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Abstract. The aim of the present study was to identify 
candidate prognostic DNA methylation biomarkers for lung 
adenocarcinoma (LUAD), since the modern precise medi-
cine for the treatment of LUAD requires more biomarkers 
and novel therapeutic targets of interest. DNA methylation 
profiling data of LUAD were downloaded from The Cancer 
Gene Atlas portal. Differentially methylated genes (DMGs) 
were screened to differentiate between samples designated 
as good and bad prognosis. LUAD-associated methylation 
modules were obtained with the weighted correlation network 
analysis (WGCNA) package, followed by function enrichment 
analysis. Optimal prognostic DMGs were selected using the 
LASSO estimation-based Cox-PH approach and were used to 
construct a prognostic risk scoring system. The training set was 
dichotomized by risk score, into high- and low-risk groups. The 

differences in overall survival (OS) time or recurrence-free 
survival (RFS) time between the two groups were evaluated 
using a Kaplan-Meier curve. A total of 742 DMG samples 
were screened for good and bad prognosis. WGCNA identi-
fied three LUAD‑associated modules, which were primarily 
associated with cytoskeleton organization, transcription and 
apoptosis. A nine-gene prognostic methylation signature was 
determined, which included C20orf56, BTG2, C13orf16, 
DNASE1L1, ZDHHC3, FHDC1, ARF6, ITGB3 and ICAM4. A 
risk score‑based methylation signature classified the patients 
in the training set into high‑ and low‑risk groups with signifi-
cantly different OS or RFS times. The prognostic value of the 
methylation signature was successfully verified in a validation 
set. In conclusion, the present study identified a nine‑gene 
methylation signature for the prediction of survival and recur-
rence in patients with LUAD and improved the understanding 
of the alterations in DNA methylation in LUAD.

Introduction

Lung adenocarcinoma (LUAD) is the most predominant 
subtype of non-small cell lung cancer (NSCLC), with increased 
incidence over the past decades worldwide (1,2). LUAD is 
usually observed in the peripheral region of the lungs, with 
a poor overall five‑year survival rate of 15% worldwide in 
2008 (3). Due to resistance to radiation therapy, LUAD is often 
treated surgically (4). Nonetheless, approximately a third of 
patients relapse within five years of surgical removal (5).

DNA methylation, a primary epigenetic modification in 
the mammalian genome, often occurs at CpG islands, leading 
to altered tumor suppressor gene transcription (6). Aberrant 
DNA methylation plays a key role in the progression and 
metastasis of LUAD, reflecting important biological features 
in the etiology (7). Zhu et al (8) identified a group of genes 
with differentially methylated loci in LUAD. Han et al (9) 
found that methylated PTPRF (protein tyrosine phosphatase, 
receptor type F), HOXD3 (homeobox D 3), HOXD13 and 
CACNA1A (calcium voltage-gated channel subunit alpha1 A) 
may be potential markers of LUAD, based on DNA methylation 
profiling analysis. Furthermore, Sandoval et al (10) suggested 
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a prognostic signature based on five hypermethylated genes for 
early stage NSCLC. Additionally, Kuo et al (11) established 
a proof-of-concept prognostic signature of eight methylated 
probes for survival prediction in Asian and Caucasian popu-
lations with early-stage LUAD. Despite these remarkable 
findings, there is a lack of a prognostic DNA methylation 
signature for LUAD.

In the present study, genome-wide methylation analysis 
was carried out on the methylation data of 425 patients with 
LUAD, with corresponding clinicopathological features 
from The Cancer Genome Atlas (TCGA). LUAD-associated 
co-methylation modules were mined with the weighted corre-
lation network analysis (WGCNA) package. Furthermore, a 
group of differentially methylated genes (DMGs) predic-
tive of survival were identified for LUAD by performing 
differential DNA methylation, correlation, univariate Cox 
regression and L1 penalized (LASSO) Cox proportional 
hazards (PH) regression analyses. These findings may 
potentially contribute to a deeper insight into the epigenetic 
landscape of LUAD and improve the prognostic evaluation 
of patients.

