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Abstract. Lung cancer is one of the most widespread 
neoplasms worldwide. To identify the key biomarkers in 
its carcinogenesis and development, the mRNA microarray 
datasets GSE102287, GSE89047, GSE67061 and GSE74706 
were obtained from the Gene Expression Omnibus database. 
GEO2R was used to identify the differentially expressed 
genes (DEGs) in lung cancer. The Database for Annotation, 
Visualization and Integrated Discovery was used to analyze 
the functions and pathways of the DEGs, while the Search 
Tool for the Retrieval of Interacting Genes/Proteins and 
Cytoscape were used to obtain the protein‑protein interaction 
(PPI) network. Kaplan Meier curves were used to analyze 
the effect of the hub genes on overall survival (OS). Module 
analysis was completed using Molecular Complex Detection 
in Cytoscape, and one co‑expression network of these signifi-
cant genes was obtained with cBioPortal. A total of 552 DEGs 
were identified among the four microarray datasets, which 
were mainly enriched in ‘cell proliferation’, ‘cell growth’, 
‘cell division’, ‘angiogenesis’ and ‘mitotic nuclear division’. 
A PPI network, composed of 44 nodes and 886 edges, was 
constructed, and its significant module had 16 hub genes in 
the whole network: Opa interacting protein 5, exonuclease 
1, PCNA clamp‑associated factor, checkpoint kinase 1, 

hyaluronan‑mediated motility receptor, maternal embry-
onic leucine zipper kinase, non‑SMC condensin I complex 
subunit G, centromere protein F, BUB1 mitotic checkpoint 
serine/threonine kinase, cyclin A2, thyroid hormone receptor 
interactor 13, TPX2 microtubule nucleation factor, nucleolar 
and spindle associated protein 1, kinesin family member 
20A, aurora kinase A and centrosomal protein 55. Survival 
analysis of these hub genes revealed that they were mark-
edly associated with poor OS in patients with lung cancer. In 
summary, the hub genes and DEGs delineated in the research 
may aid the identification of potential targets for diagnostic 
and therapeutic strategies in lung cancer.

Introduction

Lung cancer, one of the most common malignant tumors, is 
the leading cause of cancer‑associated morbidity in the popu-
lation worldwide; it is the most common cancer among males 
and the fourth most common tumor in women (1). Lung cancer 
is divided into different pathological subtypes, including 
adenocarcinoma, squamous cell carcinoma and small cell lung 
cancer (SCLC) (1). The occurrence, development and metas-
tasis of lung cancer include a number of orchestrated steps, 
including DNA mutations and injury (2). Despite an increased 
understanding of the underlying molecular mechanisms of the 
disease and the implementation of novel therapeutic strate-
gies, the 5‑year survival rate remains low. The study of the 
molecular mechanism of cancer guides the classification and 
treatment of lung cancer, and promotes the rapid progress of 
targeted therapy and immunotherapy. The large‑scale research 
and clinical trials of these new therapies provide prospects for 
the individualized treatment of lung cancer.

Much progress has been made with lung cancer biomarkers 
over the last decade, and biomarkers have been widely applied 
in the diagnosis, treatment and prognosis evaluation of lung 
cancer, with further biomarkers now being studied. For 
example, anaplastic lymphoma kinase (ALK) was initially 
identified to be abnormally downregulated in lung cancer and 
a fusion of echinoderm microtubule‑associated protein‑like 4 
(EML4) and ALK genes was found in 3.7‑7% of non‑SCLC 
(NSCLC) (3). Due to ALK fusion, 57‑74% of patients with 
lung adenocarcinoma respond well to ALK inhibitors such 
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as crizotinib (3). The study revealed that the median progres-
sion‑free survival (PFS) and response rates of patients who 
received crizotinib were significantly improved compared with 
those of patients treated with chemotherapy (4). The epidermal 
growth factor receptor (EGFR), a tyrosine kinase receptor, was 
overexpressed in 62% of patients with NSCLC (5). Tyrosine 
kinase inhibitors have been the standard treatment of patients 
with EGFR mutations due to their high response rate (55‑78%) 
and PFS rate (1). Therefore, the discovery of new diagnostic 
and therapeutic targets is of great significance for the early 
diagnosis, drug development and targeted therapy of lung 
cancer.

