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Abstract. Cancer cells are characterized by a high glycolytic 
rate, which leads to energy regeneration and anabolic metabo-
lism; a consequence of this is the abnormal expression of 
pyruvate kinase isoenzyme M2 (PKM2). Multiple studies have 
demonstrated that the expression levels of PKM2 are upregu-
lated in numerous cancer types. Consequently, the mechanism 
of action of certain anticancer drugs is to downregulate 
PKM2 expression, indicating the significance of PKM2 in a 
chemotherapeutic setting. Furthermore, it has previously been 
highlighted that the downregulation of PKM2 expression, 
using either inhibitors or short interfering RNA, enhances the 
anticancer effect exerted by THP treatment on bladder cancer 
cells, both in vitro and in vivo. The present review summa-
rizes the detailed mechanisms and therapeutic relevance of 
anticancer drugs that inhibit PKM2 expression. In addition, 
the relationship between PKM2 expression levels and drug 
resistance were explored. Finally, future directions, such as the 

targeting of PKM2 as a strategy to explore novel anticancer 
agents, were suggested. The current review explored and high-
lighted the important role of PKM2 in anticancer treatments.

Contents

1.	 Introduction
2.	 Biochemical role of PKM2 in physiological processes
3.	 PKM2‑inhibitory compounds
4.	 Effect of PKM2 on chemosensitivity
5.	 Conclusions

1. Introduction

Cancer is a disease with a high prevalence and mortality rate, 
and its treatment represents a considerable clinical challenge. 
The benefits of current chemotherapeutics are limited due to 
their propensity to cause DNA damage in normal cells (1). 
Therefore, research has been directed towards finding safer 
and more sustainable cancer treatments. Notably, it has 
been demonstrated that targeting the regulation of tumor 
cell metabolism, without causing toxicity in normal cells, is 
a potential strategy for the treatment or adjuvant therapy of 
cancer (2).

The metabolic mechanism is one of a multitude of differen-
tial characteristics separating cancer cells from normal cells. 
Tumor cells are primarily dependent on aerobic glycolysis to 
obtain energy and produce lactate, even in the presence of 
oxygen (3). Recently, the targeting of cancer cell metabolism 
has gained traction as an effective strategy for the development 
of new cancer treatments (4,5). In 2017, the Food and Drug 
Administration approved Enasidenib (AG‑221), an inhibitor of 
the mutant isocitrate dehydrogenase 2 (IDH2) protein, for the 
treatment of relapsed or refractory acute myeloid leukemia (6). 
In addition to IDH2, pyruvate kinase isoenzyme M2 (PKM2) 
has also emerged as a critical regulator of cancer cell metabo-
lism. PK is an enzyme that plays a critical function in the 
glycolytic pathway, catalyzing the final, rate‑limiting step of 
glycolysis by converting phosphoenolpyruvate and ADP to 
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pyruvate and ATP, respectively (7,8). Alternate splicing of PKM 
pre‑mRNA by heterogeneous nuclear ribonucleoprotein A1/2 
and polypyrimidine‑tract binding protein (PTBP1), results in 
PKM2 generation (9). There is mounting evidence that unlike 
other PK isoforms, PKM2 is upregulated in multiple carci-
nomas, including colorectal (10), lung (11), liver (12), breast 
cancer (13) and pancreatic ductal adenocarcinoma (14). The 
general molecular mechanisms involved in tumor growth are 
briefly summarized in Fig. 1. 

The upregulation of PKM2 expression enhances chemo-
sensitivity in breast (15), gastric (16) and colorectal cancer (17). 
High expression levels of PKM2 have been shown to be 
associated with increased chemosensitivity to 5‑fluorouracil 
(5‑FU) and epirubicin in breast and cervical cancer (15,18). 
By contrast, PKM2 contributes to gefitinib resistance via the 
upregulation of STAT3 in colorectal cancer (19). Moreover, 
the downregulation of PKM2 leads to cell apoptosis and 
increases the sensitivity of tumor cells to chemotherapy (20). 
This highlights the ability of PKM2 to alter cell sensitivity to 
chemotherapy.

