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Abstract. Ovarian cancer is a major cause of mortality 
in women. However, the molecular events underlying the 
pathogenesis of the disease are yet to be fully elucidated. 
In the present study, an integrated bioinformatics analysis 
was performed to identify core genes involved in serous 
epithelial ovarian cancer. A total of three expression datasets 
were downloaded from the Gene Expression Omnibus data-
base, and included 46 serous epithelial ovarian cancer and 
30 ovarian surface epithelium samples. The three datasets 
were merged, and batch normalization was performed. The 
normalized merged data were subsequently analyzed for 
differentially expressed genes (DEGs). In total, 2,212 DEGs 
were identified, including 1,300 upregulated and 912 down-
regulated genes. Gene Ontology analysis revealed that these 
DEGs were primarily involved in ‘regulation of cell cycle’, 
‘mitosis’, ‘DNA packaging’ and ‘nucleosome assembly’. The 
main cellular components included ‘extracellular region part’, 
‘chromosome’, ‘extracellular matrix’ and ‘condensed chromo-
some kinetochore’, whereas the molecular functions included 
‘Calcium ion binding’, ‘polysaccharide binding’, ‘enzyme 
inhibitor activity’, ‘growth factor activity’, ‘cyclin‑dependent 
protein kinase regulator activity’, ‘microtubule motor activity’ 
and ‘Wnt receptor activity’. Kyoto Encyclopedia of Genes and 
Genomes pathway analysis revealed that these DEGs were 
predominantly involved in ‘Wnt signaling pathway’, ‘path-
ways in cancer’, ‘PI3K‑Akt signaling pathway’, ‘cell cycle’, 
‘ECM‑receptor interaction’, ‘p53 signaling pathway’ and 
‘focal adhesion’. The 20 most significant DEGs were identified 

from the protein‑protein interaction network, and Oncomine 
analysis of these core genes revealed that 13 were upregulated 
and two were downregulated in serous epithelial ovarian 
cancer. Survival analysis revealed that cyclin B1, polo like 
kinase 1, G protein subunit  γ transducin 1 and G protein 
subunit γ 12 are key molecules that may be involved in the 
prognosis of serous epithelial ovarian cancer. These core genes 
may provide novel treatment targets, although their roles in 
the carcinogenesis and prognosis of serous epithelial ovarian 
cancer require further study.

Introduction

The mortality rate of ovarian cancer ranks as the highest 
among gynecological tumors in the western world, and its inci-
dence is increasing on a yearly basis (1). This is due to a lack 
of specific symptoms, which impedes its early diagnosis and 
results in high recurrence rates following radical surgery and 
chemotherapy (1). Although treatment outcomes have greatly 
improved, the 5‑year survival rate of patients with ovarian 
cancer remains low, at 46.5% in 2017 (2), whereas the survival 
rate of patients with distant metastases is worse (29%). Out of 
all cases, ~70% are diagnosed at an advanced stage, and have 
poor prognosis (3). The 5‑year survival rate for patients with 
advanced ovarian cancer is only ~20%; however, if diagnosed 
early, this can increase to 85‑90% (4). Among the different 
pathological types, serous epithelial ovarian cancer is the most 
common (5). Therefore, an early diagnosis of serous epithelial 
ovarian cancer may greatly improve prognosis.

At present, the standard method for the early diagnosis 
and monitoring of ovarian cancer is ultrasound examination 
combined with serum tumor marker detection (6). However, 
the specificity of this diagnostic method is low, and the 
5‑year survival rate after diagnosis using this approach is 
only 30% (7). The occurrence and development of tumors are 
associated with accumulated molecular genetic or genomic 
alterations (8). For instance, high‑grade serous ovarian cancer 
cases frequently exhibit tumor protein p53 mutations and 
alterations in BRCA1/2 DNA repair associated and related 
homologous recombination genes, either by mutation, promoter 
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methylation or loss of heterozygosity (9). Therefore, it is impor-
tant to investigate the molecular mechanisms underpinning the 
malignant behavior of serous epithelial ovarian cancer cells 
to develop more effective methods for early diagnosis, and to 
identify more reliable molecular markers that may be used 
either as novel therapeutic targets or to assess prognosis. Gene 
expression microarray analysis is an efficient and large‑scale 
technique for obtaining genetic data (10). It has been widely 
used to explore gene expression profiles in numerous types 
of human cancer (11). Microarray data have become increas-
ingly available in the public domain over the last few years, 
in platforms such as the National Center for Biotechnology 
Information (NCBI) Gene Expression Omnibus (GEO) data-
base. The large volume of data that has been published in these 
public databases, and the integration of multiple databases, 
allow for an exhaustive study of underlying molecular mecha-
nisms. The integration and analysis of microarray data from 
several gene expression profiles may enable investigators to 
obtain more reliable molecular markers. However, since these 
data originate from different microarray products from a wide 
range of experiments using different reagents, which have also 
been performed by operators of varying proficiencies, a large 
degree of variability exists among datasets (12). This problem 
may be solved using batch normalization programs available 
in R software.

