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Abstract. Cholangiocarcinoma (CCA) is a type of malignant 
tumor that originates in the mucosal epithelial cells of the 
biliary system. It is a highly aggressive cancer that progresses 
rapidly, has low surgical resection rates and a high recurrence. 
At present, no prognostic molecular biomarker for CCA has 
been identified. However, CCA progression is affected by 
mRNA precursors that modify gene expression levels and 
protein structures through alternative splicing (AS) events, 
which create molecular indicators that may potentially be used 
to predict CCA outcomes. The present study aimed to construct 
a model to predict CCA prognosis based on AS events. Using 
prognostic data available from The Cancer Genome Atlas, 
including the percent spliced index of AS events obtained 
from TCGASpliceSeq in 32  CCA cases, univariate and 
multivariate Cox regression analyses were performed to assess 
the associations between AS events and the overall survival 
(OS) rates of patients with CCA. Additional multivariate Cox 
regression analyses were used to identify AS events that were 

significantly associated with prognosis, which were used to 
construct a prediction model with a prognostic index (PI). 
A receiver operating characteristic (ROC) curve was used 
to determine the predictive value of the PI, and Pearson's 
correlation analysis was used to determine the association 
between OS‑related AS events and splicing factors. A total of 
38,804 AS events were identified in 9,673 CCA genes, among 
which univariate Cox regression analysis identified 1,639 
AS events associated with OS (P<0.05); multivariate Cox 
regression analysis narrowed this list to 23 CCA AS events 
(P<0.001). The final PI model was constructed to predict the 
survival of patients with CCA; the ROC curve demonstrated 
that it had a high predictive power for CCA prognosis, with a 
highest area under the curve of 0.986. Correlations between 
23  OS‑related AS events and splicing factors were also 
noted, and may thus, these AS events may be used to improve 
predictions of OS. In conclusion, AS events exhibited potential 
for predicting the prognosis of patients with CCA, and thus, 
the effects of AS events in CCA required further examination.

Introduction

Cholangiocarcinoma (CCA) is a malignant tumor that origi-
nates in the mucosal epithelial cells of the biliary system. With 
a high degree of malignancy, rapid progression, low surgical 
resection rates and high recurrence rates, CCA prognoses are 
unsatisfactory (1‑4). Recent studies of the molecular patho-
logical mechanisms of CCA have demonstrated that tumor 
formation, growth, invasion, metastasis and other processes in 
CCA are regulated by a variety of molecules and signal trans-
duction pathways, such as the aPKC‑ι/P‑Sp1/Snail signaling 
pathway and the Merlin/YAP/c‑Myc/mTOR signaling 
pathway (5,6). This information has assisted early diagnosis, 
prognosis predictions and drug development. However, due 
to the complexity of CCA development, there are currently 
no specific biomarkers that meet clinical standards  (7‑10). 
Therefore, there is an urgent need to identify suitable 
biomolecular markers that can screen for CCA and assist in 
prognostic evaluations.

Eukaryotic mRNA precursors are known to remove 
certain unused fragments during the maturation process of 
mRNAs, allowing the remaining fragments to be rejoined. 
The fragments that are removed or left in place vary in their 
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effects, depending on the cell type and status. Thus, a gene 
can encode multiple proteins in a process called alternative 
splicing (AS) (11,12). Previous studies have demonstrated that 
AS events occur ubiquitously in eukaryotes, with >95% of 
genes undergoing AS events (13‑15). However, AS events are 
more common in cancer cells and affect cancer development 
and treatment resistance (16‑24). In addition, AS events in 
tumor cells may be used as molecular markers that can differ-
entially diagnose tumor types and predict prognosis (25‑28), as 
well as serve as potential targets for cancer treatment (29‑33). 
Application of AS events as a means diagnosing and predicting 
prognosis has been demonstrated in in prostate adenocarci-
noma, uteri corpus endometrial carcinoma and colorectal 
cancer (34‑36).

CCA involves a high frequency of gene mutations and 
abnormal epigenetic changes, including DNA methylation, 
and histone and RNA modifications (37), all of which may 
lead to the occurrence of AS events (19,38‑47). AS events 
modify gene expression and influence protein structure by 
changing coding regions, thus regulating certain biological 
processes. For example, the widely reported tumor suppressor 
genes tumor protein p53, AT‑rich interaction domain 1A, 
PTEN and PI3K, as well as the proto‑oncogenes NOTCH1 
and MET proto‑oncogene, receptor tyrosine kinase, cause 
variations in gene function through AS events, thus affecting 
cancer development (30). Similarly, the apoptosis‑related 
genes BCL‑X and modulator of VRAC current 1 have been 
demonstrated to serve opposite functions in promoting and 
resisting apoptosis due to the occurrence of AS events (48‑51). 
AS can also alter the amino acid sequence of a protein, 
which may destroy the target for certain antitumor drugs and 
result in drug resistance (20,30,52). AS events therefore serve 
a unique role in the diagnosis and treatment of tumors.

Previous studies on the association between AS events 
and tumors have focused on the single‑gene level, and few 
large‑scale data mining studies based on high‑throughput 
sequencing exist (53‑55). The Cancer Genome Atlas (TCGA) 
database (portal.gdc.cancer.gov/) contains high‑throughput 
sequencing data and comprehensive clinical information 
from a large number of cancer samples. Previous studies 
using TCGA data have reported that AS events may be used as 
prognostic indicators for lung (56), ovarian (57), bladder (58) 
cancer and gastrointestinal pan‑adenocarcinomas (59,60). 
However, the prognostic value of AS events has not yet been 
reported for CCA. In the present study, the overall survival 
(OS)‑related AS events in CCA were systemically evaluated. 
These findings may facilitate development of novel genomic 
models for clinical cancer management, and construction of 
novel models based on the prognostic index (PI) to predict 
CCA survival.

