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Abstract. The high mortality rate of lung squamous cell carci-
noma (LUSC) is in part due to the lack of early detection of 
its biomarkers. The identification of key molecules involved 
in LUSC is therefore required to improve clinical diagnosis 
and treatment outcomes. The present study used the micro-
array datasets GSE31552, GSE6044 and GSE12428 from the 
Gene Expression Omnibus database to identify differentially 
expressed genes (DEGs). Kyoto Encyclopedia of Genes and 
Genomes (KEGG) and Gene Ontology (GO) enrichment 
analyses were conducted to construct the protein‑protein 
interaction network of DEGs and hub genes module using 
STRING and Cytoscape. The 67 DEGs identified consisted 
of 42 upregulated genes and 25 downregulated genes. The 
pathways predicted by KEGG and GO enrichment analyses of 
DEGs mainly included cell cycle, cell proliferation, glycolysis 
or gluconeogenesis, and tetrahydrofolate metabolic process. 
Further analysis of the University of California Santa Cruz 
and ONCOMINE databases identified 17 hub genes. Overall, 
the present study demonstrated hub genes that were closely 
associated with clinical tissue samples of LUSC, and identi-
fied TYMS, CCNB2 and RFC4 as potential novel biomarkers 
of LUSC. The findings of the present study contribute to an 
improved understanding of the molecular mechanisms of 
carcinogenesis and progression of LUSC, and assist with the 
identification of potential diagnostic and therapeutic targets 
of LUSC.

Introduction

Lung cancer is a disease with the highest morbidity and 
mortality rates worldwide. It is reported that non‑small cell 
lung cancer (NSCLC) accounts for 85% of the total lung 
cancer cases worldwide, of which squamous cell lung cancer 
(LUSC), often with poor prognosis, accounted for 30% of 
NSCLC in 2017 (1,2). Data has demonstrated that more than 
1 in 3 patients with lung adenocarcinoma (LUAD) benefit 
from molecular‑targeted therapies (3). Inhibitors of epidermal 
growth factor receptor, v‑ki‑ras2 kirsten rat sarcoma viral 
oncogene homologue and anaplastic lymphoma receptor tyro-
sine kinase are some of the few molecules that are targeted 
in lung cancer therapy  (4). However, the application of 
molecular‑targeted therapies in the diagnosis and treatment of 
LUSC in the clinical setting is very limited. Thus, the identifi-
cation of biomarkers that are associated with the diagnosis and 
treatment of LUSC has become one of the main focus areas in 
research. An increasing number of studies have revealed new 
genetic changes associated with LUSC, including the onco-
genes baculoviral IAP repeat contain 5 (BIRC5) and GAPDH. 
BIRC5 is an important inhibitor of apoptosis, which serves an 
important role in carcinogenesis and progression of LUSC (5). 
Li et al (6) reported a significantly higher expression level 
of BIRC5 in LUSC tissues compared with normal tissues, 
indicating the potential of BIRC5 as a target for anti‑tumor 
therapy. On the other hand, GAPDH has been reported to serve 
a crucial role in regulating glycolysis in cancer cells. GAPDH 
depletes ATP in cancer cells via the inhibition of glycolysis, 
which eventually kills cancer cells (7,8). Hence, GAPDH has 
become a therapeutic target of interest against cancer cells. 
LUSC accounts for more than 400,000 deaths worldwide 
each year (2); it is important to highlight that the mortality 
rate of LUSC is inevitably high, even at early stage, despite 
several discoveries of potential targets such as BIRC5 and 
GAPDH. Thus, the investigation of other potential molecular 
mechanisms associated with LUSC is important.