In the present study, we employed an integrated bioinfor-
matics approach to identify potential molecular markers for 
the early detection and prognosis of serous epithelial ovarian 
cancer. Furthermore, the markers obtained may be targets 
for the development of novel therapies for serous epithelial 
ovarian cancer.

Materials and methods

Microarray data. The GEO database (www.ncbi.nlm.nih.
gov/geo) is an international public repository that archives and 
distributes high‑throughput gene expression data and other 
functional genomics datasets  (13). The keywords ‘ovarian 
cancer gene expression’ were used to search the GEO data-
base, and the CEL files of GSE14407 (14), GSE54388 (15) 
and GSE38666 (16) datasets were downloaded for subsequent 
analysis. The quality of the gene chips was detected by RNA 
degradation mapping  (17). Only gene chips with a proper 
degradation slope in RNA degradation mapping were included 
in the subsequent analysis.

Data pre‑treatment and identification of differentially 
expressed genes (DEGs). All data were processed using R 
software (www.r‑project.org). The Affy package (version 3.9; 
www.bioconductor.org/packages/release/bioc/html/affy.html) 
was used to extract expression data from CEL files, and 
the Robust Multi‑Array Average method in R was used to 
perform quartile data normalization of the three expres-
sion datasets  (18). Following normalization, data from the 
three microarray datasets were merged to form a new gene 
expression profile. The sva package (version  3.9; biocon-
ductor.org/packages/release/bioc/html/sva.html.) in R was 
used to identify, estimate and remove unwanted sources 
of variation in high‑throughput experiments to eliminate 
the batch effect  (19). The DEGs between serous epithelial 

ovarian cancer and normal ovarian surface epithelial tissue 
from the three microarray datasets were analyzed using 
the Limma package (version 3.9; http://www.bioconductor.
org/packages/release/bioc/html/limma.html). Values of |log 
fold change (FC)|>1.0 and adjusted P<0.05 were selected as 
the cut‑off criteria for DEG selection.

GO and KEGG pathway enrichment analyses of DEGs. 
The DAVID database is an important online tool for gene 
function analysis. Gene Ontology (GO) analysis of the DEGs 
was performed using DAVID 6.7 (david.ncifcrf.gov). Kyoto 
Encyclopedia of Genes and Genomes (KEGG) is an online 
encyclopedia that assigns functions to genes and genomes at 
molecular and higher levels  (20). KEGG pathway analysis 
of DEGs was performed using KEGG Orthology‑Based 
Annotation System (KOBAS) 3.0 (kobas.cbi.pku.edu.cn), an 
online analysis tool. GO functional enrichment was assessed 
using the criteria of P<0.05 and false discovery rate (FDR) 
<0.05. P<0.05 was used to identify statistically KEGG path-
ways. Subsequently, the GOplot package (version 1.0.2; wencke.
github.io) was used to construct the Chord diagram, and the 
clusterProfiler package (version  3.9; www.bioconductor.
org/packages/release/bioc/html/clusterProfiler.html) was used 
to create the bar plot.

Protein‑protein interaction (PPI) networks. PPI networks may 
be used to understand normal cell function and to study disease 
pathogenesis (21). In the present study, the STRING database 
(string‑db.org) was used to explore the PPIs of the DEGs, with a 
cut‑off criterion set at an interaction score >0.99. PPI networks 
were constructed using Cytoscape software (version 3.6.1; 
https://cytoscape.org), which is a bioinformatics program for 
the visualization of molecular interaction networks. Each 
node in the PPI network represents a gene, protein or other 
molecule, and the connections between the nodes represent 
the interactions between these biomolecules. The most closely 
associated nodes may indicate core proteins or key genes with 
important physiological regulatory functions (22). Therefore, 
the interactions and pathway associations among proteins 
encoded by the DEGs in serous epithelial ovarian cancer were 
assessed in this manner.

Oncomine analysis of hub genes. Oncomine (www.oncomine.
org) is a bioinformatics program designed to collect, standardize 
and analyze cancer transcriptome data. It integrates RNA‑ and 
DNA‑sequencing data from various sources, including GEO, 
The Cancer Genome Atlas (TCGA) (https://cancergenome.
nih.gov) and published literature (23). A meta‑analysis of the 
selected hub genes in ovarian cancer compared with normal 
ovarian tissue was performed using Oncomine to compare 
these genes expression across different studies.