The present review summarizes the advancements in 
targeting PKM2 expression as a novel therapeutic strategy. 
The underlying mechanisms, and the potential for future 
clinical translation, were also analyzed. An informative over-
view of PKM2 is detailed, establishing a precedent for the 
development of clinical therapeutics that target PKM2, for the 
treatment of cancer.

2. Biochemical role of PKM2 in physiological processes

PKM2 can function as: i) A metabolic enzyme; ii) a protein 
kinase; or iii) a transcriptional coactivator of genes that influ-
ence cell proliferation, migration and apoptosis. It has been 
demonstrated that the inhibition of PKM2 slows tumor growth 
or causes tumor cell death (21). Following PKM2 inhibition, 
a reduction in cancer cell proliferation and survival have 
both been observed (21,22). RNA interference and peptide 
aptamers that ablate PKM2 have been reported to elicit anti-
cancer effects, such as the impairment of tumor growth, the 
induction of apoptotic cell death and increasing sensitivity to 
chemotherapy (20,23‑26). Conversely, a PKM2 activator was 
proven to effectively induce apoptosis in lung cancer cells via 
the inhibition of AKT phosphorylation (27). The aforemen-
tioned findings support the hypothesis that PKM2 represents a 
promising therapeutic target.

Activators of PKM2 exert their effects by stabilizing 
the molecular in its tetramer form, subsequently affecting 
cancer cell metabolism and indicating a novel anti‑cancer 
therapeutic strategy (28). To date, several PKM2 activators 
have been reported, including N,N'‑diarylsulfonamide (29) 
and 2‑((1H‑benzo[d]imidazol‑1‑yl)methyl)‑4H‑pyrido[1,2‑a]
pyrimidin‑4‑ones  (30). The structures of certain PKM2 
activators are detailed in Table I (29‑35). Conversely, PKM2 
inhibitors (such as shikonin; Fig. 2) have been studied and will 
be explored in the following sections.

3. PKM2‑inhibitory compounds

Shikonin. Shikonin is an active chemical component extracted 
from Lithospermum erythrorhizon, which has been found to 

exert multiple pharmacological effects. Notably, it exhibits 
antitumor properties in numerous human cancer types (36,37). 
Shikonin has been identified as a PKM2 inhibitor and is able 
to reduce the rate of cancer cell glycolysis (38). Additionally, 
one study determined that shikonin improved the therapeutic 
efficacy of Taxol, and reduced chemoresistance to cisplatin in 
advanced bladder cancer (BC) via the inhibition of PKM2 (38). 
In summary, shikonin is able to inhibit tumor growth by 
suppressing aerobic glycolysis, which is mediated by PKM2 
in vivo (39).

Li et al (40) demonstrated that PKM2 expression levels were 
higher in skin tumor tissues than normal tissues. Moreover, it 
was also observed that shikonin inhibited cancer‑cell transfor-
mation and PKM2 activation, which was induced by the tumor 
promoter 12‑O‑tetradecanoylphorbol 13‑acetate in the early 
stages of carcinogenesis. Furthermore, another study indicated 
that shikonin reduced epidermal growth factor receptor, PI3K, 
p‑AKT, Hypoxia inducible factor‑1α (HIF‑1α) and PKM2 
expression levels. Moreover, the viability of esophageal cancer 
cells was decreased and cell apoptosis was induced in the pres-
ence of shikonin (41). Additionally, increased expression levels 
of PKM2 increase the resistance of esophageal cancer cells 
to shikonin. It was observed that shikonin exerted its chemo-
therapeutic effects via the induction of cell apoptosis in vivo. 
To summarize, shikonin was determined to inhibit esophageal 
and bladder cancer progression via the inhibition of PKM2 
expression (41,42). 