In recent years, gene microarray and gene chip technologies 
have developed rapidly, which has provided a theoretical basis 
for the detection of genetic alterations in cancer cells (9,10). 
These technologies can be applied to identify differentially 
expressed genes (DEGs), which can potentially be associated 
with the carcinogenicity and progression of LUSC. In the 
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present study, in order to avoid false positive results from a 
single microarray gene expression dataset, three mRNA 
microarray datasets from the Gene Expression Omnibus 
(GEO) database platform were downloaded. LUSC tissues 
and non‑cancerous tissues were analyzed in order to iden-
tify DEGs. Furthermore, Gene Ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathway 
enrichment analyses were conducted and a protein‑protein 
interaction (PPI) network was constructed in order to under-
stand the molecular mechanisms underlying the generation and 
progression of LUSC. The associations between the hub genes 
and clinical tissue samples were identified using the University 
of California Santa Cruz (UCSC) Cancer Genomics Browser 
and ONCOMINE database. A total of 67 DEGs and 17 hub 
genes were identified as potential diagnostic and therapeutic 
biomarkers of LUSC. Five hub genes with the highest node 
value were selected via CentiScaPe, in which the results 
from the UCSC and ONCOMINE online clinical databases 
indicated all five hub genes to be associated with unfavorable 
prognosis of LUSC. Thymidylate synthetase (TYMS), cyclin 
B2 (CCNB2) and replication factor C subunit 4 (RFC4) were 
suggested as potential and novel target genes for the treatment 
of LUSC.

Materials and methods

Microarray data. GEO (http://www.ncbi.nlm.nih.gov/geo) is 
an open database of gene expression abundance, consisting of 
high throughout gene expression data, gene microarrays and 
gene chips. Three gene expression datasets [GSE31552 (11), 
GSE6044 (12) and GSE12428 (13)] were downloaded from 
the GEO (Affymetrix GPL6244 platform, Affymetrix Human 
Gene 1.0 ST Array; Affymetrix GPL201 platform, Affymetrix 
Human HG‑Focus Target Array; Affymetrix GPL1708 
platform, Agilent‑012391 Whole Human Genome Oligo 
Microarray G4112A). The GSE31552 dataset included 25 
LUSC tissue samples and 25 non‑cancerous samples. GSE6044 
included 15 LUSC tissue samples and 5 non‑cancerous 
samples. GSE12428 included 34 LUSC tissue samples and 28 
non‑cancerous samples.

Identification of DEGs. The DEGs between LUSC and 
non‑cancerous tissue samples were selected by GEO2R 
(http://www.ncbi.nlm.nih.gov/geo/geo2r). GEO2R is a GEO 
online analysis tool, which analyzes differential gene expres-
sion among two or more datasets in GEO. The P‑values were 
adopted to screen the DEGs accurately, and the probe sets 
without corresponding gene symbols during the screening 
process were removed. LogFC (fold change) >1 or logFC<‑1 
and P<0.05 were considered as statistically significant.

‘KEGG pathway’ and ‘Gene Oncology (GO)’ enrichment 
analyses of DEGs. The Database for Annotation, Visualization 
and Integrated Discovery database (DAVID; http://david.
ncifcrf.gov; version 6.8) is an online gene and pathway func-
tional annotation database that contains biological information 
and also provides analysis tools (14). Biological information 
can be extracted from the comprehensive set of genes and 
proteins, which provides functional annotations. The KEGG 
database can be used to analyze genome information and 

gene function and study the gene expression information as 
a whole network (15). GO is a type of bioinformatics tool for 
annotating genes and analyzing their biological processes. 
GO enrichment analyses contain three modules of molecular 
function, cell composition and biological process (16). In order 
to analyze the function and cell signaling pathways of DEGs, 
KEGG and GO enrichment analyses were conducted using 
the DAVID database. KEGG and GO enrichment bubble plots 
were drawn using online graphics tools Image GP (http://www.
ehbio.com/ImageGP/). P<0.05 was considered as statistically 
significant.