Materials and methods

Data collection. The percent spliced index  (PSI) 
values for CCA AS events were downloaded from the 
TCGASpliceSeq database (http://bioinformatics.mdanderson.
org/TCGASpliceSeq/) (61). PSI is the ratio of normalized read 
counts indicating inclusion of a transcript element to the total 
normalized read counts for that event (i.e., both inclusion and 
exclusion read counts). PSI values range from 0 to 1, indicating 

the likelihood of the existence of an exon. Information related 
to seven types of AS events: Exon skip (ES), mutually exclu-
sive exons (ME), retained intron (RI), alternate promoter (AP), 
alternate terminator (AT), alternate donor (AD) site and alter-
nate acceptor (AA) site events, was included in the analysis. 
Corresponding clinical information and gene expression levels 
of the samples were obtained from TCGA database. The data-
base included data from 32 patients with CCA with complete 
clinical information and total survival time >90 days. Of the 
32 patients with CCA, 13 were male and 19 were female. The 
age of the patients was 29‑82, and the median age was 66.5, 
with 27 patients older than 50 and 5 patients younger than 50.

Association between AS events and survival. R software 
(R version 3.4.2) (62) was used to perform univariate Cox 
regression analysis to investigate the PSI prognostic values 
from the seven types of AS events and the differentially 
expressed genes in the 32 CCA cases. AS events with P<0.05 
were selected for further analysis. The event‑dependent 
survival curve for the top three AS events was plotted (collating 
P‑values from low to high).

Systematic review. To confirm that the identified AS events were 
CCA‑specific, all prognostic AS events from different types 
of cancer were extracted from published articles on PubMed 
(https://www.ncbi.nlm.nih.gov/), Wiley Online Library 
(https://onlinelibrary.wiley.com/), EBSCO (https://www.
ebsco.com/), Web of Science (https://www.webofknowledge.
com/), and Google Scholar (https://scholar.google.com/) on or 
prior to 1st May 2019 for comparison. The key words were 
as follows: ‘cancer OR carcinoma OR adenocarcinoma OR 
tumour OR tumor OR malignanc* OR neoplas*’ AND ‘prog-
nostic OR prognosis OR predict*’ AND ‘ ‘alternative splicing’ 
OR AS’. The studies which were included needed to meet the 
following criteria: i) Studies describing cancer prognosis with 
a predicted model constructed using prognostic AS events; 
and ii) the prognostic AS events could be extracted from the 
studies. All the included studies were assessed using the bias 
assessment for studies of diagnostic accuracy (QUADAS) 
guidelines (63) and had a QUADAS score of ≤7. The following 
data were extracted from the included studies: First author's 
name, year of publication and prognostic AS events.

AS event interaction analysis and gene network construc‑
tion. The interactions of the seven types of AS events were 
analyzed using the UpSetR package for R (64), and an UpSet 
plot was drawn. The network was constructed using the 
Reactome FI plug‑in (65) for Cytoscape 3.6.0 (66), with AS 
events identified using univariate Cox regression analysis 
(P<0.01). Genes with AS events were processed using the 
Kyoto Encyclopedia of Genes and Genomes (KEGG) and 
Gene Ontology (GO) gene enrichment analyses. Due to the 
occurrence of a large number of significant GO pathways, 
only the top five pathways per group were presented using 
the ggplot2 package for R (67).

PI construction and prognostic value assessment. To assess 
the association between AS events and OS, univariate Cox 
regression was carried out with a significance threshold of 
P<0.05. The top ten most promising AS events, based on 
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their prognostic value, AS events selected for each splicing 
type. Multivariate Cox regression analysis was performed, 
splicing events with P<0.05 were selected as PIs. The model 
was established by grouping together all splicing events of 
the seven splicing event types. The samples were divided into 
two groups according to the median PSI value of the splicing 
events. The formula used to calculate the PI was as follows:

Risk score = 

The clinical prognostic value of the PI was assessed using 
Kaplan‑Meier (K‑M) curve analysis and time‑dependent 
receiver operator characteristic (ROC) curve analysis. The 
time‑dependent ROC curve was drawn using the survival 
ROC package for R (68).

Experimental validation of AS events in clinical CCA tissue 
samples. In addition to the aforementioned analyses, the 
existence of the AS events predicted by the TCGASpliceSeq 
database was verified using PCR analyses with six samples 
of CCA tumor tissues separately collected from a 37‑year‑old 
male patient and a 38‑year‑old female patient during surgery 
at the Pathology Department of the First Affiliated Hospital 
of Guangxi Medical University (Nanning, China) between 
February 2017 and October 2017. The study was approved by the 
Ethics Committee of the First Affiliated Hospital of Guangxi 
Medical University, and written informed consent was obtained 
from all patients. Total RNA was extracted using the AxyPrep 
Multisource Total RNA Miniprep kit (Axygen; Corning, Inc.), 
quantified using a NanoDrop 2000 (Thermo Fisher Scientific, 
Inc.) and 500  ng total RNA was reverse‑transcribed into 
cDNA using MiScript®  II RT SuperMix kit (Vazyme). AS 
events in phytanoyl‑CoA 2‑hydroxylase (PHYH)_100582_ES 
and transferrin receptor 2 (TFR2)_80979_ES were selected 
for verification. The mean PSI of PHYH_100582_ES in 
TCGASpliceSeq database was 0.78, and ES was present in 
exons 7 and 8. The forward primer (primer 1) was designed 
based on exon 6, and the sequence was 5'‑GAT​ACT​GCA​CTC​
TCC​CCG​AG‑3'. The reverse primer (primer 2) was designed 
based on exon 9, and the primer sequence was 5'‑GAC​CAG​
ATC​CGT​GGA​TGA​GC‑3'. The PCR system contained 10 µl 
2X PCR Master mix (Thermo Fisher Scientific, Inc), 1 µl each 
of the forward and reverse primers (10 µM), 1 µl cDNA and 
7 µl nuclease‑free water (total volume, 20 µl). The thermocy-
cling conditions were as follows: 95˚C for 3 min, followed by 
35 cycles of 95˚C for 30 sec, 60˚C for 30 sec and 72˚C for 
1 min. PCR products were subjected to electrophoresis on 
2% agarose gels. The mean PSI of TFR2_80979_ES in the 
TCGASpliceSeq database was 1, and ES was present in exon 
10. The forward primer (primer 3) was designed based on exon 
9, and the primer sequence was 5'‑CAG​CCC​ATC​AGT​GCA​
GAC​AT‑3'. The reverse primer (primer 4) was designed based 
on exon 11, and the primer sequence was 5'‑TTG​TTG​ACC​
ACT​AGC​CGC​AG‑3'. The PCR system and thermocycling 
conditions were as mentioned above.