However, because the clinical use of shikonin as an 
anticancer agent is still limited by its toxicity and poor solu-
bility (43), it is problematic to incorporate directly into cancer 
therapy regimes. The study of PKM2 inhibitors is ongoing 
and the discovery of novel inhibitors with low toxicity would 
confer great benefit to patients with cancer (44). 

Metformin. Metformin (a commonly prescribed drug used for 
the treatment of type II diabetes) has been extensively inves-
tigated as a metabolic modulator, but also exhibits anticancer 
properties. Epidemiological evidence has demonstrated that 
metformin exhibits high potential efficacy as an antitumor 
agent  (45). Data gathered from multiple xenograft cancer 
models suggest that metformin may inhibit the progression 
and recrudescence of cancer (46).

Moreover, metformin induces tumor cell death and 
increases sensitivity to chemotherapeutic drugs via the inhibi-
tion of PKM2. For instance, Shang et al (47) demonstrated 
that metformin enhanced the sensitivity of osteosarcoma stem 
cells to cisplatin, by reducing the expression level of PKM2. 
Mechanistically, it was confirmed that upregulated expression 
levels of PKM2 were responsible for resistance to cisplatin in 
osteosarcoma stem cells. Additionally, PKM2 downregulation 
by metformin has been shown to result in the inhibition of 
glucose uptake, lactate production and ATP production in 
human osteosarcoma cancer stem cells (CSCs). Metformin 
was also found to exert a significant antitumor effect on 
gastric cancer cells via inhibition of the hypoxia‑inducible 
factor (HIF)1α/PKM2 signaling pathway  (48). Moreover, 
it was determined that the upregulation of PKM2 induced 
epithelial‑mesenchymal transition (EMT), which in turn 
increased the invasion and metastatic potential of carcinoma 
cells (49). Cheng et al (50) discovered that metformin inhibits 
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transforming growth factor β1 (TGF‑β1)‑induced EMT in 
cervical cancer cells, and also investigated the mechanisms 
involved in tumorigenesis (which reduced PKM2 expression 
levels). Furthermore, the present authors demonstrated that 
decreased PKM2 expression levels, induced by metformin, 
enhanced the efficiency of THP (Docetaxel, Trastuzumab and 
Pertuzumab) for BC treatment (51).

Vitamin K (VK)3 and 5. VK family members are essential 
and fat‑soluble naphthoquinones that serve vital physiological 
roles (52). Numerous studies have suggested that VK3 and 
5 are promising anticancer adjuvants, both in  vitro and 
in  vivo  (53‑57). It has been demonstrated that combina-
tion therapy with VK3 and vitamin C exerts a synergistic 
anticancer effect in Jurkat and K562 cells (58,59). VK3 also 
improves the efficacy of anticancer drugs such as doxorubicin 
(DOX) (58,60). Moreover, a clinical trial suggested that VK3 
improves cell sensitivity to Inopera: Chen et al (61) discovered 
that VK3 and 5 inhibit PKM2 significantly more than PKM1 
and pyruvate kinase isoenzyme L, while other isoforms of 
PK are predominantly expressed in most adult tissues and the 
liver. This study further demonstrated that VK3 and 5 have the 
potential to exert a therapeutic effect on cancer cells via the 
suppression of PKM2 expression.

Temozolomide (TMZ). TMZ is an antitumor drug that damages 
DNA, and is used to treat glioblastoma (GBM). It also inhibits 
the rate of pyruvate‑to‑lactate transformation  (62‑64). 
Park et al (65) demonstrated that TMZ alters PKM2 expression, 

leading to changes in pyruvate metabolism, and highlighting 
that PKM2 plays a key role in the DNA‑damage response. 