PPI network and hub gene module construction. The PPI 
network of DEGs was constructed by the online analysis 
website Search Tool for the Retrieval of Interacting Genes 
(STRING; http://string‑db.org; version 11.0)  (17) and the 
interaction of a combined score >0.4 was considered as 
statistically significant. Analyzing the function of PPI can 
provide insights into the mechanisms of disease occurrence 
and development. Cytoscape (version 3.6.1) is an open bioin-
formatics software platform that can be used to construct a 
visual network of molecular interactions  (18). The plug‑in 
Molecular Complex Detection (MCODE) (version 1.4.2) of 
Cytoscape is an APP for detecting densely correlated regions 
in the PPI networks (19). The gene modules were visualized 
and graphically displayed with the plug‑in MCODE. The 
selection criteria were as follows: MCODE score >5; node 
score cut‑off, 0.2; degree cut‑off, 2; k‑score, 2; and Max depth, 
100. CentiScaPe (version 2.2), a Cytoscape APP specifically 
designed to calculate centrality indexes for the selection of the 
most critical nodes in a network (20). The plug‑in CentiScaPe 
2.2 was used to identify hub genes for functional analysis with 
interaction node degrees ≥10.

Hub genes selection and analysis. The hub genes with interac-
tion node degrees ≥10 were screened. The network of the genes 
and their co‑expression genes was constructed by the online 
platform cBioPortal (http://www.cbioportal.org)  (21,22). 
Hierarchical clustering of hub genes was constructed by 
online analysis website UCSC Cancer Genomics Browser 
(http://genome‑cancer.ucsc.edu)  (23). Heat maps of hub 
genes expression in three different studies of clinical LUSC 

Figure 1. Venn diagram. Genes with |logFC|>1 and P<0.05, among the 
mRNA expression profiling datasets GSE31552, GSE6044 and GSE12428, 
were selected as DEGs. The overlap among the three datasets resulted in 
67 DEGs.
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samples vs. non‑cancerous tissue samples (24‑26), and the 
associations between the expression patterns and tumor 
stage, overall survival status (the survival rate of patients 
from diagnosis to the end of the study) and survival status 
at 5 years (the survival rate five years after diagnosis) were 
analyzed using the Hou Lung dataset (http://www.ncbi.nlm.
nih.gov/geo/query/acc.cgi?acc=GSE19188)  (27), which was 
obtained from the Oncomine database (http://www.oncomine.
com) (28,29).

Results

Identification of DEGs in LUSC. The standard microarrays 
were obtained from the GEO database platform. Following 
further analysis using GEO2R, DEGs were identified from the 
GSE31552 (957), GSE6044 (724) and GSE12428 (745) data-
sets. The 67 DEGs between the three datasets are presented in 
a Venn diagram (Fig. 1), consisting of 42 upregulated genes and 
25 downregulated genes between LUSC and non‑cancerous 
tissues.

KEGG and GO enrichment analyses of DEGs. Functional 
and pathway enrichment analyses of DEGs were conducted 
by DAVID to obtain the biological classification. The GO 
enrichment analysis included biological processes (BP), cell 
component (CC) and molecular function (MF) terms of the 
DEGs. The results of the KEGG and GO enrichment analyses 

are presented as bubble plots in Fig. 2. Changes in BP were 
significantly enriched in ‘cell division’, ‘positive regulation 
of cell proliferation’, ‘negative regulation of endopeptidase 
activity’ and ‘tetrahydrofolate metabolic process’ (Fig. 2A). 
Changes in CC were significantly enriched in ‘extracel-
lular exosome’, ‘extracellular space’, ‘cytosol’ and ‘vesicle’ 
(Fig. 2B). Changes in MF were mainly enriched in ‘protein 
binding’, ‘cysteine‑type endopeptidase inhibitor activity’, 
‘protein binding’ and ‘identical protein binding’ (Fig. 2C). The 
KEGG pathway analysis was mainly enriched in ‘cell cycle’, 
‘glycolysis or gluconeogenesis’, ‘metabolic pathways’ and ‘one 
carbon pool by folate’ (Fig. 2D).