Materials and methods

Data resources. DNA methylation data and the corresponding 
survival information of 425 LUAD tissue samples were 
downloaded from TCGA portal (https://gdc-portal.nci.nih.
gov/) on May 26th, 2018, based on the Illumina Infinium 
Human Methylation 450 BeadChip platform, and were used 
as the training set in the present study. The GSE39279 dataset 
was downloaded from the National Center for Biotechnology 
Information Gene Expression Omnibus (NCBI GEO) 
database (http://www.ncbi.nlm.nih.gov/geo/), based on the 
Illumina Infinium Human Methylation 450 BeadChip plat-
form, consisting of the gene methylation data of 443 NSCLC 
samples. Among these samples, 155 LUAD samples with 
available survival information were selected as the validation 
set. The clinicopathological features of the training set and the 
validation set are shown in Table I.

Differential DNA methylation analysis. A bad prognosis 
was defined as patients who died or who had a survival time 
<12 months, whereas a good prognosis indicated living patients 
who survived >24 months. According to the annotation profiles 
provided by the platform, only the DNA methylation loci in 
CpGs were reserved. The comparison of samples associated 
with good and bad prognosis from the TCGA set, identified 
differentially methylated CpGs (DM CpGs), using the limma 
package (12) of R language (version 3.34.7; https://biocon-
ductor.org/packages/release/bioc/html/limma.html). A strict 
cut-off value was set at false discovery rate (FDR)<0.05 and 
|Log2fold change (FC)|>0.1. The genes mapped by the identi-
fied DM CpGs were defined as the DMGs.

Co‑methylation analysis. In order to analyze the 
inter-cor relation among the identif ied DM CpGs, 
co-methylation network analysis was carried out using the 
WGCNA R package (version 1.63; https://cran.r-project.
org/web/packages/WGCNA/index.html), as previously 
described (13). Briefly, a thresholding power function (β) of 

5 was chosen to fit a scale‑free network. Topological overlap 
matrix (TOM) was then calculated to measure the correlations 
between the methylation levels of two genes. The resulting 
hierarchical clustering dendrogram was obtained, followed by 
selection of the modules with a minimum module size of 100 
and a minimum cut height of 0.95, using the Dynamic Tree 
Cut algorithm. These identified DM CpGs were then mapped 
to the modules obtained by WGCNA analysis. The enrich-
ment of target DM CpGs in each module was assessed by 
hypergeometric-based test (14), using the following formula: 
f (k, N, M, n) = C (k, M) x C (n-k, N-M)/C (n, N).

The modules with P<0.05 and fold enrichment >1 were 
further selected as LUAD-associated modules and subjected 
to Gene ontology (GO) enrichment analysis using the DAVID 
6.8 software (15,16). This revealed the biological functions of 
the DMGs clustered in these modules.

Correlation of DNA methylation level with gene expression 
level. The genome-wide expression data of the LUAD samples 
in the TCGA set was obtained. The correlation between the 
overall methylation level and the overall gene expression level 
of the DMGs, included in the LUAD-associated modules, 
was analyzed with the cor.test function of R language by 
calculating the Pearson's correlation coefficient (PCC) (17). 
Subsequently, the PCC of the overall methylation level of each 
individual gene, with its overall gene expression level was also 
computed. The genes with negative PCC and P<0.05 were 
used for further analysis.

Construction of a prognostic risk scoring model based on the 
training set. Univariate Cox regression analysis was performed 
to identify the prognosis-associated DMGs from the aforemen-
tioned genes with negative PCC, using the survival package of 
R language (18) (http://bioconductor.org/packages/survivalr/), 
with log-rank P<0.05 as the cutoff.

A LASSO estimation-based Cox-PH model (19) was used 
to select the optimal panel of genes predictive of prognosis 
from these prognosis-related DMGs by the penalized package 
(version 0.9-50) (20) of R language. Combining the Cox-PH 
coefficients of the optimal genes with their methylation levels, 

Table I. Clinicopathological characteristics of patients in the 
training set and the validation set.