4. PKM2 activity influences chemosensitivity

Resistance to chemotherapy is a major challenge concerning 
cancer treatment; therefore, overcoming the development 
of resistance in cancer cells remains a primary focus (66). 
Drug‑resistant cancer cells exhibit an increased glycolytic 
rate, meaning that targeting glycolysis may represent a novel 
strategy to reduce the adverse effects of drug resistance (67). 
Therefore, the role of PKM2 in the development of chemore-
sistance in cancer cells, and the targeting of PKM2 expression, 
are important factors that could help to increase the sensitivity 
of cancer cells to chemotherapy.

Gemcitabine (GEM). GEM is a targeted drug metabolite with 
two fluorine atoms that has been suggested by the National 
Comprehensive Cancer Network guidelines as a first‑line 
chemotherapeutic agent for the treatment of pancreatic 
cancer  (68); however, only a small proportion of patients 
respond positively to GEM. Despite a meta‑analysis showing 
that the combination of GEM with other therapeutics results 
in significantly higher disease response rates, and longer 
progression‑free and overall survival, after several typical 
chemotherapy treatment cycles, the emergence of drug resis-
tance often leads to therapeutic failure (69).

The resistance of pancreatic cancer cells to GEM 
involves PKM2 expression and its nonmetabolic function. 

Figure 1. Pathways related to tumor growth involving PKM2. PKM2 is phosphorylated by ERK2 or PI3K/AKT resulting the nuclear translocation of PKM2. 
Nuclear PKM2 binds to proteins upregulating transcriptional activity, thereby promoting the Warburg effect and tumorigenesis; hnRNP induces PKM2 via 
alternative splicing of PKM genes to stimulate cancer cell invasion and migration. PKM2, pyruvate kinase isoenzyme M2; HIF1α, hypoxia inducible factor 1α; 
hnRNP, heterogeneous nuclear ribonucleoproteins; MLC2, myosin light chain 2; PARP, poly(ADP‑ribose) polymerase 1; BUB3, BUB3 mitotic checkpoint 
protein; OCT4, octamer‑binding transcription factor 4.
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Table I. Structures of representative PKM2 activators.

PKM2 activators	 Structures	 (Refs.)

Micheliolide	 	 (31)

Diarylsulfonamides	 	 (29)

Thieno[3,2‑b]pyrrole[3,2‑d]pyridazinones	 	 (32)

4‑(2,3‑dichlorobenzoyl)‑1‑methyl‑	 	 (33)
pyrrole‑2‑carboxamide		

TEPP‑46	 	 (34)

2‑((1H‑benzo[d]imidazol‑1‑yl)methyl)‑	 	 (30)
4H‑pyrido[1,2‑a]pyrimidin‑4‑ones		

1‑(sulfonyl)‑5‑(arylsulfonyl)indoline	 	 (35)

PKM2, pyruvate kinase isoenzyme M2.
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Thus, PKM2 should be considered a therapeutic target in 
GEM‑resistant pancreatic cancer cells  (70,71). The role 
of PKM2 in GEM resistance is demonstrated in Fig.  3. 
Kim et al (72) discovered that PKM2‑knockdown induced 
tumor protein 53 activation via the p38 mitogen‑activated 
protein kinase signaling pathway, following treatment with 
GEM. Subsequent apoptosis was then induced through the 
activation of caspase 3/7 and poly ADP‑ribose polymerase 
cleavage. These findings further indicate PKM2 as a novel 
target for the treatment of GEM resistance, and also support 
the combination of GEM with a PKM2 inhibitor for treating 
pancreatic cancer. 

Calabretta et al (73) mechanistically characterized a novel 
PTBP1/PKM2 pro‑survival pathway, triggered by chronic 
treatment of pancreatic ductal adenocarcinoma (PDAC) cells 
with GEM. It was observed that alternative splicing of PKM 
was found to be differently regulated in DR‑PDAC cells, 
leading to an increase in the cancer‑associated PKM2 isoform. 
Moreover, upregulation of PKM2 expression was also associ-
ated with shorter recurrence‑free survival times in patients 
with PDAC. These findings indicate that PKM2 is a novel 
potential therapeutic target that may improve the response of 
PDAC to chemotherapy, and reduce the resistance of cancer 
cells to current treatments (73). Li et al (71) also determined 
that GEM resistance to pancreatic cancer cells is associated 
with a long intergenic non‑protein coding RNA, regulator of 
reprogramming /PTBP1/PKM2 axis (71).