Correlation analysis between splicing factors and prog‑
nosis‑related AS events. A splicing factor that serves as a 
splicing activator when bound to an intronic enhancer element 
may function as a repressor when bound to its splicing element in 

the context of an exon (69). Therefore, the correlations between 
splicing factors and the prognosis‑related AS events were 
investigated. Splicing factor information was obtained from the 
SpliceAid 2 database (http://193.206.120.249/splicing_tissue.
html) (70). Univariate Cox regression analysis was performed 
on the splicing events and splicing factors, followed by 
Pearson's correlation analysis between the significant splicing 
events, splicing factors and the OS‑related AS events identi-
fied by multivariate Cox analysis. The results were visualized 
using Cytoscape version 3.4.0 (66).

Results

CCA AS events. A total of 38,804 AS events were obtained from 
9,673 genes in 32 CCA cases from TCGA SpliceSeq dataset. 
The numbers of each type of AS event and the corresponding 
genes are presented in Fig. 1. The results demonstrated that a 
single gene may undergo multiple AS events simultaneously. 
ES was the most frequent AS event in this dataset.

AS events associated with CCA OS rates. Univariate Cox 
analysis revealed that 1,639 AS events were associated with 
CCA OS rates (P<0.05) and that certain genes had undergone 
multiple OS‑related AS events. Visualization of the inter-
secting sets was performed using UpSet plotting software 
(Fig. 2), and ≤3 AS events were identified to be associated 
with OS rates within the same gene. KEGG pathway enrich-
ment analysis revealed that the genes corresponding to these 
AS events were primarily enriched in ‘biosynthesis of antibi-
otics’, ‘axon guidance’, ‘pancreatic cancer’, ‘RAP1 signaling 
pathway’ and ‘SNARE interactions in vesicular transport’ 
(Fig. 3A). GO gene enrichment analysis demonstrated that 
the genes with OS‑related AS events corresponded to ‘protein 
transport’, ‘cell‑cell adhesion’, ‘apoptotic process’, ‘protein 
localization to the nucleus’ and ‘positive regulation of tran-
scription from RNA polymerase  II promoters’ (Fig.  3B). 
Using a network map of these genes, MYC associated factor 
X (MAX), mitogen‑activated protein kinase 11 (MAPK11), 
γ‑aminobutyric acid type A receptor‑associated protein‑like 1 
(GABARAPL1), checkpoint kinase  1 (CHEK1), X‑linked 

Figure 1. AS events and the numbers of related genes associated with chol-
angiocarcinoma. AA, alternate acceptor site; AD, alternate donor site; AP, 
alternate promoter; AT, alternate terminator; ES, exon skip; ME, mutually 
exclusive exons; RI, retained intron; AS, alternative splicing.
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inhibitor of apoptosis (XIAP) and forkhead box A1 (FOXA1) 
exhibited the highest degrees of connectivity and were thus 
considered critical positions of the network (Fig. 4).

OS‑related AS events are CCA‑specific. Comparisons with 
other types of cancer demonstrated that ME‑GTF2H3‑306194 
occurred in papillary thyroid cancer and CCA, whereas the 
other identified AS events were CCA‑specific (Table I).

AS events that may be used as CCA prognostic indicators. The 
three most statistically significant AS events were selected, 
and their gene expression levels were used to calculate their 
prognostic values in CCA (Fig. 5). K‑M analysis revealed that 
these prognostic signatures significantly separated patients 
with distinct prognoses. To assess the ability of these splicing 
events to predict CCA prognosis, a time‑dependent ROC curve 
was established. The results of the ROC curve suggested that 
a single indicator was not enough to predict patient prognosis, 
as the area under the curve (AUC) values were low for the 
AS events and gene expression values (Fig. 5). Therefore, ten 
AS events with the most significant prognostic values in each 
splicing type were selected to construct the PIs (Table II). The 
results suggested that these PIs had higher predictive values 
compared with single indicators (Fig. 6). The AUCs for each 
of the seven subtypes of AS were as follows: AA,  0.901; 
AD, 0.858; AP, 0.986; AT, 0.839; ES, 0.939; ME, 0.779; and 
RI, 0.859. In addition, the ten most significant AS events 
from all types combined were selected to construct a final 
prognostic model; the AUC was 0.984 (Fig. 6). It is worth 
noting that the predictive efficacy of the prognostic model with 

seven combined splicing events (0.984) was slightly lower than 
that obtained with AP alone (0.986).