Kaplan‑Meier (KM) survival analysis. The KM estimate is 
a nonparametric statistic used to measure the percentage of 
patients living for a certain period of time following a specific 
treatment. The hub genes were analyzed using an online tool, 
KM Plotter (updated on 2/20/2019; kmplot.com/analysis), 
which was used to assess overall and progression‑free survival 
of patients with serous epithelial ovarian cancer by the log‑rank 
test. This tool was constructed using the gene expression and 
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survival data of 1,232 patients with serous epithelial ovarian 
cancer, which were downloaded from the GEO and TCGA 
databases (24).

Results

Details of the datasets. CEL files of the datasets GSE14407, 
GSE54388 and GSE38666 were downloaded from the 
GEO database. The platform used to generate data for all 
three datasets was the Human Genome U133 Plus 2.0 array 
(GPL570; HG‑U133_Plus_2; Affymetrix; Thermo Fisher 
Scientific, Inc.). These datasets are stored in a public repository 
(doi.org/10.6084/m9.figshare.8148608.v2) and are easily 
obtained. The GSE14407 dataset included data from 12 healthy 
ovarian surface epithelial samples and 12  laser‑capture 
microdissected serous ovarian cancer epithelial samples. 
The GSE54388 dataset included data from 6 human ovarian 
surface epithelial samples and 16 serous ovarian cancer 
epithelial samples. The GSE38666 dataset included data from 
12 normal ovarian surface epithelial samples and 18 serous 
cancer epithelial samples. The characteristics of these datasets 
are shown in Table  I. The data from the three microarray 
datasets were merged to form a novel gene expression profile, 
and the detailed results are available in a public repository 
(doi.org/10.6084/m9.figshare.8148617.v1). Gene chips of 
good quality from each dataset were selected for subsequent 
analysis. Additionally, the RNA degradation maps for the 
three datasets are shown in Fig. S1.

Identification of DEGs. The novel gene expression profile 
created by merging the three original microarray datasets was 
subsequently analyzed using the Limma package. According 
to the criteria of |log FC|>1.0 and adjusted P<0.05, 2,212 DEGs 
were identified, comprising 1,300 upregulated and 912 down-
regulated genes. The detailed results are shown in Table SI. 
Heat and volcano maps, illustrating the trends in DEG expres-
sion, are shown in Fig. 1.

GO term enrichment analysis. GO enrichment analysis was 
performed using the DAVID online analysis tool. GO enrich-
ment with FDR <0.05 is shown in Fig. 2A. GO enrichment 
with P<0.05 was divided into three functional groups, 
including molecular function, biological processes and 
cellular components. The parsed results are shown in Fig. 2B 
and Tables II‑IV. The distribution of certain DEGs in serous 
epithelial ovarian cancer for different GO enriched functions 
is shown in Fig. 3. The detailed results are shown in Table SII. 
The results revealed that these DEGs were mainly involved in 

the tumor‑associated biological processes such as cell cycle, 
cell division, mitosis and others.

KEGG pathway analysis. The most significantly enriched 
pathways of the DEGs were identified using the KOBAS 
database. The results of this analysis are shown in Table V and 
Fig. 4. The signaling pathways of DEGs were predominantly 
enriched in ‘Wnt signaling pathway’, ‘viral carcinogenesis’, 
‘pathways in cancer’, ‘PI3K‑Akt signaling pathway’, ‘cell 
cycle’, ‘extracellular matrix (ECM)‑receptor interaction’, ‘p53 
signaling pathway’ and ‘focal adhesion’.

PPI network construction. All DEGs were screened using 
the STRING database to further investigate their properties 
and the interactions among them. The PPI network of DEGs, 
with a criterion of interaction score >0.99, was built using 
Cytoscape software, and the results are shown in Fig. 5A. To 
identify core genes, the number of connections were counted 
for each gene. The detailed results are shown in Table SIII. 
The top 20 genes with the most connections, which represent 
the most important DEGs, are presented in Fig. 5B. Among 
the 20 closely associated genes, CDK1 exhibited the highest 
node degree of 106.