Platinum. Cisplatin, carboplatin and oxaliplatin (OXA) are 
typically used to treat human cancers. However, their clinical 
success is limited by severe side effects and intrinsic or 
acquired resistance (74).

Cisplatin. Cisplatin, the first discovered platinum anticancer 
drug, is active against a wide spectrum of solid neoplasms, 
including ovarian, bladder, colorectal and lung cancer (75‑77). 
However, treatment with cisplatin often results in drug resis-
tance and several adverse side effects (78).

Wang et al (76) determined that shikonin inhibited PKM2 
and reduced BC cell survival time in a dose‑dependent, but 
also a PK activity‑independent manner. PKM2 upregulation 
is strongly associated with cisplatin resistance; however, 
cisplatin‑resistant cells respond sensitively to shikonin when 
PKM2 is upregulated. In mice, the combination of shikonin 
and cisplatin significantly reduced BC growth and metastasis 

(in contrast to monotherapy with either drug). Thus, PKM2 
is indicated as a key factor in the development of resistance 
to cisplatin treatment in advanced BC. Suppression of PKM2 
via RNAi or specific inhibitors may be an effective approach 
to reducing resistance and improving the outcomes of patients 
with advanced BC  (76). Furthermore, a study conducted 
by Shang et al (47) confirmed that osteosarcoma stem cells 
exhibit significantly higher levels of cisplatin resistance 
compared with osteosarcoma non‑CSCs. The aforementioned 
results indicated that PKM2 upregulation caused resistance to 
cisplatin in osteosarcoma stem cells.

Zhu et al  (18) collected tumor tissues from 36 patients 
with cervical cancer (pre‑ and post‑chemotherapy). The 
expression levels of multiple tumor‑associated proteins 
(including PKM2 and HIF1α) were then determined using 
immunohistochemistry. As a result, it was discovered that 
the mTOR/HIF‑1α/c‑Myc/PKM2 signaling pathway was 
significantly downregulated in patients with cervical cancer, 
following chemotherapy. It was then demonstrated that 
PKM2 inhibited the proliferation of cervical cancer cells, and 
enhanced their sensitivity to cisplatin in vitro. Additionally, 
PKM2 was inextricably associated with the mTOR pathway. 
PKM2 and mTOR expression in cervical cancer tissues may 
serve as predictive biomarkers for the use of cisplatin‑based 
chemotherapy. Consequently, it was concluded that PKM2 
increased the sensitivity of cervical cancer cells to cisplatin, 
by interacting with the mTOR signaling pathway.

It has been demonstrated that PKM2 is closely associated 
with the sensitivity of certain cancer cells to cisplatin. However, 
PKM2 may exert an opposing effect by either increasing or 
decreasing the antitumor activity of cisplatin. Table II summa-
rizes the effect of PKM2 on the sensitivity of multiple tumors 
to cisplatin treatment (18,47,76,79,80).

Figure 2. Chemical structure of shikonin.

