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Abstract. Helicobacter pylori (H. pylori) is a gram-negative 
pathogen that colonizes gastric epithelial cells. The drug resis-
tance rates of H. pylori have dramatically increased, causing 
persistent infections. Chronic infection by H. pylori is a critical 
cause of gastritis, peptic ulcers and even gastric cancer. In host 
cells, autophagy is stimulated to maintain cellular homeostasis 
following intracellular pathogen recognition by the innate immune 
defense system. However, H. pylori-induced autophagy is not 
consistent during acute and chronic infection. Therefore, a deeper 
understanding of the association between H. pylori infection and 
autophagy in gastric epithelial cells could aid the understanding 
of the mechanisms of persistent infection and the identification 
of autophagy-associated therapeutic targets for H. pylori infec-
tion. The present review describes the role of H. pylori and 
associated virulence factors in the induction of autophagy by 
different signaling pathways during acute infection. Additionally, 
the inhibition of autophagy in gastric epithelial cells during 
chronic infection was discussed. The present review summarized 
H. pylori-mediated autophagy and provided insights into its 
mechanism of action, suggesting the induction of autophagy as a 
novel therapeutic target for persistent H. pylori infection.
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1. Introduction

Helicobacter pylori (H. pylori) is a gram-negative, spiral, 
flagellated, microaerophilic bacterium that was identified 
in 1983 (1). Among the global population, ~50% are chroni-
cally infected with H. pylori, resulting in various symptoms, 
including gastritis, peptic ulcer and increased neoplastic 
disease, as well as adenocarcinoma and mucosal-associated 
lymphoid tissue lymphoma (2). In addition, the World Health 
Organization defines H. pylori as a class 1 carcinogen (3). 
Eradication of H. pylori may reduce the incidence of gastric 
cancer by ~3-fold (4,5).

In the past years, the efficacy of conventional therapy for 
H. pylori has decreased (6). H. pylori is highly resistant to 
metronidazole (76.3%), and moderately resistant to clarithro-
mycin (44.9%) and dual clarithromycin and metronidazole 
(33.3%) (7). In the USA, the resistance rates for metronida-
zole, clarithromycin and ciprofloxacin have been estimated 
to be 79.4, 70.6 and 42.9%, respectively (8). The mechanisms 
underlying H. pylori multi-drug resistance include gene muta-
tion, virulence genes and host immunologic tolerance (9,10). 
Additionally, the presence of different types of virulence 
factors, notably vacuolating cytotoxin (VacA) and cyto-
toxin‑associated gene A (CagA), can result in gastric cancer 
carcinogenesis (11,12). Several mechanisms have been attrib-
uted for H. pylori resistance considering various associated 
processes and factors, including autophagy, apoptosis, reactive 
oxygen species (ROS) and proinflammatory responses (13‑15).

Autophagy is upregulated to maintain cytosolic homeo-
stasis when the innate immune defence recognizes invasive 
bacterial pathogens (16). However, autophagy can be upregu-
lated or downregulated in gastric epithelial cells during 
H. pylori infection (17,18). The present review focused on the 
molecular mechanisms currently considered to be associated 
with H. pylori-mediated autophagy. The hypothesis that the 
induction of autophagy can be a novel therapeutic target for 
persistent H. pylori infection was presented.

2. Autophagy

The 2016 Nobel Prize in Physiology or Medicine was 
awarded to Yoshinori Ohsumi, who first illustrated that 
nutrient deficiency induced extensive autophagy in yeast 
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cells in 1992 (19). Autophagy is defined as the segregation of 
organelles and cellular components within double membrane 
vacuoles called autophagosomes (20). The fusion of autopha-
gosomes and lysosomes generates autophagolysosomes, which 
degrade cytoplasmic contents (20). Therefore, autophagy 
can be stimulated as an intracellular defence mechanism to 
eliminate pathogens following their recognition by the innate 
immune system (21). Autophagosomes can deliver pathogens 
to lysosomes. Furthermore, autophagolysosomes can degrade 
pathogens for cellular homeostasis (20,21).