PPI network and hub gene module construction. In order to 
identify the hub genes of LUSC, the PPI network of DEGs was 
analyzed by STRING. The results revealed that most genes 
interacted with each other and were located in the center of 
the network, and were closely associated with the surrounding 
proteins in the network (Fig. 3A). To enhance the accuracy of 
the results, the PPI network was also analyzed by Cytoscape. 
The obtained results were in correspondence with the results 
of STRING (Fig. 3B), and the hub gene module was obtained 
using MCODE (Fig. 3C).

Hub gene selection and analysis. In total, 17 genes were 
regarded as hub genes with degrees ≥10 using CentiScaPe. The 
names, abbreviations and functions for each of these hub genes 

Figure 2. KEGG and GO enrichment plots of DEGs. The plots from the GO enrichment analysis of DEGs for (A) biological processes (B) cell and (C) molecular 
function were obtained using DAVID and drawn using Image GP. (D) KEGG enrichment analysis was performed using DAVID, the bubble plot of KEGG 
analysis was drawn using Image GP. KEGG, Kyoto Encyclopedia of Genes and Genomes; GO, Gene Ontology; DAVID, Database for Annotation, Visualization 
and Integrated Discovery.
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Figure 3. PPI network and hub gene module of DEGs. (A) The PPI network was established with the Search Tool for the Retrieval of Interacting Gene tool. 
(B) The PPI network of DEGs was established using Cytoscape. (C) The hub gene module was generated from the PPI network, consisting of 15 nodes and 
84 edges. Upregulated genes are marked in red. Downregulated genes are marked in blue. DEGs, differentially expressed genes; PPI, protein‑protein interaction.
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are summarized in Table I. The genes associated with the hub 
genes and their co‑expression network were obtained using 
the cBioPortal online platform by performing interaction 
analysis (Fig. 4A). The expression of 17 hub genes in LUSC 
tissues and its association with the severity and prognosis 
among LUSC patients were further explored using the UCSC 
and ONCOMINE online databases. Furthermore, a heat map 
of hierarchical clustering obtained using UCSC demonstrated 
that the expression of hub genes in LUSC tissues was higher 
compared with that of non‑cancerous samples. However, the 
expression of hub genes showed no differences with gender 
(Fig. 4B). The heat map of hub genes expression in clinical 
LUSC tissue samples and normal tissue samples were analyzed 
using three different datasets, using the ONCOMINE online 
platform. The results revealed that most of the hub genes were 
significantly upregulated in clinical LUSC samples in all the 
datasets (Fig. 5). The hub genes whose interaction node degree 
was among the top five were TYMS, CCNB2, RFC4, BIRC5 
and GAPDH, indicating their potential role in the processes 

of carcinogenesis, development and unfavorable prognosis of 
LUSC. The associations between the upregulated hub genes 
and tumor stage, overall survival status and survival status at 
5 years were also analyzed. The top five genes were associated 
with high tumor stage, poor overall survival status and poor 
survival status at 5 years, which suggests their upregulation to 
be involved in the promotion of tumor progression and poor 
prognosis (Fig. 6).

Discussion

In recent years, the incidence and mortality of lung cancer 
has continued to increase rapidly worldwide (30). LUAD and 
LUSC are the two common types of lung cancer. The incidence 
of LUSC was reported to be associated with smoking, whereas 
the treatment of LUSC remains limited compared with that 
of LUAD. The underlying pathological mechanisms of LUSC 
at the molecular level are still at the exploration stage (31). 
Mutations or amplifications of phosphatidylinositol‑3 

Table I. Full name, abbreviation and function of 17 hub genes with node degree ≥10.