Figure 3. Major role of PKM2 in gemcitabine resistance. The lincROR/
miR‑124/PTBP1/PKM2 complex is involved in the regulation of gemcitabine 
resistance. FASN regulates PKM2 expression and is associated with 
gemcitabine resistance. LincROR, long intergenic non‑protein coding RNA, 
regulator of reprogramming PKM2, pyruvate kinase isoenzyme M2; PTBP1, 
polypyrimidine tract binding protein; FASN, Fatty acid synthase; miR, micro 
RNA.
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Carboplatin. Carboplatin is also a platinum‑based chemo-
therapeutic drug. It is an effective treatment for various 
solid tumor types, particularly non‑small cell lung cancer 
(NSCLC) (81). However, NSCLC cells commonly develop 
resistance following carboplatin treatment (82). Liu et al (83) 
investigated carboplatin‑resistant NSCLC models using the 
A549 and PC9 lung cancer cell lines, termed A549/R and 
PC9/R, respectively. It was discovered that as well as the low 
sensitivity of A549/R and PC9/R cells to carboplatin treat-
ment, resistant cells exhibited higher glucose metabolism 
than wild type cells. Mechanistically, it was confirmed that 
a high expression level of PKM2 in A549/R and PC9/R cells 
was dependent on both a high rate of glucose metabolism, and 
carboplatin resistance (83).

OXA. OXA is a third‑generation platinum‑based compound (84) 
and is the first platinum‑based therapy to categorically exhibit 
clinical activity against CRCs (85). However, an increasing 
number of research reports have detailed the development of 
OXA resistance in CRC therapy, and this has become prob-
lematic for its clinical application (86,87). Despite this, it has 
been elucidated that PKM2 is associated with OXA resistance 
in vitro (88,89). In conclusion, PKM2 may play an important 
role in the development of OXA resistance in cancer cells.

5‑FU. 5‑FU is an anticancer drug, commonly used in the 
treatment of colon cancer. Acquired resistance is becoming 
a key challenge for the treatment of patients in the advanced 
stages of colon cancer  (90). He  et  al  (91) discovered 
that aerobic glycolysis was significantly upregulated in 
5‑FU‑resistant cells (91). It was also reported that PKM2 is 
targeted by miR‑122 in colon cancer cells. High expression 
levels of miR‑122 in 5‑FU‑resistant cells has been shown to 
reduce resistance to 5‑FU through the inhibition of PKM2, 
both in vitro and in vivo. In summary, research indicates 
that enhanced glucose metabolism reduces 5‑FU resistance 
to cancer cells, and that the inhibition of glycolysis may 
be a possible therapeutic method to overcome 5‑FU 
resistance (91,92).

DOX. DOX is an anticancer drug used to treat hepatocellular 
carcinoma. Acquired drug resistance following treatment 
represents a major challenge for both DOX and other chemo-
therapeutic agents. Pan et al (93) determined that the expression 
levels of miR‑122 were lower in DOX‑resistant Huh7/R cells 
compared with wild type cells, demonstrating that miR‑122 is 
associated with chemoresistance to DOX. This was supported 

by the results of a luciferase reporter assay. High expression 
levels of miR‑122 in Huh7/R cells were shown to reverse 
doxorubicin resistance via the inhibition of PKM2, leading to 
DOX‑resistant cancer cell apoptosis. Therefore, it was demon-
strated that the upregulation of glucose metabolism increases 
resistance to DOX, thus, inhibition of glycolysis by miR‑122 
may represent a potential therapeutic strategy to reduce DOX 
resistance in liver cancer (93).

Docetaxel. Docetaxel, a derivative of taxane, is an antineo-
plastic drug that is effective for the treatment of multiple 
malignant tumor types. It inhibits microtubule disassembly, 
consequently interfering with mitotic progress by blocking 
cells at the G2/M checkpoint, and promoting apoptosis (94). 
Docetaxel is widely used to treat breast cancer  (95‑97), 
NSCLC  (98,99) and other solid tumors  (100), exhibiting 
significant therapeutic efficacy. 