Oncomine analysis of hub genes. An Oncomine database 
analysis of cancer tissue compared with normal tissue was 
performed for the 20 core genes identified for serous epithe-
lial ovarian cancer. These meta‑analysis results revealed that 
cell division control protein 1 (CDC1), cyclin B1 (CCNB1), 
polo like kinase 1 (PLK1), cell division cycle 20 (CDC20), 
cyclin B2 (CCNB2), mitotic arrest deficient 2 like 1 (MAD2L1), 
cyclin A2 (CCNA2), histone cluster 1 H2B family member d 
(HIST1H2BD), centromere protein E (CENPE), BUB1 mitotic 
checkpoint serine/threonine kinase B (BUB1B), histone 
cluster 1 H2B family member h (HIST1H2BH), kinesin family 
member 2C (KIF2C) and aurora kinase A (AURKA) were 
upregulated, whereas G protein subunit γ 12 (GNG12) and 
G protein subunit γ 11 (GNG11) were downregulated, among 
the different datasets. The results of this analysis are shown 
in Fig. 6.

KM survival analysis. Survival analysis of the 20  core 
genes for serous epithelial ovarian cancer was performed 
by constructing a KM curve using the KM Plotter package. 
This analysis revealed that high expression levels of CCNB1, 
GNG12 and G protein subunit g transducin 1 (GNGT1), and low 
expression levels of PLK1 were associated with poor overall 
and progression‑free survival in patients with serous ovarian 

Table I. Characteristics of the three datasets.

GSE accession number	 GPL	 Organism	 Control samples, n	 Cancer samples, n	 Country

GSE14407	 GPL570	 Homo sapiens	 12	 12	 USA
GSE54388	 GPL570	 Homo sapiens	   6	 16	 USA
GSE38666	 GPL570	 Homo sapiens	 12	 18	 USA

GPL, Gene Expression Omnibus platform.
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cancer. In addition, high expression levels of AURKA, BUB1B, 
CDC20, CENPE and GNG11, and low expression levels of 
HIST1H2BN, were associated with poor overall survival, 
whereas high expression levels of adenylate cyclase 4 (ADCY4) 
and protein phosphatase 2 catalytic subunit α (PPP2CA) were 
associated with poor progression‑free survival. The results for 
overall and progression‑free survival analysis are shown in 
Fig. 7A and B, respectively.

Discussion

Ovarian cancer is the most prevalent gynecological cancer, 
and 75% of patients are diagnosed with advanced disease, 
of which only 20% survive for 5 years after diagnosis (25). 
The majority of patients with ovarian cancer are initially 
responsive to conventional chemotherapy, and enter clinical 
remission following initial treatment (26). However, tumor 
metastasis and recurrence occur in >70% of patients with 
ovarian cancer, despite treatment, and lead to mortality (27). 
Among the various types of ovarian cancer, serous epithelial 
ovarian cancer is the most common pathological type  (5). 
Therefore, exploring the molecular mechanisms of serous 
epithelial ovarian cancer development is important to identify 
novel molecular markers and therapeutic targets. Identifying 
effective methods for preventing the progression of ovarian 
cancer is particularly important for improving the overall and 
progression‑free survival of patients with serous epithelial 
ovarian cancer.

Previous research has suggested that molecular biomarkers 
may be used for the accurate diagnosis of cancer (28). These 

molecular markers may be more sensitive and specific than 
traditional screening methods, and they are easier to use (24). 
Microarray and high‑throughput sequencing technologies, 
capable of detecting the expression levels of tens of millions 
of human genes, have been widely used to identify molecular 
biomarkers and potential targets for the diagnosis and treat-
ment of cancer (29). Thus far, numerous basic research papers 
on the mechanisms of ovarian cancer have been published, 
but the 5‑year survival rate of patients with ovarian cancer 
remains relatively low. Furthermore, no biomarkers for 
predicting the prognosis or monitoring the effectiveness 
of treatments have been identified, since the majority of 
studies have focused on simple genetic events or the results 
of a single experimental study  (30). In the present study, 
three gene expression datasets from different experiments 
were combined and batch‑corrected using the sva package. 
They were subsequently analyzed using R software and other 
bioinformatics tools. A total of 2,212 DEGs were identified 
in the present study using the Limma package. This included 
1,300 upregulated and 912 downregulated genes. These were 
further divided into three groups through GO functional anno-
tation, including molecular functions, biological processes 
and cellular components. The molecular functions included 
‘Calcium ion binding’, ‘polysaccharide binding’, ‘enzyme 
inhibitor activity’, ‘growth factor activity’, ‘cyclin‑dependent 
protein kinase regulator activity’, ‘microtubule motor 
activity’, ‘Wnt receptor activity’ and ‘protein kinase regulator 
activity’. The biological processes included ‘regulation of cell 
cycle’, ‘mitosis’, ‘DNA packaging’, ‘DNA replication’, and 
‘Chromosome segregation’, whereas the cellular components 