No.	 Gene symbol	 Full name	 Function

  1	 TYMS	 Thymidylate synthetase	 DNA synthesis, DNA repair and proliferation of
			   cancer cells.
  2	 CCNB2	 Cyclin B2	 Correlated with invasion, metastasis and poor
			   prognosis of various cancer types.
  3	 RFC4	 Replication factor C subunit 4	 Associated with poorly differentiated and advanced 
			   Tumor‑Node‑Metastasis stage in multiple cancer types.
  4	 BIRC5	 Baculoviral IAP repeat containing 5	 Plays a key role in proliferation, apoptosis and
			   angiogenesis of LUSC. 
  5	 GAPDH	 Glyceraldehyde‑3‑Phosphate	 Elevated GAPDH significantly promotes cell
		  dehydrogenase	 proliferation and migration in LUSC.
  6	 CKS1B	 CDC28 protein kinase regulatory 	 Attributes to prognosis, chemoresistance and
		  subunit 1B	 chemosensitivity in cancer.
  7	 MCM6	 Minichromosome maintenance	 Initiation of DNA replication and a marker for
		  complex component 6	 proliferating cells.
  8	 EZH2	 Enhancer of Zeste 2 polycomb	 Invasion, cell proliferation and adverse prognosis
		  repressive complex 2 subunit	 in LUSC.
  9	 PTTG1	 Pituitary tumor‑transforming 1	 Carcinogenesis, migration, invasion and prognosis.
10	 CDK4	 Cyclin dependent kinase 4	 Regulates cell cycle positively, overexpressed and
			   gene amplified in LUSC.
11	 TPX2	 TPX2, microtubule nucleation	 Overexpression associated with differentiation grade, 
		  factor	 stage and metastasis of LUSC.
12	 PRC1	 Protein regulator of cytokinesis 1 	 Promotes progression and migration in LUSC.
13	 CKS2	 CDC28 protein kinase regulatory	 Inhibit DNA damage response and contribute to tumor
		  subunit 2	 cell proliferation in breast cancer
14	 CDC45	 Cell division cycle 45	 Regulator of cell proliferation and associated with
			   S‑phase DNA damage.
15	K PNA2	K aryopherin subunit alpha 2	 Attributed to cancer cell proliferation and metastasis.
16	 NCAPG	 Non‑SMC condensin I complex	 Associated with cell cycle, apoptosis and migration
		  subunit G	 in human hepatocellular carcinoma.
17	 UBE2S	 Ubiquitin conjugating enzyme E2 S	 Involved in the malignant characteristics, mitosis
			   and survival of various types of cancer cells.



MAN et al:  Screening and identification of key biomarkers in lung squamous cell5190

kinases (PI3K), phosphatase and Tensin homolog (PTEN), 
erythropoietin‑producing hepatocellular A2 (EphA2) and 
liver kinase B1 (LKB1) were reported to be associated with 
the incidence, progression and prognosis of LUSC (32,33). A 
study conducted using the Cancer Genome Atlas Research 
Network demonstrated the dysfunction of NFE2L2, KEAP1, 
CDKN2A and RB1, and the abnormal structures of their 
products are associated with the occurrence and development 
of LUSC (34). The high mortality rate of LUSC is in part due 
to the lack of early detection of LUSC biomarkers (35). As a 
result, the identification of key molecules involved in LUSC 

is required and important for improving clinical efficacy. 
Microarray is a high‑throughput technology in obtaining novel 
biomarkers, which can provide the basis for further studies on 
the mechanism of LUSC and clinical targeted therapies at the 
molecular level.