Clinicopathological Training set Validation set
characteristics (n=425) (n=155)

Age, years (mean ± SD) 65.12±10.04 65.11±10.85
Sex, male/female 198/227 76/79
Death, dead/alive/- 120/305 -
OS time, months 22.13±28.39 -
(mean ± SD)
RFS time, months  18.802±26.34 54.68±45.62
(mean ± SD)
Recurrence, yes/no 87/228 68/87

SD, standard deviation; -, information unavailable; OS, overall 
survival; RFS, recurrence-free survival.
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a risk scoring model was constructed for predicting survival as 
follows: Risk score = ∑ coefgene x methylationgene, where coefgene 

represents the Cox‑PH coefficient of a gene and methylationgene 

represents the methylation level of a gene.
A risk score was assigned to each patient in TCGA dataset 

and the median risk score for all patients was calculated to 
divide patients into a low-risk group (risk score below the 
median value) and a high-risk group (risk score above the 
median value). To estimate the overall survival (OS) time 
and recurrence-free survival (RFS) time of the patients in 
the two risk groups, the Kaplan-Meier estimate (21) was used 
together with the Wilcoxon log rank test. The areas under the 
receiver operating characteristic (AUROC) curves were used 
to evaluate the prognostic ability of the risk scoring model and 
tested in the validation set.

Results

DM CpGs between samples with good and bad prognosis. 
With regard to the DNA methylation data of the TCGA set, 
15654 methylated loci in CpGs were retained, according to the 
Illumina 450 K methylation platform. This set was comprised 
of 41 samples with bad prognosis and 72 samples with good 
prognosis. As shown in Fig. 1A, a total of 742 DMGs (3.79x10-7 

<P-nominal <6.84x10-4, 2.77x10-5 <FDR <0.05) were identi-
fied between the samples with good and bad prognosis. Kernel 
density plotting of log2FC showed that of the 742 DMGs, 289 

were hypermethylated, whereas 453 were hypomethylated in the 
samples with good prognosis (Fig. 1B). Two-way hierarchical 
clustering analysis based on the methylation levels of these 
DMGs revealed that the subjects in the TCGA set were clus-
tered into two different groups (Fig. 1C). Furthermore, out of 
the CpGs of the 742 identified DMGs, 447 were located in gene 
bodies, 155 in 5' untranslated regions (UTRs), 98 in 3'UTRs and 
42 in promoters. The top 20 DMGs were chosen according to 
their FDR value and shown in ascending order in Table II.

LUAD‑associated co‑methylation modules. For the purpose 
of detecting LUAD-associated co-methylation modules, a 
weighted gene co-methylation network was constructed for 
the identified DMGs. As depicted in Fig. 2A and B, the DMGs 
with significantly correlated methylation level (P<0.05) were 
assigned into 13 methylation modules (Table III). The DMGs 
without significant correlation in their methylation level were 
grouped into the grey module.

The enrichment of the DMGs in each module was analyzed 
using a hypergeometric-based test. Three modules with fold 
enrichment >1 and P<0.05 were identified as LUAD‑associated 
methylation modules (black module, size=68; pink module, 
size=27; salmon module, size=26; Fig. 2C). Moreover, GO 
enrichment analysis found that the total of 121 DMGs in the 
three modules were highly enriched in 16 biological processes, 
primarily associated with cell death, cytoskeleton organiza-
tion and cell junction organization (Table IV).

Figure 1. Analysis of DMGs between samples with good and bad prognosis. (A) Volcano plot of effect size log2(FC) against -log10(FDR) of DMGs. Red spots 
represent DMGs with FDR<0.05 (horizontal red dashed line) and |log2FC| >0.1 (two vertical red dashed lines). (B) Kernel density plotting of log2(FC) displays 
289 DMGs of hypermethylation (61.05%) and 453 DMGs of hypomethylation (38.95%). (C) Two‑way hierarchical clustering analysis of the samples in the The 
Cancer Genome Atlas set, using a heatmap based on the methylation level of the DM CpGs. The color bar represents CpG methylation level (green to red, low 
to high level). FC, fold changes; FDR, false discovery rate; DMGs, differentially methylated genes.
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Development and validation of a prognostic scoring model 
based on DMGs. The methylation levels of the 121 DMGs 
clustered in the three LUAD-associated modules were nega-
tively correlated with their overall gene expression levels 
(PCC=-0.5008, P=1.618x10-8; Fig. 3). Furthermore, the nega-
tive correlation between the methylation level of the individual 
gene and its gene expression level was observed in 94 genes, 
of which 58 DMGs were found to be significantly associated 
with survival via univariate Cox regression analysis (P<0.05, 
Table V). Consequently, a LASSO Cox PH model was fitted 
with the methylation level of the 58 prognosis-associated 
DMGs. When the cross-validated likelihood (CVL) reached 
the maximal value of 1.537, the optimal λ value was -691.265. 
As a result, the most powerful prognostic panel of genes was 
selected, including C20orf56, BTG anti-proliferation factor 2 
(BTG2), C13orf16, deoxyribonuclease 1 Like 1 (DNASE1L1), 
zinc finger DHHC‑type containing 3 (ZDHHC3), FH2 domain 