Figure 1. Volcano and heat maps. (A) Red represents upregulated genes. Green represents downregulated genes. Black represents genes that were not signifi-
cantly altered. Genes were filtered based on |FC|>1.0 and a corrected P‑value <0.05. (B) Heat map of differentially expressed genes screened based on |FC|>1.0 
and a corrected P‑value <0.05. Red indicates that gene expression was relatively upregulated, whereas green indicates that gene expression was relatively 
downregulated. Black indicates that gene expression was not significantly altered; grey indicates that the level of gene expression was below the limit of 
detection. GEO, Gene Expression Omnibus; FC, fold change; adj.p‑val, adjusted P‑value; N, normal tissue; T, tumor tissue.
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included ‘extracellular region part’, ‘chromosome’, ‘extra-
cellular matrix’, ‘microtubule cytoskeleton’, ‘nucleosome’, 
‘spindle’ and ‘condensed chromosome kinetochore’. The 

majority of these enrichment functions are associated with 
tumorigenesis and development. For instance, growth factor 
activity in various types of cancer is able to regulate cell 

Figure 2. GO enrichment analysis of DEGs in ovarian cancer. (A) GO enrichment with FDR <0.05 in ovarian cancer and (B) GO analysis with a P‑value <0.05. 
DEGs were divided into three functional groups: Biological processes, cellular components and molecular functions. GO, Gene Ontology; DEG, differentially 
expressed gene; FDR, false discovery rate.
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proliferation, differentiation and apoptosis, thus affecting 
the ability of cells to self‑renew, migrate, senesce or undergo 
apoptosis  (31). Cyclin‑dependent kinases (CDKs/cyclins) 
form a family of heterodimeric kinases that serve important 
roles in regulating cell cycle progression, transcription and 
other major biological processes (32). Alterations in CDK 
activity affect the proliferation of cancer cells, and abnormal 
activities of these proteins have been reported in various 

types of human cancer, such as pancreatic cancer (32,33). 
Wnt signaling regulates an evolutionarily conserved pathway 
that serves an important role in numerous cellular activities, 
including cell proliferation, calcium homeostasis and cellular 
polarity (34). Wnt receptor activity is upregulated in a variety 
of cancer types, such as colorectal and gastric cancer (34‑36). 
Microtubules are dynamic structures that are involved in 
cell movement, intracellular trafficking and mitosis  (37). 

Table III. Enrichment of cellular components.

Term	 Description	 Gene count, n	 P‑value

GO:0044421	 Extracellular region part	 144	 3.98x10‑10

GO:0000793	 Condensed chromosome	 34	 2.21x10‑8

GO:0005819	 Spindle	 36	 5.96x10‑8

GO:0031012	 Extracellular matrix	 63	 7.92x10‑8

GO:0005578	 Proteinaceous extracellular matrix	 59	 1.55x10‑7

GO:0000777	 Condensed chromosome kinetochore	 20	 3.54x10‑7

GO:0005694	 Chromosome	 75	 4.68x10‑7

GO:0000779	 Condensed chromosome	 21	 7.25x10‑7

GO:0015630	 Microtubule cytoskeleton	 83	 2.51x10‑6

GO:0005876	 Spindle microtubule	 11	 1.34x10‑4

GO:0005615	 Extracellular space	 90	 2.11x10‑4

GO:0005815	 Microtubule organizing center	 41	 2.91x10‑4

GO:0031262	 Ndc80 complex	 4	 0.002697
GO:0000786	 Nucleosome	 14	 0.003458
GO:0032993	 Protein‑DNA complex	 15	 0.020501

GO, Gene Ontology; Ndc80, NDC80 kinetochore complex component.

Table II. Enrichment of biological processes.

Term	 Description	 Gene count, n	 P‑value

GO:0000280	 Nuclear division	 63	 1.52x10‑16

GO:0007067	 Mitosis	 63	 1.52x10‑16

GO:0048285	 Organelle fission	 63	 1.65x10‑15

GO:0051301	 Cell division	 71	 3.59x10‑14

GO:0007059	 Chromosome segregation	 27	 5.61x10‑9

GO:0051726	 Regulation of cell cycle	 62	 6.58x10‑8

GO:0006323	 DNA packaging	 31	 1.24x10‑7

GO:0007051	 Spindle organization	 18	 1.71x10‑7

GO:0065004	 Protein‑DNA complex assembly	 24	 4.68x10‑6

GO:0007017	 Microtubule‑based process	 44	 4.44x10‑5

GO:0006260	 DNA replication	 35	 9.68x10‑5

GO:0007155	 Cell adhesion	 89	 0.001049
GO:0042127	 Regulation of cell proliferation	 98	 0.001138
GO:0016477	 Cell migration	 42	 0.001186
GO:0006259	 DNA metabolic process	 67	 0.001746
GO:0001525	 Angiogenesis	 26	 0.001804
GO:0008283	 Cell proliferation	 59	 0.002059

GO, Gene Ontology.
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Figure 3. Distribution of a number of differentially expressed genes in ovarian cancer for cancer‑associated GO enrichment. GO, Gene Ontology; FC, fold 
change.