In the present study, three mRNA microarray datasets were 
analyzed to identify 67 common DEGs. The DEGs consisted 
of 42 upregulated and 25 downregulated genes between LUSC 
tissue samples and normal tissue samples. GO terms and 
KEGG pathway enrichments were analyzed in order to inves-
tigate interactions among the DEGs. The results indicated that 

Figure 4. Co‑expression network and heat map of hub genes. (A) The network of hub genes and their co‑expression genes were constructed using cBioPortal. 
Nodes with bold black outline represent hub genes. Nodes with thin black outline represent the co‑expression genes. (B) The heat map of hierarchical clustering 
of hub genes was created with the University of California Santa Cruz Cancer Genomics browser. The samples under the brown bar are normal samples, 
whereas the samples under the blue bar are lung squamous cell carcinoma samples. The sex under the red bar is male and the sex under the blue bar is female. 
High expression of genes in samples is marked in red and low expression of genes is marked in blue. PPI, protein‑protein interaction.
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Figure 5. ONCOMINE analysis of LUSC vs. normal tissue of hub genes. Heat maps of hub genes expression in clinical LUSC samples vs. normal tissue 
samples. Hub genes: (A) TYMS, (B) CCNB2, (C) RFC4, (D) BIRC5, (E) GAPDH, (F) CKS1B, (G) MCM6, (H) EZH2, (I) PTTG1, (J) CDK4, (K) TPX2, 
(L) PRC1, (M) CKS2, (N) CDC45, (O) KPNA2, (P) NCAPG and (Q) UBE2S. The rank for a gene is the median rank for that gene across each of the analyses 
and the P‑value for a gene is its P‑value for the median‑ranked analysis. LUSC, lung squamous cell carcinoma.
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Figure 6. The associations between upregulation of TYMS, CCNB2, RFC4, BIRC5 and GAPDH and tumor stage, overall survival status and survival 
status at 5 years in the Hou Lung dataset which was obtained from the ONCOMINE database. (A‑C) TYMS, (D‑F) CCNB2, (G‑I) RFC4, (J‑L) BIRC5 and 
(M‑O) GAPDH mRNA expression in LUSC vs. normal lung tissues. LUSC lung squamous cell carcinoma.
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the 67 DEGs were significantly enriched in cell cycle, cell 
proliferation, glycolysis or gluconeogenesis, and tetrahydro-
folate metabolic process. Previous studies have illustrated that 
dysregulations of cell cycle and cell proliferation serve roles 
in the carcinogenesis and malignant change of LUSC (36-38). 
In addition, multiple studies have also shown that glycolysis 
or gluconeogenesis serve important roles in tumor initiation, 
progression and unfavorable prognosis in cancer  (39,40). 
Furthermore, gene polymorphism of tetrahydrofolate induces 
a decreased activity of tetrahydrofolate reductase, which 
affects the normal metabolism of folate in cells, where 
tetrahydrofolate metabolic disorder is closely associated with 
tumorigenesis (41,42). The findings of the present study were 
in accordance with the conclusions of previous studies and 
showed that GO and KEGG enrichment analyses were signifi-
cantly enriched in cell cycle, cell proliferation, glycolysis or 
gluconeogenesis, and tetrahydrofolate metabolic process. A 
total of 17 DEGs were identified as hub genes with an inter-
action node degree ≥10. The hub genes whose degrees were 
among the top five were TYMS, CCNB2, RFC4, BIRC5 and 
GAPDH, and the PPI network showed that they were directly 
interacting with each other.