containing 1 (FHDC1), ADP ribosylation factor 6 (ARF6), 
integrin subunit beta 3 (ITGB3) and intercellular adhesion 
molecule 4 (ICAM4) (Table VI).

The association of the methylation level of the nine prog-
nostic genes and survival was investigated. All samples in the 
TCGA set were dichotomized into hypermethylated group and 
hypomethylated group, based on the median methylation level 
of each prognostic gene, separately (Fig. 4). For C20orf56, 
BTG2, ZDHHC3, FHDC1 and ICAM4, the hypomethylated 
samples showed better prognosis compared with the hyper-
methylated samples (P<0.05). By contrast, DNASE1L1, ARF6, 
ITGB3 and C13orf16 had significantly longer OS time in 
the hypermethylated samples relative to the hypomethylated 
samples.

The association between the gene expression level of the 
nine predictive genes and prognosis was also underscored. 
Specifically, all samples in the training set were divided into a 

Figure 2. WGCNA methylation modules. (A) A hierarchical clustering dendrogram generated by WGCNA analysis. A total of 14 modules were identified and 
depicted in different colors. The colored row underneath shows the module assignment determined by the Dynamic Tree Cut. (B) The number of differentially 
methylated genes mapped to different modules. (C) Fold enrichment of each module. Fold enrichment represents enrichment of differentially methylated CpGs 
in each module. *P<0.05, **P<0.01 and ***P<0.001. WGCNA, weighted correlation network analysis.
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high- and low-expression group, according to the median expres-
sion level of each gene, separately. High expression of C20orf56, 
BTG2, ZDHHC3, FHDC1 and ICAM4 showed significantly 
improved prognosis in comparison with low expression samples 
(Fig. 5). Concerning DNASE1L1, ARF6, ITGB3 and C13orf16, 
improved survival was reported in the low-expression samples 
relative to high-expression samples (Fig. 5). For prognosis strati-
fication, a prognostic scoring system was developed as follows: 

Risk score = (0.8529) x methylationcg00933153 + (0.9931) x meth-
ylationcg01798157 + (-0.5670) x methylationcg01963754 + (-0.1602) x 
methylationcg04324559 + (0.6870) x methylationcg04432377 + (1.0356) x 
methylationcg07097184 + (-0.9612) x Methylationcg10156217 + (-0.4113) 
x methylationcg10753610 + (0.4918) x methylationcg21494776.

The risk score was calculated for each individual patient in 
the TCGA set accordingly. All patients in the TCGA set were 
classified into a high‑ and low‑risk group by risk score using the 

Table III. Methylation modules from weighted correlation network analysis.

Module Count of Correlation  Count of Enrichment fold 
color CpGs efficient Pcorr DM CpGs (95% CI) Phyper

Black 468 0.502 0.0024 68 2.818 (2.106-3.728) <0.0001
Blue 368 0.609 0.0033 22 1.159 (0.709-1.811) 0.4730
Brown 410 0.488 0.0047 10 0.473 (0.223-0.889) 0.0176
Green 302 0.495 0.0027 18 1.156 (0.668-1.886) 0.5110
Yellow 228 0.486 0.0023 8 0.681 (0.288-1.379) 0.3560
Grey 3363 0.407 0.6550 117 0.674 (0.541-0.837) 0.0002
Magenta 341 0.532 0.0007 17 0.967 (0.550-1.594) 0.9680
Pink 299 0.469 0.0005 27 1.752 (1.119-2.644) 0.0095
Purple 194 0.517 0.0068 10 0.999 (0.468-1.901) 1.0000
Red 127 0.539 0.0005 1 0.153 (0.038-0.872) 0.0214
Salmon 138 0.428 0.0039 26 3.653 (2.275-5.673) <0.0001
Tan 127 0.471 0.0045 8 1.222 (0.512-2.509) 0.5450
Turquoise 343 0.811 0.0029 15 0.848 (0.465-1.439) 0.6160
Yellow 256 0.518 0.0007 12 0.909 (0.459-1.637) 0.8850

Count of CpGs, the number of CpGs included in one module; DM, differentially methylated; count of DM CpGs, the number of DM CpGs 
mapped to one module; Pcorr, P‑value for correlation coefficient; Phyper, P‑value for enrichment analysis; CI, confidential interval.