Bioinformatics analysis has been commonly applied in 
cancer research to identify genetic changes associated with 
cancer. Previous studies have performed bioinformatics analysis 
to identify differentially expressed genes (DEGs) in various 
types of cancer, as well as to determine their roles in biological 
processes, molecular functions and different pathways (6,7). 
Accordingly, the present study analyzed data generated by 
microarray technology to explore the potential pathogenesis of 
lung cancer. Specifically, given the high number false‑positives 
associated with the analysis of a single microarray, four public 
mRNA datasets were screened in the present study to iden-
tify DEGs between lung cancer and adjacent non‑cancerous 
tissue samples. Subsequently, Gene Ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) analyses were 
performed, and a protein‑protein interaction (PPI) network 
analysis was used to assist in demonstrating the molecular 
pathogenesis underlying the carcinogenesis and development of 
lung cancer. A total of 552 DEGs and 16 hub genes were identi-
fied and they may serve as candidate biomarkers in lung cancer.

Materials and methods

Public mRNA datasets. Gene Expression Omnibus (GEO; 
www.ncbi.nlm.nih.gov/geo) is an open platform to store 
genetic data (8). Four gene expression profiles (GSE102287, 
GSE89047, GSE67061 and GSE74706) were acquired from 
the GEO The GSE102287 dataset contained 32 cancer 
samples and 34 normal samples (9). The GSE89047 dataset 
consisted of 8 cancer samples and 8 normal samples. The 
GSE67061 contained 56 cancer samples and 17 normal 
samples. The GSE74706 contained 18 cancer samples and 18 
normal samples (10). The datasets consisted of a number of 
pathological subtypes of lung cancer, including NSCLC and 
lung squamous cell carcinoma. In the current study, in order 
to be more representative, a specific pathological type was not 
specified when selecting datasets.

Identif ication of DEGs. GEO2R (www.ncbi.nlm.nih.
gov/geo/geo2r) is an interactive online tool to identify DEGs 
from GEO series (11). GEO2R was applied to distinguish DEGs 
between normal and lung cancer tissue samples. Duplicate and 
absent probe sets were removed. The cut‑off criteria for the 
identification of DEGs were |log2 fold‑change|>1 and adjusted 
P<0.05.

Functional annotation for DEGs with KEGG and GO analysis. 
The Database for Annotation, Visualization and Integrated 
Discovery (DAVID; www.david.abcc.ncifcrf.gov) provides 

typical batch annotation and GO (www.geneontology.org) 
analysis to highlight the most relevant GO terms associated 
with a given gene list (12). GO covers three aspects of biology, 
including biological process, molecular function and cellular 
component. KEGG (version 90.0; www.kegg.jp), is one of the 
most commonly used biological information databases in the 
world  (13). Following KEGG and GO analysis in DAVID, 
functional annotation for DEGs was performed. P<0.05 was 
considered to indicate a statistically significant difference.

Construction of the PPI network and identification of a 
significant module. The Search Tool for the Retrieval of 
Interacting Genes (version 11.0; string.embl.de)  (14), an 
online open tool, was applied to construct a PPI network, and 
Cytoscape (version 3.7.1) (15) was used to present the network. 
Using a confidence cutoff of >0.4, a node score cutoff of 0.2, a 
degree cutoff of 10, a maximum depth of 100 and a k‑core of 
2, the significant modules in the aforementioned PPI network 
were identified using the Molecular Complex Detection tool 
(version 1.5.1) (16). Subsequently, functional annotation for the 
genes in this module were performed using KEGG and GO 
analysis in DAVID.