Several studies have suggested that TYMS is a predictive 
biomarker to test for the effectiveness of pemetrexed used in 
chemotherapy for treating NSCLC (43,44). Lu et al (45) reported 
that the expression of TYMS was significantly upregulated 
among patients with lymph node metastasis. The expression of 
TYMS was also higher among patients with 5‑year recurrence 
rate. Besides, high expression of TYMS was found in the case 
of breast cancer, which resulted in increased susceptibility of 
an individual to the progression of the disease. Gene poly-
morphisms of TYMS have been reported to have potential in 
improving the diagnosis, prevention and treatment of breast 
cancer (46). Hence, several studies are now focusing on the 
association between gene polymorphic variations of TYMS 
with various types of cancer (47-49). BIRC5 was upregulated 
in 76% LUSC samples and the expression in LUSC tissues 
was significantly higher compared with that in non‑cancerous 
tissues (50). BIRC5 is a potential biomarker or therapeutic 
target of smoking‑associated LUSC (51). The expression of 
BIRC5 was higher among patients who are smokers compared 
with non‑smokers, and in squamous vs. non‑squamous lung 
tumor (P<0.001). The present study also demonstrated that 
BIRC5 expression level was negatively associated with the 
expression of tumor suppressor gene Tp53 (52). GAPDH serves 
a critical role in inhibiting the process of glycolysis in tumor 
cells (53). The expression of GAPDH was notably upregu-
lated in LUSC tissues, and an increased level of GAPDH 
significantly promotes the cell proliferation and migration in 
LUSC (54). CCNB2 as a member of the cell cyclin protein 
family, was significantly associated with different staging 
and metastatic statuses of tumors (P<0.001). Thus, CCNB2 
is a potential biomarker for evaluating metastatic status and 
therapeutic efficacy for cancer patients  (55). Additionally, 
the upregulation of CCNB2 was closely associated with the 
degree of differentiation, progression, lymph node metastasis, 
invasion and adverse prognosis in NSCLC (56). CCNB2 has 
also been found to be upregulated in patients with bladder and 
colorectal cancer (57). Thus, CCNB2 is a potential diagnostic 
biomarker and a therapeutic target for LUSC. RFC4 was 

involved in DNA replication and regulation of cell prolifera-
tion and cell cycle. Studies reported an association of RFC4 
with cancer progression and worse survival outcome, and the 
ability to predict response to radiotherapy and neoadjuvant 
radiotherapy in rectal cancer (58,59). RFC4 has been demon-
strated to be associated with several types of cancer, however 
the underlying carcinogenic mechanism needs to be further 
explored. The top five hub genes reported in the present study 
were associated with various types of cancer. Multiple studies 
have demonstrated that GAPDH and BIRC5 are associated 
with LUSC (50,54). However, to our knowledge, no previous 
studies reported TYMS, CCNB2 and RFC4 to be directly 
associated with LUSC. In the present study, ONCOMINE 
and UCSC analysis confirmed that the top five hub genes 
from clinical LUSC samples were significantly upregulated 
and were all associated with different staging of cancer and 
survival rate compared to that of other samples. Therefore, 
TYMS, CCNB2 and RFC4 are potential novel biomarkers of 
LUSC for further investigation.

Among the other 12 hub genes identified in the present 
study, MCM6, EZH2, CDK4, TPX2 and PRC1 were previ-
ously reported to be associated with LUSC. Minichromosome 
maintenance (MCM) proteins serve a critical role in cell 
proliferation and cell cycle. Meanwhile, MCM6 is often asso-
ciated with poor prognosis, particularly among male patients 
with LUSC and with a history of smoking (60). The presence 
of EZH2 was associated with the aggressiveness of cancer 
development. Behrens et al (61) analyzed 221 LUSC samples 
and 320 lung adenocarcinomas samples, which revealed 
significantly higher expression of EZH2 in LUSC compared 
with that of LUAD (P<0.0001). Cell cycle protein CDK4 has 
an established association with neoplasia and cancer progres-
sion. Recent studies have found that pathways including that of 
CDK4/6 were frequently altered in LUSC via diverse mecha-
nisms, suggesting CDK4/6 inhibitors as potential target for the 
treatment of LUSC (62,63). TPX2, which actively participates 
in the formation of spindle microtubules during mitosis, was 
significantly associated with cell differentiation and metastatic 
status of LUSC cells, suggesting its potential as a prognostic 
predictor of LUSC (64). PRC1, an important protein involved 
in cytokinesis, plays an important role in microtubule orga-
nization in eukaryotes (65). A recent study has implicated 
the overexpression of PRC1 in LUSC to be associated with 
increased susceptibility to lymph node metastasis and shorter 
survival time in patients with LUSC (66).