Confirmation of PHYH_100582_ES and TFR2_80979_ES 
by clinical samples. Towards PHYH_100582_ES, the PCR 
products were predicted to comprise two bands; the band 
without ES was predicted to be 414 bp in length, whereas the 
band size following ES was predicted to be 144 bp in length 
(Fig. 7A). If the TFR2_80979_ES event did not occur, the PCR 
product was predicted to be 238 bp; following the ES event, the 
PCR product size was predicted to be 140 bp (Fig. 7B). Since 
the PSI value of this ES event was 1, the ES event occurred 
in all TFR2 mRNAs; if the TCGASpliceSeq database was 
accurate, the PCR product was predicted to be a single band. 
The results of PHYH_100582_ES and TFR2_80979_ES 
were consistent with those predicted by the TCGASpliceSeq 
database. The PCR products of PHYH_100582_ES were 
414 and 144 bp (Fig. 7C), suggesting that, in CCA tissues, a 
proportion of PHYH mRNA had undergone an ES event. The 
PSI of TFR2_80979_ES in the TCGASpliceSeq database was 
1, indicating that ES events occurred in all TFR2 mRNAs. 
The electrophoresis result demonstrated that the product of 
TFR2_80979_ES was a single band of 140 bp; no band of 
238 bp was observed (Fig. 7D), suggesting that ES events 
occurred in all TFR2 mRNA. These results were consistent 
with those suggested by the RNA sequencing data from 
TCGASpliceSeq.

Correlation between splicing factors and prognosis‑related 
AS events. A total of 11 AS events and corresponding splicing 

Figure 2. UpSet plot of survival‑related alternative splicing events in cholangiocarcinoma. A single gene can undergo up to three simultaneous prog-
nosis‑related alternative splicing events. AA, alternate acceptor site; AD, alternate donor site; AP, alternate promoter; AT, alternate terminator; ES, exon 
skip; ME, mutually exclusive exons; RI, retained intron.
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factors significantly related to CCA OS  rates (P<0.05) 
were identified. Multivariate Cox analysis identified 23 
prognosis‑related AS events (Table III; P<0.001); 17 of these 
exhibited positive correlations with OS, whereas 6 exhibited 
negative correlations with OS. Of these 23 AS events, 15 
were correlated with a group of splicing factors, the expres-
sion of which was directly associated with AS events (|r|>0.3; 
P<0.05). AS events are primarily regulated by splicing factors, 
which often bind to pre‑mRNAs and regulate RNA splicing 
by influencing exon selection and splicing site. Therefore, the 
associations between survival‑related AS events and splicing 
factors were determined (Fig. 8).

Discussion

Using data mined from TCGASpliceSeq and in  silico 
approaches, the present study identified that a number of AS 
events are closely associated with survival in CCA. The present 

study is the first to report this type of result. The results of 
the present study also demonstrated that AS events may be 
used to construct a PI model that effectively determines CCA 
prognosis.

The incidence of CCA has increased in recent years. The 
prognosis of advanced CCA is poor, with an extremely low 
5‑year survival rate (7). The prognosis depends on the syner-
gistic effects of various factors; however, no clear and effective 
molecular markers have been identified for CCA diagnosis 
and treatment. Carcinoembryonic antigens (CEAs) and carbo-
hydrate antigen (CA) 199, CA 125, CA 50 and CA 242 are 
currently used as CCA tumor markers, but these biomarkers 
have disadvantages in clinical application. For example, the 
majority of studies that examined CA 199 as a biomarker for 
the detection of CCA have reported its suboptimal accuracy, 
with wide variation in reported sensitivity  (38‑93%) and 
specificity (67‑98%) (71). CA 125 is upregulated in 65% of 
patients with CCA and is of value in predicting survival (72); 

Figure 3. KEGG pathway and GO analysis of genes with overall survival‑related alternative splicing in cholangiocarcinoma (A) KEGG pathway analysis 
of genes with overall survival‑associated alternative splicing events. (B) GO enrichment analysis of genes with overall survival‑associated alternative 
splicing events. Rich factor, ratio of differentially expressed gene numbers annotated in this term to all gene numbers annotated in this term.; KEGG, 
Kyoto Encyclopedia of Genes and Genomes; GO, Gene Ontology; BP, biological process; CC, cellular component; MF, molecular function.
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Figure 4. A network diagram of overall survival‑related alternative splicing events in cholangiocarcinoma. Genes corresponding to alternative splicing 
events were identified and a network map was constructed using Cytoscape software. The genes with the highest degree of connectivity are marked in red.

Figure 5. Kaplan‑Meier survival and ROC curves of alternative splicing events and gene expression of the top three factors identified using univariate 
Cox analysis. Blue, low‑risk group; red, high‑risk group. (A‑C) Kaplan‑Meier curves of alternative splicing events. (A) FRMD8_16850_ES (HR, 0.736; 
95%  CI,  0.627‑0.824; P<0.001). (B)  MBLAC2_72765_AT (HR,  1.186; 95%  CI,  1.084‑1.298; P<0.001). (C)  MBLAC2_72766_AT (HR,  0.843; 
95% CI, 0.771‑0.923; P<0.001). (D‑F) Kaplan‑Meier curves of gene expression levels. (D) CDADC1 (HR, 1060.208; 95% CI, 15.259‑73662.548; P=0.001). 
(E) ABCA4 (HR, 13.302; 95% CI, 2.596‑68.156; P=0.002). (F) C19orf12 (HR, 0.0004; 95%CI, 0.000001‑0.081; P=0.004). (G) ROC curves of alterna-
tive splicing events and gene expression levels: FRMD8_16850_ES, MBLAC2_72765_AT, MBLAC2_72766_AT, CDADC1, ABCA4 and C19orf12. 
AA, alternate acceptor; AD, alternate donor; AP, alternate promoter; AT, alternate terminator; ROC, receiver operating characteristic; AUC, area under 
the curve; ES, exon skip; ME, mutually exclusive exon; RI, retained intron; HR, Hazard ratio; CI, confidence interval; FRMD, FERM domain‑containing 
8; MBLAC2, metallo‑β‑lactamase domain‑containing 2; CDADC1, cytidine and DCMP deaminase domain‑containing 1; ABCA4, ATP‑binding cassette 
subfamily A member 4; C19orf12, chromosome 19 open reading frame 12.
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however, there are no further studies on CA 125 in CCA. 
CA 50 exhibits cross‑antigenicity with CA 199, and elevated 
serum CA  50 levels are commonly used to diagnose or 
prognose pancreatic and colorectal cancers (73). However, 
Shan et al (74) demonstrated that elevated serum CA 50 levels 
are not always associated with the expression of CA 50 in 
cancer tissues. Despite the clinical utility of CA 242, it is not 
sufficiently effective in the early detection of cancer, since 
elevated classical tumor biomarker levels indicate the presence 
of a significant number of cancer cells (75).