Table IV. Enrichment of molecular function.

Term	 Description	 Gene count, n	 P‑value

GO:0004857	 Enzyme inhibitor activity	 43	 1.20x10‑4

GO:0001871	 Pattern binding	 28	 2.80x10‑4

GO:0030247	 Polysaccharide binding	 28	 2.80x10‑4

GO:0030246	 Carbohydrate binding	 51	 3.27x10‑4

GO:0005509	 Calcium ion binding	 109	 4.52x10‑4

GO:0005539	 Glycosaminoglycan binding	 25	 8.32x10‑4

GO:0008083	 Growth factor activity	 24	 0.01087
GO:0016538	 Cyclin‑dependent protein kinase regulator activity	 6	 0.01207
GO:0003777	 Microtubule motor activity	 14	 0.01373
GO:0005201	 Extracellular matrix structural constituent	 15	 0.01470
GO:0004859	 Phospholipase inhibitor activity	 5	 0.01543
GO:0051287	 NAD or NADH binding	 10	 0.01735
GO:0046915	 Transition metal ion transmembrane transporter activity	 7	 0.02473
GO:0042813	 Wnt receptor activity	 4	 0.03605
GO:0019887	 Protein kinase regulator activity	 13	 0.04381

GO, Gene Ontology.
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Alterations in microtubule activity have been reported in a 
range of cancer types, such as breast and non‑small cell lung 

cancer  (37). These alterations have been associated with 
poor prognosis and chemotherapy resistance in solid and 

Figure 4. Bar plots were constructed using R software. The x‑axis represents the number of genes enriched in the corresponding pathway. The color represents 
the P‑value.

Table V. Kyoto Encyclopedia of Genes and Genomes pathways of differentially expressed genes in ovarian cancer.

ID	 Term	 Gene count, n	 P‑value

hsa01100	 Metabolic pathways	 124	 1.58x10‑16

hsa04110	 Cell cycle	 35	 2.86x10‑16

hsa05200	 Pathways in cancer	 52	 2.32x10‑11

hsa05203	 Viral carcinogenesis	 36	 2.33x10‑11

hsa04114	 Oocyte meiosis	 24	 8.04x10‑9

hsa04151	 PI3K‑Akt signaling pathway	 42	 1.02x10‑8

hsa04310	 Wnt signaling pathway	 24	 1.00x10‑7

hsa05205	 Proteoglycans in cancer	 28	 4.20x10‑7

hsa04512	 ECM‑receptor interaction	 16	 2.40x10‑6

hsa04115	 p53 signaling pathway	 14	 6.84x10‑6

hsa00350	 Tyrosine metabolism	 10	 1.14x10‑5

hsa05217	 Basal cell carcinoma	 12	 1.63x10‑5

hsa04914	 Progesterone‑mediated oocyte maturation	 16	 1.76x10‑5

hsa04510	 Focal adhesion	 24	 2.43x10‑5

hsa04974	 Protein digestion and absorption	 14	 9.22x10‑5

hsa04550	 Signaling pathways regulating pluripotency of stem cells	 18	 0.00011
hsa04014	 Ras signaling pathway	 24	 0.00012
hsa05222	 Small cell lung cancer	 13	 0.00020
hsa04150	 mTOR signaling pathway	 18	 0.00027
hsa03030	 DNA replication	 8	 0.00037

ECM, extracellular matrix.
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Figure 5. PPI network of DEGs. (A) PPI network of DEGs with the criterion of interaction score >0.99. (B) Top 20 genes with the most connection nodes. The 
x‑axis represents the number of connections. PPI, protein‑protein interaction; DEG, differentially expressed gene.
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hematological types of cancer (37). Nucleosome assembly 
following DNA replication, DNA repair and gene transcrip-
tion is critical for the maintenance of genome stability and 
epigenetic information  (38). Alterations or mutations that 
affect nucleosome assembly have also been implicated in 
certain types of cancer, such as cervical cancer (38,39).