Table IV. Significant GO terms for the three LUAD‑associated modules.

GO term Count of genes Fold enrichment P-value

Cytoskeleton organization 8 2.821 0.0110
Response to DNA damage stimulus 7 2.885 0.0165
Spindle organization 3 10.248 0.0169
Positive regulation of cytoskeleton organization 3 10.248 0.0169
Regulation of transcription from RNA polymerase II promoter 10 2.115 0.0218
Cell junction organization 3 8.091 0.0260
Anterior/posterior pattern formation 4 4.392 0.0307
Regulation of cellular component biogenesis 4 4.330 0.0318
Microtubule cytoskeleton organization 4 4.183 0.0345
Positive regulation of transcription, DNA-dependent 7 2.256 0.0433
Positive regulation of RNA metabolic process 7 2.237 0.0446
Cell death 9 1.924 0.0454
Apoptosis 8 2.043 0.0462
Death 9 1.911 0.0468
Programmed cell death 8 2.013 0.0490
Positive regulation of organelle organization 3 5.556  0.0498

GO, Gene Ontology; LUAD: lung adenocarcinoma; Count of genes, the number of genes significantly enriched in one GO term.
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median risk score of all patients as the cut-off value. As shown 
in Fig. 6A, low‑risk patients had significantly longer OS time 
compared with the high-risk patients (P=8.992x10-7), with an 
AUC value of 0.966. The nine-gene methylation signature was 
also applied to predict the patients' probability of recurrence in 
the training set. The low-risk patients had visibly longer RFS 
time in comparison with the high-risk patients, with an AUC 
value of 0.928 (Fig. 6B). In order to test the capability of the 
nine-gene methylation signature, all samples in the validation 
set were classified by risk score into high‑ and low‑risk groups. 
Similarly, low-risk patients had a dramatically longer RFS 
time relative to high-risk patients. The AUC value was 0.920 
(Fig. 6C), confirming the prognostic power of the nine‑gene 
methylation signature.

Discussion

LUAD is clinicopathologically and molecularly hetero-
geneous, making the prediction of patient outcome a 
necessity (22,23). Gene silencing at the epigenetic level by 
DNA methylation was acknowledged as an important mecha-
nism underlying tumorigenesis (24). The present study placed 

Figure 3. A scatter diagram for correlation analysis between the gene meth-
ylation and expression levels in the three lung adenocarcinoma-associated 
modules. Black dots represent the genes. The red line represents the trend 
line of the data points. Cor, Pearson's correlation coefficient.

Table V. Genes associated with survival according to Cox 
regression analysis.