At the genetic level, a number of genes are abnormally 
expressed in CCA. For example, the abnormal expression of 
genes such as transforming growth factor β1, SMAD4, c‑MET, 
matrix metallopeptidase 7, vascular endothelial growth factor 
(VEGF)‑A, VEGF‑B, VEGF‑C and VEGF‑D are associated 
with poor prognosis (76‑79). Mutations in genes such as human 
epidermal growth factor receptor 2, TP53, KRAS, cytosolic 
NADP‑dependent isocitrate dehydrogenase and mitochondrial 
NADP‑dependent isocitrate dehydrogenase can also affect the 
prognosis of patients with CCA, but the prognostic value of 

Figure 6. Kaplan‑Meier curves based on the prognostic index and its ROC curves. Blue, low‑risk group; red, high‑risk group. (A‑H) Kaplan‑Meier curves 
of alternative splicing events. (A) AA site. (B) AD site. (C) AP. (D) AT. (E) ES. (F) ME exons. (G) RI. (H) ALL. (I) ROC curves of AA, AD, AP, AT, ES, 
ME, RI and ALL. AA, alternate acceptor; AD, alternate donor; AP, alternate promoter; AT, alternate terminator; ROC, receiver operating characteristic; 
AUC, area under the curve; ES, exon skip; ME, mutually exclusive exon; RI, retained intron; ALL, all alternative splicing types combined.

Figure 7. Validation of predicted AS events in clinical samples. (A) Illustration of PHYH_100582_ES AS event in the present study. Following the ES 
event, exons 7 and 8 of PHYH mRNA were cut out, and exons 6 and 9 were directly spliced. (B) Illustration of TFR2_80979_ES AS event in the present 
study. Following the ES event, exon 10 of TFR2 mRNA was cut out, and exons 9 and 11 exons were directly spliced. (C) PHYH_100582_ES event electro-
pherogram. Lanes 1‑6 demonstrate the PCR amplification results of cDNA from six CCA tissues with bands of 414 bp and 144 bp. (D) TFR2_80979_ES 
event electropherogram. Lanes 1‑6 demonstrate the PCR amplification results of cDNA from six CCA tissues with a single band of 140 bp. M, DNA 
marker; N, negative control without a template; AS, alternative splicing; ES, exon skip; PHYH, phytanoyl‑CoA 2‑hydroxylase; TRF2, transferrin receptor 2; 
CCA, cholangiocarcinoma.
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Table I. Prognostic alternative splicing events in different types of cancer.
Author, 
year Type PMID Alternative splicing events (Refs.)

Lin et al, 
2019

Papillary thyroid 
cancer

30986203 AA‑SHPRH‑78032, AA‑CASK‑88861, AD‑FBXL19‑36205,  
AD‑SAT2‑39030, AD‑TRO‑89255, AD‑CSTF2‑89611, 
AP‑ZC3H11A‑9456, AP‑STK32C‑13483, AP‑GRB2‑43439,  
AP‑CRTC1‑48500, AP‑ERCC1‑50440, AP‑ESR1‑78161,  
AT‑MAGI3‑4271, AT‑TPM1‑30982, AT‑ATP8B3‑46544,  
AT‑MAST1‑47878, AT‑SPAG16‑57327, AT‑CBWD5‑86498,  
AT‑OLFM1‑88103, ME‑NSMF‑193275, ME‑GTF2H3‑306194, 
RI‑C11orf49‑15609, RI‑ZNF276‑38138, RI‑USP36‑43917,  
RI‑NUDT18‑82937, RI‑NAPRT1‑85430

(95)

Gao et al, 
2019

Uteri corpus  
endometrial  
carcinoma

30640723 AP‑BDNF‑14763, AP‑DDX58‑86057, AP‑FYTTD1‑68310,  
AP‑GNAL‑44643, AP‑GPATCH2L‑28538, AP‑HUS1‑79610, 
 AP‑MAP4‑64545, AT‑IPO11‑72190, AT‑ZFAND4‑11368,  
ES‑CKMT2‑72660, ES‑CMC2‑37735, ES‑FBXL12‑47421, 
ES‑NDUFB1‑28987, ES‑PSMD12‑43112, ES‑ZNF528‑51457, 
RI‑AP3M2‑83565, RI‑DNASE1L3‑65424, RI‑GABARAP‑38871

(34)

Huang 
et al, 
2018

Prostate  
adenocarcinoma

30221674 ES‑TCEB2‑33303, AD‑ABHD17A‑46558, AP‑FKBP2‑16603, 
ES‑TXN‑87183, AP‑FKBP2‑16602, AD‑YPEL3‑36074, 
ES‑STXBP2‑47124, AT‑PTGDS‑88235, AT‑HMGA2‑22879, 
ES‑NHLRC3‑25701

(36)

He et al, 
2018

Bladder urothelial 
carcinoma

30048970 AA‑B4GALT2‑1228, ES‑TMTC2‑9217, ES‑TIMM9‑11224, 
ES‑APOBEC3D‑26508, AP‑TPD52‑35921, ES‑MICU1‑4164, 
ES‑DDX11‑8115, ES‑SMC6‑22132

(94)