Shi et al  (11) determined that combining plasmid short 
hairpin (sh)RNA‑PKM2 with standard docetaxel treatment 
significantly improved its efficacy (11). Moreover, a significant 
reduction in the expression level of PKM2 markedly suppressed 
A549 cell proliferation (11). Yuan et al (66) investigated the 
effect of PKM2 silencing combined with docetaxel treatment, 
on cell viability, cell cycle distribution and apoptosis of the 
A549 and H460 NSCLC cell lines. shRNA‑PKM2 could 
serve as a combination therapy with docetaxel in patients with 
NSCLC by reducing PKM2 expression, resulting in decreased 
cell viability, an increase in cell cycle arrest at the G2/M 
checkpoint, and apoptosis. These results further suggest that 
targeting PKM2 has the potential to improve the treatment 
outcomes of patients with NSCLC, by increasing the chemo-
therapeutic efficacy of docetaxel (66).

5. Conclusions

Cancer is a fatal and prevalent disease with a high mortality rate 
worldwide, and it is predicted that the number of new cancer 
cases will increase to 19.3 million per year by 2025 (101). The 
reprogramming of cell metabolism is essential for tumorigen-
esis and is regulated by a complex network, in which PKM2 
plays a critical role (102). PKM2 is typically upregulated in 
rapidly proliferating cells, such as cancerous and embryonic 
cells. It has been suggested that PKM2 plays an important role 
in cancer progression through the regulation of both metabolic 
and nonmetabolic pathways. Intermediate products of glycol-
ysis, such as amino acids, nucleotides and lipids are required 
to sustain the rapid growth of cancer cells (103). Furthermore, 

Table II. Effect of pyruvate kinase isoenzyme M2 on cisplatin sensitivity in different cancers.

Cancer type	 Effect	 Treatment	 (Refs.)

Bladder cancer	 Overcomes resistance	 Shikonin	 (76,79)
Hepatocellular carcinoma	 Chemosensitivity	 MicroRNA‑199a	 (80)
Osteosarcoma 	 Chemosensitivity	 Metformin	 (47)
Cervical cancer	 Chemosensitivity	 PKM2	 (18)

PKM2, pyruvate kinase isoenzyme M2.
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high patient mRNA expression levels of PKM2 are associated 
with reduced median overall survival time (104). Interestingly, 
PKM2 can also serve as a biomarker, indicating patient 
sensitivity to chemotherapy. It has been demonstrated that 
downregulation of PKM2 expression improved the anticancer 
efficacy of THP treatment (51), thus, the clinical application 
of PKM2 activators and inhibitors in cancer therapy warrants 
further investigation.

 In the present review, the antitumor effects of various 
PKM2 inhibitors were summarized. A multitude of in vitro 
and in vivo studies have determined the role of PKM2 in 
tumorigenesis and progression. Moreover, the effect of PKM2 
on the sensitivity of cancer cells to certain clinically‑available 
chemotherapeutic drugs was investigated. Numerous studies 
have confirmed that the inhibition of PKM2 increased tumor 
cell sensitivity to chemotherapy. However, PKM2 increased 
the sensitivity of cervical cancer cells to cisplatin by inter-
acting with the mTOR pathway (18). The association between 
PKM2 expression and the development of resistance has been 
investigated in several types of cancer, albeit with conflicting 
results. A potential explanation for these discrepancies is that 
PKM2 has been proposed to fluctuate between different forms 
in order to regulate glucose metabolism. The low activity 
dimeric form supports cell growth by increasing the levels of 
glycolytic intermediates necessary for biosynthetic processes. 
However, when energy levels decrease, the enzyme can switch 
to the high activity tetrameric form and facilitate oxidative 
phosphorylation (20). Therefore, the resulting mechanisms 
may be quite different. Another explanation for the conflicting 
results may be that cancer cells possess the ability to alter their 
metabolism and regulate sensitivity to chemotherapeutics (80). 
Although PKM2 has become a focus of research in recent 
years, the development of specific inhibitors and activators of 
PKM2 remains to be achieved. Moreover, limited research has 
been conducted on results from clinical trials. It is suggested 
that the intervention of cancer cell metabolism via the precise 
regulation of PKM2 expression and activity may represent 
a promising translational application that warrants further 
investigation. 
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