ID Gene P-value

cg03395898 TGFB3 6.0x10-5

cg01798157 BTG2 4.2x10-4

cg07097184 FHDC1 5.1x10-4

cg02334643 DHX40 8.4x10-4

cg05003322 COL16A1 8.6x10-4

cg27500918 FLYWCH2 9.1x10-4

cg00933153 C20orf56 1.0x10-3

cg20541456 CYFIP2 1.1x10-4

cg05898928 YPEL1 1.2x10-4

cg16194253 C14orf21 1.5x10-4

cg21494776 ICAM4 1.6x10-4

cg11013977 QRICH1 1.7x10-4

cg06620210 AP1M1 2.1x10-4

cg02016545 MICA 2.3x10-4

cg03595580 TECPR1 2.5x10-4

cg18050194 SEC22C 4.0x10-3

cg08517562 PTPN1 5.6x10-4

cg02156071 C10orf84 5.7x10-4

cg06877599 SUPT5H 5.7x10-4

cg04902921 EDEM3 6.3x10-4

cg16740905 SEC1 6.9x10-4

cg04432377 ZDHHC3 7.1x10-4

cg10753610 ITGB3 7.9x10-4

cg05714082 POLR1A 8.5x10-4

cg04446303 TFAP4 9.4x10-4

cg02282317 AATF 0.011
cg08100565 SLC25A36 0.011
cg01889020 MEGF11 0.014
cg02181309 MRPL52 0.014
cg01498883 SNRPB 0.014
cg06677352 STAG3L3 0.014
cg24122247 CIDECP 0.015
cg24135606 PFN1 0.016
cg24612420 ACLY 0.017
cg19759282 GPR155 0.017
cg13939431 MEAF6 0.017
cg01963754 C13orf16 0.018
cg04324559 DNASE1L1 0.019
cg24951800 MEF2A 0.019
cg00567190 C1orf97 0.020
cg12811419 TMEM214 0.024
cg00399374 CHMP4C 0.025
cg01779512 IFT88 0.027
cg16931807 KIAA0195 0.032
cg15599146 ZDHHC14 0.033
cg07459266 RNF213 0.034
cg08125503 PIGL 0.035
cg07057042 RAB5A 0.035
cg21994174 ETFB 0.036
cg06421633 LUC7L3 0.036
cg03270167 RAMP1 0.037

Table V. Continued.

ID Gene P-value

cg05006947 SLC38A7 0.040
cg10156217 ARF6 0.042
cg07097417 LPGAT1 0.042
cg02146453 PROSC 0.043
cg17286258 SF3B1 0.043
cg18085070 PSRC1 0.044
cg27229100 C20orf199 0.046
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Figure 4. Kaplan-Meier curves of dichotomized patients, based on the methylation level of each gene in the training set. According to the methylation level of 
one gene, all patients in the training set were separated into a hypermethylation and a hypomethylation group.

Table VI. A panel of nine differentially methylated genes predictive of prognosis.

ID Gene Chromosome Position Location Coefficient Hazard ratio P‑value

cg00933153 C20orf56 20 22498129 Body 0.8529 3.177 0.0010
cg01798157 BTG2 1 201543218 Promoter 0.9931 2.606 0.0004
cg01963754 C13orf16 13 110775249 Body -0.5670 0.499 0.0180
cg04324559 DNASE1L1 X 153290455 5'UTR ‑0.1602 0.712 0.0190
cg04432377 ZDHHC3 3 44992301 Promoter 0.6870 2.894 0.0071
cg07097184 FHDC1 4 154119462 3'UTR 1.0356 5.175 0.0005
cg10156217 ARF6 14 49432104 Promoter -0.9612 0.260 0.0420
cg10753610 ITGB3 17 42690201 Body -0.4113 0.489 0.0079
cg21494776 ICAM4 19 10258780 Body 0.4918 2.065 0.0016
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a special focus on DNA methylation alterations in LUAD 
and their implications for prognosis. A total of 742 DMGs 
were identified, showing significantly different methylations 
in CpGs between the samples designated as good and 
bad prognosis. There were three LUAD-associated DNA 
co-methylation modules mined by WGCNA. The 121 DMGs 
in the 3 modules were significantly associated with 16 GO 
terms. Notably, three GO terms were associated with cyto-
skeleton organization, two GO terms with transcription and 
four GO terms with cell apoptosis or death. These findings 
provided some insight into the underlying mechanisms of 
DNA methylation alterations in LUAD.

The present study identified a nine‑gene methylation signa-
ture from the genes included in the three LUAD-associated 
DNA methylation modules. Moreover, risk score derived from 
the sum of each candidate methylation marker multiplied 

by the corresponding regression coefficient successfully 
classified patients into two risk groups, with significantly 
different OS or RFS time. The prognostic performance of this 
nine‑gene signature was successfully verified for RFS time in 
the validation set. These findings indicate that the nine genes 
were valuable methylation markers for prognostic evaluation 
in LUAD patients.

