dark red module, which demonstrated the 
strongest negative correlation with survival time. Further 
investigations are required in order to detect the markers from 
other modules.

In conclusion, WGCNA and LASSO Cox regression 
analysis were applied to the LAC data from TCGA, and a 

four-gene-based risk score was obtained that may support the 
development of diagnostic and therapeutic strategies for LAC 
management.
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