Analysis and identification of hub genes. Hub genes with 
≥43 degrees were selected. cBioPortal (www.cbioportal.org) 
integrates The Cancer Genome Atlas (TCGA; portal.gdc.
cancer.gov), the International Cancer Genome Consortium 
(icgc.org) and other cancer genome database data to provide 
online visualization tools. Based on the hub genes screened, 
a gene co‑expression network was constructed and cBioportal 
was used to search for genes with a similar expression pattern 
to the hub genes in lung cancer and to investigate the interac-
tion between genes (17). Furthermore, hub genes were analyzed 
with the biological process analysis, and were visualized 
using the BiNGO tool in Cytoscape (version 3.7.1) (18). The 
Kaplan‑Meier plotter (kmplot.com/analysis) and the log rank 
test were used to plot and compared survival curves, respec-
tively. The Kaplan‑Meier plotter is an online tool that integrates 
gene expression data and clinical data from TCGA, GEO and 
the European Genome‑Phenome Archive databases (www.ebi.
ac.uk/ega/home). According to the different quantile expression 
levels of the proposed biomarkers, patients were divided into 
two groups to analyze the prognostic value of specific genes (19).

Results

Screening of DEGs in lung cancer. The analysis of the 
GSE67061, GSE74706, GSE89047 and GSE102287 datasets 
revealed 5,553, 5,562, 4,028 and 4,703 DEGs, respectively 
(Fig. 1A). Venn diagram analysis revealed that 552 DEGs 
(389 downregulated and 163 upregulated genes) were present 
in the four datasets (Fig. 1B; Table SI).

Functional annotation for DEGs using KEGG and GO 
analysis. The results of GO analysis revealed that the biological 
processes were primarily enriched in ‘cell proliferation’, ‘cell 
growth’, ‘cell division’, ‘cell adhesion’, ‘angiogenesis’, ‘mitotic 
nuclear division’, ‘mitotic cytokinesis’, ‘leukocyte migration’, 
‘GTPase activity’ and ‘epithelial cell proliferation’. Variations 
in molecular function were enriched in ‘calcium ion binding’, 
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‘heparin binding’, ‘PDZ domain binding’, ‘integrin binding’, 
‘GTPase activator activity’, ‘growth factor binding’, ‘collagen 
binding’, ‘carbohydrate binding’, ‘scavenger receptor activity’ 
and ‘protein kinase binding’. Changes in cellular component 
were mainly enriched in ‘extracellular matrix’, ‘extracellular 
region’, ‘extracellular space’, ‘sarcolemma’, ‘cell cortex’, ‘spindle 
pole’, ‘midbody’, ‘microtubule cytoskeleton’, ‘spindle’ and 
‘collagen trimer’. KEGG pathway analysis revealed that DEGs 
were mainly enriched in ‘cell cycle’, ‘oocyte meiosis’, ‘hyper-
trophic cardiomyopathy’, ‘vascular smooth muscle contraction’, 
‘dilated cardiomyopathy’, ‘pathways in cancer’, ‘cell adhesion 
molecules’, ‘fanconi anemia pathway’, ‘renin‑angiotensin 
system’ and ‘leukocyte transendothelial migration’ (Fig. 2).

Construction of the PPI network and identification of a 
significant module. A PPI network was constructed and a 
significant module with 44 nodes and 886 edges was identified 

(Fig. 3; Table SII). KEGG pathway and GO analysis of the 
DEGs involved in this module were analyzed using DAVID. 
Results revealed that genes in this module were significantly 
enriched in ‘cell division’, ‘cell cycle’ and ‘mitotic nuclear 
division’ (Table I).