In addition, the enriched KEGG pathways of DEGs 
identified in the present study included the ‘cell cycle’, 
‘pathways in cancer’, ‘PI3K‑Akt signaling pathway’, ‘Wnt 
signaling pathway’, ‘ECM‑receptor interaction’, ‘mTOR 
signaling pathway’ and ‘focal adhesion’. The significance of 
the PI3K‑Akt signaling pathway in ovarian cancer has been 

Figure 6. Oncomine analysis of core serous epithelial ovarian cancer genes in cancer vs. normal tissue across multiple datasets.



ONCOLOGY LETTERS  18:  5508-5522,  20195518

Figure 7. Kaplan‑Meier survival curve analysis of the core genes. (A) Overall survival and (B) progression‑free survival analyses are shown. HR, hazard ratio.
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reported previously (40). In a copy number analysis on 93 
primary ovarian tumors using array comparative genomic 
hybridization, Huang et al (40) identified that the PI3K‑Akt 
signaling pathway was the most frequently altered cancer‑asso-
ciated signaling pathway. The Wnt/β‑catenin signaling 
pathway regulates a variety of fundamental cellular functions, 
including proliferation, polarity, adhesion and motility during 
development, differentiation and adult tissue homeostasis (41). 
Furthermore, the Wnt/β‑catenin signaling pathway has been 
demonstrated to be essential for the growth and progres-
sion of ovarian cancer (42). Bodnar et al (43) demonstrated 
that activation of the Wnt/β‑catenin signaling pathway may 
facilitate the proliferation and differentiation of ovarian 
cancer cells, inhibit apoptosis and promote ovarian cancer 
growth (43). The mTOR signaling pathway regulates several 
major physiological processes, including protein synthesis, 
macromolecular biosynthesis, cytoskeleton remodeling, 
angiogenesis, survival, metabolism, autophagy and response 
to stress (44). Due to its pivotal role in cell growth and differ-
entiation, its dysregulation is associated with pathological 
conditions, including tumor transformation and progression 
in breast, gastrointestinal, liver and prostate cancer (45). The 
detection of components of these signaling pathways, and 
their expression levels, may help predict the occurrence and 
development of serous epithelial ovarian cancer, and provide 
potential therapeutic targets.

In the present study, 20 closely associated genes were iden-
tified by constructing a PPI network of proteins encoded by 
DEGs. Oncomine analysis further revealed that the following 
15 genes were core serous epithelial ovarian cancer‑associated 
genes among the different datasets: CDC1, CCNB1, PLK1, 
CDC20, CCNB2, MAD2L1, CCNA2, HIST1H2BD, CENPE, 
BUB1B, HIST1H2BH, KIF2C, AURKA, GNG12 and GNG11. 
Among the 20  closely associated genes, CDK1 exhibited 
the highest node degree of 106. CDK1 is an important cell 
cycle‑regulating protein that serves key roles in the cell cycle 
G2/M‑phase regulation network  (46). Upregulated protein 
expression levels of CDK1 have been detected in numerous 
human malignant tumor tissues, and have been found to be 
closely associated with the malignant prognosis  (47,48). 
Yang et al (49) demonstrated that high expression levels of 
cytoplasmic CDK1 promote the growth of epithelial ovarian 
cancer cells, indicating a poor overall survival rate  (49). 
Therefore, CDK1 is expected to be an effective therapeutic 
target for epithelial ovarian cancer by disrupting the ovarian 
cancer cell cycle. Survival analysis identified CCNB1, PLK1, 
GNG12 and GNGT1 as being associated with the overall and 
progression‑free survival of patients with serous epithelial 
ovarian cancer. In addition, high expression levels of AURKA, 
BUB1B, CDC20, CENPE and GNG11, and low expression 
levels of HIST1H2BN, were associated with poor overall 
survival of serous epithelial ovarian cancer, whereas high 
expression levels of ADCY4 and PPP2CA were associated 
with poor progression‑free survival.

CCNB1 is a mitotic cyclin, due to its crucial role in 
modulating G2/M‑phase progression in the cell cycle (50). It 
has been demonstrated to be involved in cell growth, differen-
tiation, apoptosis and metastasis in numerous types of cancer 
such as lung cancer (51‑53). Previous studies have indicated 
that CCNB1 is associated with malignancy, and upregulation 