Literature review revealed that the interaction among 
LUSC and hub genes CKS1B, PTTG1, CKS2, CDC45, 
KPNA2, NCAPG and UBE2S has not been widely reported. 
These genes are potential novel biomarkers and therapeutic 
targets of LUSC. CKS1B, an adaptor for cyclin‑dependent 
kinases, was shown to be associated with chemoresistance, 
low chemosensitivity and poor prognosis in cancer. An 
elevated level of CKS1B has been reported to result in the 
resistance of cancer cells to bortezomib, and activation of the 
NEDD8 pathway, which in turn leads to further advancement 
of cancer. Thus, CKS1B is a potential novel target in multiple 
myeloma  (67). In addition, CKS1B promotes proteasomal 
degradation and ubiquitination of p27Kip1. Overexpression of 
CKS1B contributes to an increased turnover rate of p27Kip1 
and promotion of cancer cell proliferation, resulting in poor 
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prognosis in many types of cancer  (68). PTTG1 functions 
to regulate transcription, the G‑M phase of mitosis and the 
repair of DNA. Overexpression of PTTG1 has been reported 
in multiple types of cancer, in which PTTG1 is associated 
with metabolic processes, such as carcinogenesis, migration, 
invasion and epithelial‑mesenchymal transition in squamous 
cell carcinomas (69). Recent studies demonstrated that various 
non‑coding RNAs lead to cancer cell growth and metas-
tasis via PTTG1 (70,71). Therefore, PTTG1 is a potential and 
novel therapeutic target of LUSC tumor growth and metas-
tasis. CKS2, as a cyclin‑dependent kinase‑interacting protein, 
serves important roles in regulating cell cycle, inducing apop-
tosis, as well as regulating cancer cell invasion and metastasis. 
Upregulation of CKS2 can lead to DNA damage in cells, which 
can increase the proliferation of cancer cell (72). Therefore, the 
molecular mechanism by which CKS2 regulates cell cycle and 
induces cell apoptosis may be critical in investigating diag-
nostic methods and treatment methods for LUSC. CDC45 is an 
essential regulator of cell proliferation. An elevated expression 
of CDC45 is correlated with DNA damage in the S‑phase, in 
which the anti‑cancer effect of CDC45 suppressor is mediated 
by limiting DNA damage during S phase (73). KPNA2, as a 
member of the Karyopherin α family, actively participates in 
the process of signal transduction from the extracellular space 
to the nucleus. Furthermore, the upregulation of KPNA2 is 
correlated with cancer cell proliferation and metastasis (74). 
Moreover, several studies reported that KPNA2 is involved in 
the progression of cancer by regulating nuclear translocation 
of cancer‑associated proteins; which may explain the signifi-
cantly upregulated expression of KPNA2 in LUSC. NCAPG 
is a novel mitotic gene and provides novel therapeutic targets 
for cancer. Goto et al (75) reported that NCAPG, as a target 
of miR‑145‑3p, could predict the survival rate of patients with 
prostate cancer. UBE2S is a central protein in the process of 
ubiquitination and is associated with the malignancy of various 
types of cancer (76). Studies have reported the upregulation of 
UBE2S to enhance the nuclear translocation of β‑catenin and 
induced expression of c‑Myc and cyclin D1, suggesting UBE2S 
as a potential prognostic factor and oncogene in LUSC (77‑78).

In conclusion, the present study was conducted in order to 
identify potential DEGs that may be associated with carcino-
genesis or adverse progression of LUSC. A total of 67 DEGs 
and 17 hub genes were identified, in which hub genes were 
regarded as promising targets for the diagnosis and treatment 
of LUSC. Meanwhile, TYMS, CCNB2 and RFC4 were iden-
tified as potential novel biomarkers of LUSC. However, the 
present study was based on bioinformatics methods and no 
experiments were performed to validate the findings. Therefore, 
further studies are required to explore the biological association 
between the genes identified in the present study in LUSC, in 
order to improve treatments and clinical outcomes of LUSC.
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