Hub gene selection and analysis. Hub genes with ≥43 
degrees were selected and a total of 16 genes were identi-
fied as previously described (20): Opa interacting protein 5 
(OIP5), exonuclease 1 (EXO1), PCNA clamp‑associated factor 
(KIAA0101), checkpoint kinase 1 (CHEK1), hyaluronan‑medi-
ated motility receptor (HMMR), maternal embryonic leucine 
zipper kinase (MELK), non‑SMC condensin I complex 
subunit G (NCAPG), centromere protein F (CENPF), BUB1 
mitotic checkpoint serine/threonine kinase (BUB1), cyclin A2 
(CCNA2), thyroid hormone receptor interactor 13 (TRIP13), 
TPX2 microtubule nucleation factor (TPX2), nucleolar and 

Figure 1. Volcano plots and Venn diagram. (A) Differentially expressed genes were selected with |log2 fold change|>1 and adjusted P<0.05 among the mRNA 
expression profiling datasets GSE102287, GSE67061, GSE89047 and GSE74706. The red triangles represent downregulated genes and the green circles 
represent upregulated genes. (B) A total of 552 intersecting genes were identified in the four datasets. FC, fold‑change.
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spindle associated protein 1 (NUSAP1), kinesin family 
member 20A (KIF20A), aurora kinase A (AURKA) and 
centrosomal protein 55 (CEP55; Table II). A co‑expression 
network of these genes was obtained using cBioPortal (Fig. 4). 
The biological process analysis for these genes is presented in 
Fig. 5. Kaplan‑Meier survival curves were used to perform the 
overall survival analysis. Patients with lung cancer with a high 

expression level of OIP5, EXO1, KIAA0101, CHEK1, HMMR, 
MELK, NCAPG, CENPF, BUB1, CCNA2, TRIP13, TPX2, 
NUSAP1, KIF20A, AURKA and CEP55 exhibited a worse 
5‑year overall survival time compared with patients with low 
expression (Figs. 6 and 7).

Discussion

Lung cancer is one of the most common malignancies world-
wide, both in terms of incidence and mortality (21,22). Despite 
significant advances in diagnostic and treatment strategies, the 
prognosis of patients with lung cancer remains unsatisfactory. 
Therefore, there is a requirement for the identification of lung 
cancer biomarkers to serve as novel diagnostic and therapeutic 
targets. Bioinformatics analysis has been widely applied to 
investigate genetic alterations in the progression of diseases, 
and may enable the identification of novel therapeutic targets.

Previous studies have screened biomarkers associated with 
the different pathological subtypes of lung cancer (23‑26). 
Similarly, the present study screened potential biomarkers 
of lung cancer. However, the present study differs from the 
previous literature in a number of ways. In the current study, 
research data was derived from different datasets, which 
allows diversification of data results. Four datasets were 
selected to reduce the errors associated with a single dataset 
and differences of sequencing platforms, so as to improve the 
credibility of the results. The aim of the present study was to 
screen common biomarkers and drug targets in various patho-
logical types of lung cancer using bioinformatics analysis. 
Finally, different results were achieved due to the different 
data sources and statistical methods used. However, certain 
biomarkers identified in the current study are consistent with 
previously published studies (27‑31).

In the present study, 552 common DEGs were identified 
in the four microarray datasets. GO enrichment analysis 
revealed that changes in the most significant module were 
mainly enriched in ‘cell division’, ‘mitotic nuclear division’ 
and ‘G2/M transition of mitotic cell cycle’, while changes in 
KEGG analysis were mainly enriched in the ‘cell cycle’ and 
‘p53 signaling pathway’. Previous studies demonstrated that 
dysregulation of the cell cycle is associated with carcino-
genesis and the progression of tumors (32,33). In the current 
study, a PPI network consisting of 44 nodes and 886 edges 
was constructed. The 16 genes with the highest degrees 
in the PPI network included OIP5, EXO1, KIAA0101, 
CHEK1, HMMR, MELK, NCAPG, CENPF, BUB1, CCNA2, 
TRIP13, TPX2, NUSAP1, KIF20A, AURKA and CEP55. 
Subsequently, survival analysis of these genes revealed that 
they were significantly associated with a worse 5‑year overall 
survival time of patients with lung cancer.