Zhang  
et al, 
2019

Breast carcinoma 30984247 AA‑CARM1‑47598, AA‑ZBTB25‑27884, AA‑GPBP1‑72126, 
AA‑ZNRF1‑37578, AA‑DDX41‑74796, AA‑CTDSP1‑57478,  
AD‑OS9‑22701, AD‑HN1‑43371, AD‑THTPA‑26757, AD‑NTMT1‑87866, 
AD‑MGME1‑58753, AD‑SEC31A‑69735, AP‑SEC22A‑66462, 
AP‑ALG3‑67851, AP‑PACS2‑29630, AP‑ECE2‑67857, 
AP‑HSP90AB1‑76378, AT‑MAGT1‑89535, AT‑RCBTB1‑25898, 
AT‑SIN3B‑48214, AT‑SARNP‑22252, AT‑ZNF675‑48822,  
AT‑STOX2‑71289, AT‑NIPAL3‑1110, ES‑NDUFA12‑23737, ES‑UBR4‑880, 
ES‑COPS3‑39468, ES‑ABCE1‑70753, ES‑CCNI‑69628, ES‑RPAP1‑30096, 
ME‑HLCS‑96019, RI‑RBM48‑80441, RI‑RBM6‑64936, RI‑RPAP1‑30095, 
RI‑METTL17‑26476, RI‑POMGNT1‑2787, RI‑TRABD‑62792, 
RI‑WDR6‑64794, RI‑FASTK‑82335, RI‑NAA38‑81579

(96)

Lin et al, 
2018

Esophageal  
adenocarcinoma

30131306 AA‑U2AF1L4‑49280, AA‑TICRR‑32428, AA‑RSRC2‑24968, 
AA‑PREPL‑53439, AA‑PPIL2‑61247, AA‑FAM135A‑76637, 
AA‑CDV3‑66839, AA‑ABCB7‑89517, AD‑ZNF384‑19927,  
AD‑RPP14‑65434, AD‑PQBP1‑89028, AD‑MFSD11‑43690, 
AD‑COX6C‑84682, AP‑ZNF623‑85469, AP‑KIAA0513‑37876, 
AP‑FAM19A5‑62732, AP‑ALDH6A1‑28367, AT‑TRIM4‑80864, 
AT‑RNASEH2B‑25927, AT‑RNASEH2B‑25926, AT‑MCPH1‑82574, 
AT‑ARL6‑65732, AT‑AHI1‑77886, ES‑TNC‑87345, ES‑PML‑31651, 
ES‑NBPF15‑91080, ES‑MYL6‑22384, ES‑MRPL43‑12857, 
ES‑IRF9‑117161, ME‑SDR39U1‑27012, ME‑KLHL2‑71038, 
ME‑CMC2‑37707, RI‑ZNF131‑71926, RI‑SLC52A3‑58464, 
RI‑PPARGC1B‑74051, RI‑PCGF3‑68404, RI‑MDK‑15570, 
RI‑MAF‑37687, RI‑FAM9C‑88504

(60)

Lin et al, 
2018

Stomach 
adenocarcinoma

30131306 AA‑RPLP0‑24727, AA‑NAT6‑64990, AA‑MRVI1‑14373,  
AA‑LMO7‑26065, AA‑BDKRB2‑29192, AD‑YIPF2‑47605,  
AD‑SPHK2‑50793, AD‑SENP1‑21411, AD‑PGAP2‑14004,  
AD‑NFATC1‑46241, AD‑CCDC51‑64653, AP‑RCAN1‑60494,  
AP‑PLCD1‑64009, AP‑LTBP1‑53179, AP‑FAM65B‑75537, AP‑ABL2‑9101, 
AT‑ZNF846‑47399, AT‑ZFYVE28‑68559, AT‑STEAP4‑80362, 
AT‑STEAP4‑80361, AT‑KIF1B‑602, AT‑KIF1B‑601, AT‑CXCL12‑11344, 
AT‑CLDN11‑67617, AT‑ABCB5‑78909, ES‑UBXN11‑1263, 
ES‑TMEM230‑58637, ES‑SRSF3‑75985, ES‑SORBS1‑12641, 
ES‑P4HA2‑73263, ES‑CREM‑11245, ME‑N4BP2L1‑25590, 
ME‑KDM6A‑98323, ME‑FYN‑77273, ME‑CCDC53‑106010, 
RI‑TREX1‑64682, RI‑SRSF7‑53276, RI‑RPS15‑46490, RI‑LDHA‑14642, 
RI‑BICD2‑86883, RI‑ALS2CL‑64462

(60)
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these genes remains controversial and has not been applied 
clinically (72). Due to the complexity of cancer, diagnosis or 
prognosis based on a single molecule is limited. The advent of 
high‑throughput sequencing technologies allows us to address 
this issue by identifying more genomic abnormalities related 
to CCA.

Using the TCGASpliceSeq CCA data, 38,804 AS events 
were identified in 9,673 CCA genes, some of which exhibited 
multiple AS events occurring simultaneously. AS events are 
widespread in CCA and may be related to its occurrence and 
development. For instance, the first AS event reported to be 
associated with CCA prognosis was exon 2 skipping of the 
trefoil factor 2 (TFF2) gene (80). TFF2 is highly expressed in a 
variety of tumors, including CCA. Exon 2 skipping AS events 
lead to the loss of exon 2, resulting in a decrease in wild‑type 
TFF2 proteins. A high proportion of this AS event in TFF2 is 
associated with improved prognosis. Another example is P53, 
as alterations in the N‑terminus of this protein by AS has been 
demonstrated to worsen the prognosis in patients with CCA (81).