The nine novel candidate methylation markers for prognosis 
prediction included C20orf56, BTG2, C13orf16, DNASE1L1, 
ZDHHC3, FHDC1, ARF6, ITGB3 and ICAM4. Moreover, the 
present study found that hypomethylation/high expression of 
ICAM4, ZDHHC3, C20orf56, BTG2 and FHDC1 was associ-
ated with significantly improved survival outcome compared 
with hypermethylation/low expression. In contrast, hyper-
methylation/low expression of DNASE1L1, ARF6, ITGB3 and 
C13orf16 corresponded with significantly improved survival 

Figure 5. Kaplan‑Meier curves showing patients, classified based on the expression level of each gene in the training set. Based on the gene expression level of 
one gene, all patients in the training set are classified into a high and low expression group.
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Figure 6. Kaplan-Meier curves (left panel) and ROC curves (right panel) demonstrating patients assigned to two risk groups, based on the nine-gene methyla-
tion signature in the (A and B) training set and the (C) validation set. (A) Overall survival time and (B) recurrence-free survival time of the high- and low-risk 
groups of the training set were estimated using Kaplan-Meier curves. The AUC of ROC reveals the capability of the nine-gene methylation signature to predict 
survival or recurrence. ROC, receiver operating characteristic; AUC, area under the curve.
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in comparison with when these genes were hypomethyl-
ated/highly expressed.

BTG2 is involved in various biological activities, such as 
cell differentiation, proliferation and apoptosis, and has been 
acknowledged as a tumor suppressor in several types of cancer 
in humans, including laryngeal carcinoma, gastric cancer, 
clear cell renal cell carcinoma and breast carcinoma (25-29). 
More importantly, there is evidence that BTG2 overexpres-
sion suppressed the growth and proliferation of lung cancer 
cells (30). It can be speculated that aberrant BTG2 methylation 
participated in the regulation of genes involved in LUAD tumor 
growth. In addition, the present study implicated two possible 
functions for BTG2: Response to DNA damage stimulus and 
anterior/posterior pattern formation in LUAD. These findings 
offer useful information concerning the role of BTG2 through 
the regulation of methylation in LUAD.

ARF6 is a member of the human ARF gene family and 
plays a role in vesicular trafficking. Increasing evidence 
demonstrated an association between ARF6 and tumor cell 
invasion (31,32). Moreover, in the present study, GO analysis 
showed that ARF6 was significantly implicated in the positive 
regulation of cytoskeleton organization, regulation of cellular 
component biogenesis, cell death, apoptosis and positive 
regulation of organelle organization. Thus, aberrant ARF6 
methylation may play a role in the regulation expression of 
genes associated with these biological processes in LUAD.

ITGB3, also known as CD61, is a protein encoded by ITGB3 
and participates in cell adhesion and signaling mediated by the 
cell surface (33,34). The present study found that ITGB3 was 
significantly enriched in cell junction organization in LUAD. 
Based on these observations, it can be inferred that alteration 
of ITGB3 methylation exerted an effect on the expression of 
genes involved in cell junction organization, thus modulating 
cell adhesion and cell surface-mediated signaling. ICAM4 is a 
member of the ICAMs family and is critical for inflammation 
and immune responses (35). DNASE1L1 is an enzyme encoded 
by DNASE1L1, a member of the human DNase family. To the 
best of our knowledge, there are few reports regarding the 
function of ZDHHC3, C13orf16, C20orf56, FHDC1, ICAM4 
and DNASE1L1 in LUAD.

The limitations of the present study include minimal 
information on the OS time in the validation set, as other DNA 
methylation dataset of LUAD with survival information could 
not be located in NCBI GEO. Furthermore, only correlations 
between DNA methylation and the gene expression levels were 
investigated, based on data of LUAD downloaded from TCGA. 
Thus, protein expression of the nine novel candidate methylation 
markers for prognostic prediction should be also studied in the 
future. The aim of the present study was to provide novel prog-
nostic DNA methylation biomarkers of LUAD, since the modern 
precise medicine for the treatment of LUAD required additional 
biomarkers and novel therapeutic targets of interest. However, 
the findings of the present study require validation in prospec-
tive clinical trials before the prognostic multigene methylation 
signature can be applied. Therefore, Chinese-population-based 
validation could be considered in the future.

In conclusion, the present study focused on the DNA 
methylation changes associated with LUAD and identified a 
prognostic nine-gene methylation signature for LUAD. The 
findings shed light on the DNA methylation landscape in 

LUAD and its implications on the development of optimized 
and individualized management of this condition.
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