The mechanism of lung cancer is driven by specific genetic 
and epigenetic changes (34). In certain types of cancer, such as 
gastric colorectal cancer, the expression of OIP5 is upregulated 
and may be associated with the occurrence of cancer (35,36). 
However, its function in lung cancer remains unknown. EXO1 
is a nuclease that modulates DNA recombination, maintains 
genomic stability and mediates cell cycle arrest. Several 
reports have indicated that functional polymorphisms of 
EXO1 may be associated with the occurrence of lung cancer, 
and it may serve as a novel biomarker for the diagnosis and 

Figure 2. Functional and pathway enrichment analysis of differentially 
expressed genes in lung cancer.
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treatment of lung cancer  (37,38). KIAA0101 is involved 
in cell cycle regulation and DNA repair and is expressed at 
high levels in several types of cancer, including gastric and 

lung cancer (27,39,40). Previous studies reported that high 
expression levels of KIAA0101 and CHEK1 in lung cancer are 
associated with a poor prognosis (27,41).

Figure 3. Construction of the PPI network and identification of a significant module. (A) The PPI network was constructed using Cytoscape. (B) The most 
significant module was obtained from the PPI network using Molecular Complex Detection, and included 44 nodes and 886 edges. PPI, protein‑protein 
interaction.
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Man et al (28) revealed that HMMR, the receptor for hyal-
uronic acid, was upregulated in lung adenocarcinoma samples 
compared with healthy adjacent non‑cancerous tissues. MELK 
is expressed in several types of human cancer (42,43), including 
SCLC. Inoue et al (42) reported that inhibition of MELK may 
be a therapeutic strategy for SCLC. Zhang et al (44) reported 
that NCAPG may be implicated in hepatocellular carcinoma 
cell proliferation and migration, and may provide a promising 

novel therapeutic target for the treatment of advanced hepa-
tocellular carcinoma. However, the clinical significance of 
NCAPG in lung cancer remains unknown.

Previous studies reported that CENPF serves a role in 
the tumorigenesis of hepatocellular carcinoma and prostate 
cancer  (45,46); however, its role in lung cancer requires 
further investigation. A number of studies demonstrated 
that BUB1 serves important roles in breast and endometrial 
cancer (47‑49). However, Haruki et al (47‑49) reported that 
the BUB gene family members, including BUB1, are not 
commonly associated with mitotic checkpoint defects in lung 
cancer. The potential association between BUB1 and lung 
cancer requires further investigation. Kim et al (29) reported 
that a functional single nucleotide polymorphism in the 
promoter region of CCNA2 was associated with an increased 
risk of lung cancer. TRIP13 is an ATPase that serves a key role 
in mitotic checkpoint complex inactivation and is associated 
with the progression of lung adenocarcinoma (30). Li et al (30) 
demonstrated that increased TRIP13 expression promoted 
lung adenocarcinoma progression and may serve as a potential 
therapeutic target or biomarker for the disease.

Yang et al (50,51) revealed that TPX2 was associated with 
lung squamous carcinoma cell radioresistance and may serve 
as a therapeutic target to enhance cell radiosensitivity in lung 
squamous carcinoma. Furthermore, Schneider et al  (50,51) 
demonstrated that the expression of the TPX2, mitosis‑asso-
ciated gene, was associated with the prognosis of patients 
with NSCLC. Previous studies reported that overexpres-
sion of NUSAP1 was associated with a poor prognosis in 
prostate cancer, hepatocellular and oral squamous cell carci-
noma (52,53); however; little is known about the association of 
NUSAP1 with lung cancer. Zhao et al (54) demonstrated that 
KIF20A may confer a malignant phenotype in lung adenocar-
cinoma by regulating cell proliferation and apoptosis. AURKA, 
an oncogene, encodes a serine‑threonine kinase that regulates 
mitotic processes in mammalian cells and serves as a potential 
therapeutic target of NSCLC (55,56). Lo et al (55,56) reported 

Table I. GO and KEGG pathway enrichment analysis of the differentially expressed genes in the most significant module.