The present study identified a large number of CCA AS 
events, 1,639 of which were correlated with patient prognosis 
(P<0.05). Bioinformatics analyses of all genes with significant 
prognostic values identified the following genes to be located at 
the center of the gene network: MAX, MAPK11, GABARAPL1, 
CHEK1, XIAP and FOXA1. These genes have been broadly 
reported to be involved in cell cycle regulation, autophagy, 
proliferation, apoptosis and have been previously demonstrated 
to be associated with cancer (82‑87). Tumor‑specific AS events 
have been intensively studied by investigating the differen-
tially alternatively spliced genes between tumor and adjacent 
normal tissues (88) in certain cancer types, such as breast (89), 
lung (56) and ovarian (57) cancer. Yosudjai et al (90) also 
demonstrated that aberrant AS of anterior gradient protein 2 
homolog promoted cell proliferation, migration, invasion and 
adhesive potential in CCA; however, there has been a lack of 
research on its association with patient prognoses. Among 
the genes identified above, MAX forms a heterodimer with 
the proto‑oncogene MYC, which binds to DNA to regulate 
the transcription of multiple genes, thus regulating cell 

Table I. Continued.
Author, 
year Type PMID Alternative splicing events (Refs.)

Lin et al, 
2018

Colon 
adenocarcinoma

30131306 AA‑RASSF7‑13691, AA‑PTGR1‑87219, AA‑FAM173A‑32964,  
AA‑DPP3‑17040, AA‑CDV3‑66842, AD‑RNF14‑73855, 
AD‑IP6K2‑64759, AD‑HPS4‑61506, AD‑HDGF‑8323,  
AD‑ANKRD46‑84712, AD‑ADPGK‑31594, AP‑TUBB3‑38167,  
AP‑RAB3IP‑23345, AP‑MAZ‑35938, AP‑FADS2‑16289, 
AP‑ENO2‑20011, AT‑ZNF765‑51718, AT‑UPK3B‑80182, 
AT‑RASEF‑86677, AT‑RASEF‑86676, AT‑NRG4‑31911, 
AT‑AIG1‑77972,  
ES‑VTI1B‑28083, ES‑STRN3‑27098, ES‑RHOC‑4236,  
ES‑PRMT1‑51042, ES‑PLEKHM2‑767, ES‑DMWD‑50528,  
ES‑D2HGDH‑58423, ME‑CNOT10‑63822, RI‑ZNF226‑50290,  
RI‑NPIPA5‑34148, RI‑ELP5‑38889, RI‑ALS2CL‑64463

(60)

Lin et al, 
2018

Rectal 
adenocarcinoma

30131306 AA‑ZNF467‑82205, AA‑RNPC3‑3907, AA‑GGT1‑61440,  
AA‑BTN3A1‑75660, AD‑OSBPL9‑2975, AD‑METTL23‑43637, 
AD‑BCS1L‑57522, AP‑TADA2B‑68732, AP‑PTCH1‑86955, 
AP‑DAB2IP‑87442, AT‑PUS10‑53676, AT‑NOTCH2NL‑4437, 
ES‑SPAG9‑42496, ES‑SERPINA1‑29134, ES‑PHB2‑20048, 
ES‑FGFR1OP2‑20856, ME‑RBMS2‑22465, RI‑ZNF692‑10557, 
RI‑WDR33‑55246, RI‑TMEM91‑50046, RI‑SIDT2‑18886, 
RI‑EXOSC9‑70501, RI‑ADARB1‑60863

(60)

PMID, PubMed manuscript ID.

Figure 8. Associations between overall survival‑related alternative 
splicing events and splicing factors. Each purple point represents an 
alternative splicing event of a single risk factor and a significant overall 
survival‑related splicing factor (P<0.05). Each blue point represents 
a positive overall survival‑related alternative splicing event identified 
by multivariate Cox analysis (P<0.001). Each pink point represents a 
negative overall survival‑related alternative splicing event identified by 
multivariate Cox analysis (P<0.001). Red lines represent positive correla-
tions (r>0.3; P<0.05); green lines represent negative correlations (r<‑0.3; 
P<0.05).
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proliferation, differentiation and apoptosis (82). The MAPK11 
gene encodes a serine/threonine kinase that is widely involved 
in various cellular signal transduction pathways, such as p38 
the MAPK signaling pathway by phosphorylating multiple 
target proteins (87). CHEK1 is a cell cycle monitoring‑related 
protein, abnormalities of which result in DNA damage and 
the bypassing of the cell cycle checkpoints (91). FOXA1 is a 
transcription factor, the aberrant expression of which is closely 
associated with hepatocellular carcinoma (84); however, its 
association with CCA has not been previously reported.

The current study is the first to identify the characteris-
tics of alternative CCA splicing events and establish a model 
that can predict CCA prognosis using PIs from AS events. 
Li et al (56), who studied non‑small cell lung cancer, were 
the first to demonstrate a combined survival and correlation 
network between the expression of splicing factors and AS 
events; the present study provides a more accurate potential 
network by screening the significant prognostic AS events 
identified by univariate Cox regression.

The present study attempted to predict the prognosis of 
patients with CCA using the three most significant AS events 
and genes. The results were not satisfactory (the maximum 
AUC was 0.747; data not shown), likely due to individual differ-
ences between patients. Similarly, no single factor was able to 
accurately predict patient prognosis. Therefore, ten AS events 
with the most significant prognostic values, as calculated by 
multivariate Cox regression analysis for each type of AS event, 
were selected to construct a PI. The prognostic models based 
on the combined seven types of splicing events demonstrated 
comparable predictive efficacy to the model that used only 
the AP splicing events. However, the combined model was 
more successful at predicting patient prognosis compared with 
models based on any other single type of splicing event.

The results of the present study were compared with those 
reported in previous studies. All AS events identified in the 
present study were uniquely associated with CCA, with the 
exception of ME‑GTF2H3‑306194, which has been previously 
identified to have prognostic value in papillary thyroid cancer 

Table II. Prediction models for cholangiocarcinoma based on each type of splicing event.