of CCNB1 has been identified as a marker of poor prognosis 
in patients with non‑small cell lung cancer, head and neck 
squamous cell carcinoma, breast cancer and hepatocellular 
carcinoma (54‑57). Therefore, CCNB1 has the potential to also 
be a molecular marker of ovarian cancer prognosis. PLK1 is 
a member of the polo subfamily of serine/threonine protein 
kinases (collectively referred to as PLKs), which serve key 
roles in a variety of cellular processes, including cell cycle 
progression, differentiation and survival (58). Overexpression 
of PLK1 in breast cancer cells is able to initiate transcriptional 
programs required for mitosis by phosphorylating the tran-
scription factor forkhead box M1, overriding the DNA damage 
checkpoint, contributing to the induction of invasiveness by 
phosphorylating vimentin and impairing mitotic integrity, 
which lead to aneuploidy and are associated with tumor 
formation (59). PLK1 is upregulated in various types of human 
cancer, including glioma, thyroid cancer, head and neck squa-
mous cell carcinoma, melanoma, and colorectal, esophageal, 
ovarian, breast and prostate cancer (60). Weichert et al (61) 
reported that PLK1 is frequently upregulated in malignant 
epithelial ovarian tumors, and that this upregulation is associ-
ated with mitosis and poor prognosis in patients (61). However, 
a recently published study revealed that overexpression of 
PLK1 could act as a tumor suppressor by disrupting mitotic 
progression and cytokinesis in vitro and in vivo, and an increase 
in PLK1 levels in patients with breast cancer was associated 
with an improved prognosis (62). In the present study, high 
expression levels of PLK1 were associated with an improve-
ment in overall and progression‑free survival of patients with 
serous epithelial ovarian cancer. However, further research is 
required to explore the association between PLK1 and survival 
in such patients.

GNG12 is a member of the G‑protein family, corre-
sponding to the G‑protein γ12 subunit (63). Larson et al (64) 
revealed that GNG12 is a negative regulator of the response to 
lipopolysaccharide, and may be a critical factor in the overall 
inflammatory signaling cascade (64). Proteomic analysis has 
demonstrated that GNG12 regulates cell growth and casein 
synthesis by activating the Leu‑mediated mTOR complex 
1 signaling pathway  (65). However, at present, a limited 
number of studies have been published regarding GNG12, 
and therefore further studies are required to determine its 
role in cancer. CENPE is a kinesin motor protein found in 
kinetochore protein complexes, whose motility is required 
for medium‑term correct chromosomal alignment  (66). 
Balamuth et al (67) reported that CENPE may be a novel target 
for neuroblastoma. In addition, CENPE has been revealed to be 
upregulated in invasive breast tumors compared with normal 
breast tissue (68). BUB1B exerts an important role in spindle 
assembly checkpoint signaling and the stable attachment of 
kinetochore and spindle microtubules (69‑71). Therefore, the 
disruption of BUB1B function often leads to abnormal mitosis. 
A growing body of evidence suggests that BUB1B serves a 
key role in several types of cancer, including breast, stomach, 
colorectal and prostate cancer (72‑75).

AURKA, a member of the serine/threonine kinase family, is 
localized on centrosomes and mitotic spindles, where it medi-
ates mitotic progression and chromosomal stability (76). The 
AURKA gene is upregulated in numerous types of malignan-
cies, including bladder, breast, colon, liver, ovarian, pancreatic, 
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gastric and esophageal cancer (77). Several previously published 
studies have revealed that upregulation of AURKA in clinical 
head and neck squamous cell carcinoma (HNSCC) specimens 
is associated with invasion, advanced stage and poor prog-
nosis (78,79). Mignogna et al (80) revealed that AURKA may 
be used to predict resistance to platinum‑based chemotherapy, 
and as a prognostic factor in ovarian cancer. Therefore, AURKA 
warrants further investigation in prospective clinical trials, and 
may have prognostic and therapeutic value in ovarian cancer.

In conclusion, the present study integrated multiple micro-
array datasets from the NCBI GEO database into one dataset, 
which was subsequently subjected to bioinformatics analysis. 
DEGs were identified, GO and KEGG analyses were performed 
and a PPI network of DEGs in serous epithelial ovarian cancer 
was constructed. DEGs were revealed to be mainly enriched 
in pathways associated with tumor formation and develop-
ment, such as ‘Wnt signaling pathway’, ‘PI3K‑Akt signaling 
pathway’, ‘pathways in cancer’ and ‘mTOR signaling pathway’, 
which provide a theoretical basis for studying the biological 
processes of serous ovarian cancer. In addition, the Oncomine 
database was used to compare the identified candidate genes 
across multiple databases. Finally, the effect of these genes on 
survival rate was investigated. Overall, the results obtained in 
the present study enhanced the understanding of the patho-
genesis of serous epithelial ovarian cancer and provided novel 
avenues for investigating the potential molecular mechanisms. 
The present study had important clinical implications for the 
early diagnosis, prognosis and development of more precise 
molecular therapies of ovarian cancer, although further studies 
are required to validate the identified candidate genes.
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