Category	 Term	 Count in gene set	 P‑value

GOTERM_BP	 Mitotic nuclear division	 19	 <0.001
GOTERM_BP	 Cell division	 18	 <0.001
GOTERM_BP	 G2/M transition of mitotic cell cycle	 11	 <0.001
GOTERM_BP	 Mitotic cytokinesis	 5	 <0.001
GOTERM_MF	 Protein binding	 39	 <0.001
GOTERM_MF	 Protein serine/threonine kinase activity	 8	 <0.001
GOTERM_MF	 Protein kinase binding	 8	 <0.001
GOTERM_CC	 Nucleoplasm	 29	 <0.001
GOTERM_CC	 Spindle	 9	 <0.001
GOTERM_CC	 Midbody	 9	 <0.001
KEGG_PATHWAY	 Cell cycle	 10	 <0.001
KEGG_PATHWAY	 p53 signaling pathway	 4	 <0.001
KEGG_PATHWAY	 FoxO signaling pathway	 4	 0.006

GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; BP, biological process; MF, molecular function; CC, cellular component. 

Figure 4. Hub genes and their co‑expression genes were analyzed using cBio-
Portal. Nodes with a bold black outline represent hub genes. Red nodes with 
a thin black outline represent the co‑expression genes. Blue arrows point to 
potential downstream targets of genes.
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that AURKA upregulation is restricted to specific subtypes and 
poorly differentiated tumors in NSCLC. Ma et al (31) revealed 
that CEP55 was upregulated in lung cancer cells and was asso-
ciated with poor clinical outcomes in patients with lung cancer, 
and that it may serve as a prognostic biomarker for the disease.

The current study is only a preliminary report, and heteroge-
neous results due to the limitations of the source and quantity of 
samples may have occurred. Furthermore, statistical differences 
may not translate to the expected clinical significance. In order 
to be more representative, a specific pathological type of lung 
cancer was not selected in the current study. However, this may 

lead to poor specificity in lung cancer subtypes. The 16 hub 
genes identified revealed clinical significance in the validation of 
survival analysis. However, further validation in the subsequent 
basic and clinical trial studies is required. In addition to DEGs, 
further studies investigating differentially expressed microRNAs 
and their association with genes, particularly DEGs, are required.

In summary, the current study identified DEGs that may be 
involved in the carcinogenesis or progression of lung cancer. A 
total of 552 DEGs and 16 hub genes were identified, and these 
may serve as potential diagnostic biomarkers or therapeutic 
targets for lung cancer. The results suggested that data mining 

Figure 5. Biological process analysis of hub genes was constructed using the BiNGO (version 3.0.3) plugin in Cytoscape. The color depth of nodes refers to the 
corrected P‑value of ontologies. The size of nodes refers to the numbers of genes that are involved in the ontologies.
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Figure 6. Overall survival analysis of 8 hub genes (OIP5, EXO1, HMMR, MELK, BUB1, CCNA2, NUSAP1 and KIF20A) was performed using the 
Kaplan‑Meier plotter online platform. P<0.05 was considered to indicate a statistically significant difference. HR, hazard ratio.
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Figure 7. Overall survival analysis of eight hub genes (KIAA0101, CHEK1, NCAPG, CENPF, TRIP13, TPX2, AURKA and CEP55) were performed using the 
Kaplan‑Meier plotter online platform. P<0.05 was considered to indicate a statistically significant difference. HR, hazard ratio.
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and integration may be a promising tool for the identification 
of biomarkers in malignant tumors. As tumor biomarkers only 
have meaning if they are integrated with clinical data, further 
experiments should be conducted to verify the results obtained 
in the current study.
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