Risk score	 Algorithm	 HR (95% CI)	 P‑value	 AUC

Risk score (AA)	 PSIST3GAL4_19399_AA x 0.849 + 	 10.990 (3.818‑31.61)	 <0.001	 0.901
	 PSITECR_47998_AA x (‑6.242) + 
	 PSITGIF1_44506_AA x (‑0.713)

Risk score (AD)	 PSISYNGR1_62301_AD x (‑0.645) + 	 3.375 (1.227‑9.283)	 0.018	 0.858
	 PSIZHX3_59398_AD x (‑0.277)

Risk score (AP)	 PSIC12orf65_25058_AP x (‑0.147) + 	 17.910 (5.658‑56.67)	 <0.001	 0.986
	 PSICHMP3_54439_AP x 1.274 + 
	 PSISH3KBP1_88640_AP x 0.432

Risk score (AT)	 PSIMBLAC2_72765_AT x 0.166 + 	 7.622 (2.576‑22.55)	 <0.001	 0.839
	 PSITGFB3_28531_AT x (‑1.244)

Risk score (ES)	 PSIACAD9_66674_ES x (‑1.952) + 	 19.090 (5.705‑63.86)	 <0.001	 0.939
	 PSIFRMD8_16850_ES x (‑0.701) + 
	 PSIPLEKHG2_49826_ES x (‑1.49) + 
	 PSITP53I11_15489_ES x 2.014 + 
	 PSIUBE2F_58170_ES x 8.384

Risk score (ME)	 PSIFGFR3_68513_ME x (‑0.15) + 	 4.977 (1.790‑13.84)	 0.002	 0.779
	 PSIGRB10_79717_ME x (‑0.068) + 
	 PSIGTF2H3_306194_ME x 1.421 +
	 PSIRNF146_114496_ME x (‑0.085) + 
	 PSISORBS2_71377_ME x (‑0.282)

Risk score (RI)	 PSIC11orf88_18667_RI x (‑0.073) + 	 6.358 (2.295‑17.61)	 <0.001	 0.859
	 PSIDET1_32385_RI x (‑0.214) + 
	 PSIGAREML_52884_RI x (‑0.332)

Risk score (merged)	 PSITFDP1_26387_AD x (‑0.57) + 	 19.670 (5.842‑66.22)	 <0.001	 0.984
	 PSIMBLAC2_72766_AT x (‑0.838) + 
	 PSIHACL1_63592_ES x (‑0.62) + 
	 PSIPLEKHG2_49826_ES x (‑4.314) + 
	 PSIUBE2F_58170_ES x 7.06

PSI, percent spliced index; HR, Hazard ratio; CI, confidence interval; AUC, area under the curve; AA, alternate acceptor; AD, alternate donor; AP, alternate 
promoter; AT, alternate terminator; ES, exon skip; ME, mutually exclusive exon; RI, retained intron; ‘ST3GAL4_19399_AA’ represents ‘gene symbol_alterna-
tive splicing event ID_splice type’.



ONCOLOGY LETTERS  18:  4677-4690,  2019 4687

and CCA, indicating that ME‑GTF2H3‑306194 may serve 
similar functions in CCA and papillary thyroid cancer and 
suggesting a new treatment possibility for CCA and papillary 
thyroid cancer by targeting ME‑GTF2H3‑306194.

In addition, the existence of two AS events predicted by 
the TCGASpliceSeq database was verified using PCR analysis 
of six CCA tumor tissue samples. Metastasis was common in 
cholangiocarcinoma (7,92). The direct infiltration of cholan-
giocarcinoma cells along the bile duct wall is one of the main 
features of cholangiocarcinoma metastasis (7). Cancer cells 
diffuse invasively in the bile duct wall and coexist with the 
bile duct and surrounding connective tissue, making the infil-
tration range of cholangiocarcinoma difficult to identify, and 
thus non‑cancerous bile duct tissues cannon be easily obtained 
during surgery (93). Therefore, only two AS events were veri-
fied, and the difference of the splicing events between tumor 
and non‑tumor tissues was not determined.

To investigate the causes of AS events in CCA, the rela-
tionship between AS events and splicing factors was analyzed. 
Splicing factors are a class of RNA‑binding proteins that affect 
the selection of cleavage sites by recognizing the cis‑acting 
elements of mRNA precursors  (27). Previous studies on 
lung (56), ovarian (57) and bladder (94) cancer have demon-
strated that the expression of splicing factors was correlated 

with prognosis‑related AS events; however, this phenomenon 
was not observed in the current study. Pearson's correlation 
analysis between a group of splicing factors, the expression of 
which was directly related to AS events, and general OS‑related 
splicing events identified 15 AS events that were mutually 
associated. Therefore, in CCA, splicing factors may affect the 
structure of their own proteins by creating their own AS event 
and then subsequently affecting the AS events of other genes.

In summary, TCGASpliceSeq data were mined to identify 
the characteristics of AS events associated with CCA to estab-
lish a model that can predict CCA prognosis using PIs from 
AS events. The prognostic effect was estimated using ROC 
curves and was favorable, with AUCs >0.9. However, due to the 
small sample size, the validity of this model should be verified 
with additional clinical samples and in different populations. 
Several additional limitations of the present study also need 
to be addressed. The data in the current study were obtained 
from online databases and thus remain at the bioinformatics 
level. Additionally, among the AS events selected to construct 
the PI model, one event was not CCA‑specific, which reduced 
the specificity of the PI model. In addition, although splicing 
factors have been demonstrated to contribute to changes in 
the splicing patterns of target genes and tumorigenesis, and 
certain cancer‑specific splicing factors are associated with 
OS rates, there has been a lack of research on CCA‑related 
splicing factors, and whether the splicing factors identified 
in the present study are truly CCA‑specific requires addi-
tional research. Finally, although an accurate PI model was 
constructed by screening the significant prognostic AS events 
identified by univariate and multivariate Cox regression, the 
results are based on a single cohort and should be validated 
in additional cohorts; this is intended to be performed in our 
subsequent study.
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