Autophagy is classified into canonical and non‑canonical 
autophagy (22). The process of autophagy is divided into several 
steps, including signal induction, membrane nucleation, cargo 
targeting, phagophore elongation, autophagosome formation, 
fusion with the lysosome, cargo degradation and nutrient 
recycling (23). The Unc‑51‑like kinase 1 (ULK) complex 
[ULK1, ULK2, autophagy related (ATG)13, ATG101 and 
RB1 inducible coiled-coil 1] is essential for initiation during 
canonical autophagy (24). The ULK complex recruits the 
PI3K complex (ATG14L, phosphatidylinositol 3‑kinase cata-
lytic subunit type 3, beclin-1 and phosphoinositide-3-kinase 
regulatory subunit 4) to produce phosphatidylinositol 3-phos-
phate [PI(3)P] for the phagophore membrane nucleation 
step (25). Subsequently, PI(3)P binds to WD repeat domain 
phosphoinositide-interacting (WIPI)1, WIPI2, ATG5, ATG12 
and autophagy related 16 like 1 (ATG16L1) to elongate the 
phagophore (23). The ATG5‑ATG12‑ATG16L1 complex 
conjugates microtubule-associated protein light chain 
3-phosphatidylethanolamine for autophagosome forma-
tion (26). Finally, autophagosomes fuse with lysosomes to 
degrade cytoplasmic components (27).

Non-canonical autophagy is another type of ATG7- and 
ATG3-independent autophagy, which has been described during 
the development of the Drosophila midgut (28). Non-canonical 
autophagy has also reported as an ATG5-independent 
signaling pathway of autophagy (29). The non-canonical 
process of autophagy does not occur from a double-membrane 
autophagosome and is called LC3-associated phagocytosis 
(LAP) (22,30). LAP promotes phagosome maturation and 
lysosomal fusion (31). 

Autophagy not only eradicates pathogens, but also serves 
a dual role in carcinogenesis. In 1980, a study demonstrated 
that the process of autophagy could be induced in leukemic 
cells following treatment with an antiproliferative drug (32). 
Our previous studies indicated that matrine had potent antitu-
mour activity against gastric cancer cells (33,34). Autophagy 
is upregulated in gastric cancer cells during this antitumour 
process, and autophagy acts as a cytoprotective mechanism to 
overcome lethal stress (33). Additionally, combination treat-
ment with matrine and autophagy inhibitors can enhance the 
antitumour effect of matrine in gastric cancer (34). Our previous 
study further demonstrated that matrine exhibited antitumour 
activity and induced autophagy in hepatocellular carcinoma 
cells (35). The extensive activation of autophagy induces 
autophagic cell death (35).

3. Bacteria and autophagy

Numerous pathogens can be degraded by autophagy, 
including bacteria, such as Mycobacterium tuberculosis 

(M. tuberculosis), listeria monocytogenes (l. monocytogenes), 
Francisella tularensis (F. tularensis), legionella pneumophila 
(l. pneumophila), Coxiella burnetii (C. burnetii), 
yersinia pseudotuberculosis (y. pseudotuberculosis), 
Brucella abortus (B. abortus) and Salmonella Typhimurium 
(S. Typhimurium) (36-43). Specific bacteria, including 
M. tuberculosis and l. monocytogenes, can induce the process 
of canonical autophagy (36,37). LRG-47 has been proposed as 
the only agent specifically active against M. tuberculosis (44). 
LRG-47 is involved in interferon-dependent autophagy, which 
can suppress intracellular survival of M. tuberculosis (36). 
l. monocytogenes interacts with the protein internalin K 
(InlK), a member of the internalin family of proteins specific 
to l. monocytogenes that interact with the major vault protein 
(MVP) (37). MVP recruitment prevents the autophagic recog-
nition of intracellular bacteria, leading to an increased survival 
rate of InlK‑overexpressing bacteria (37). Canonical autophagy 
can restrain the growth of intracellular bacterial species. These 
intracellular bacterial pathogens evade intracellular defence 
mechanisms of host cells by escaping from the autophagosome 
and by modulating canonical autophagy (45). Specific bacteria 
can generate the process of non-canonical autophagy, including 
F. tularensis, l. pneumophila, C. burnetii, y. pseudotubercu-
losis, B. abortus and S. Typhimurium (38-43). F. tularensis can 
induce ATG5-independent autophagy, which provides nutrients 
that support bacterial proliferation (38). B. abortus ensures its 
persistent survival by forming the Brucella-containing vacuole 
(BCV) (46). BCV formation is independent of the autophagy 
proteins, namely ATG5, ATG16L1, autophagy related 4B 
cysteine peptidase, ATG7 and protein light chain 3B (42). 
Non‑canonical autophagy may be beneficial to the infectivity 
and growth of intercellular bacteria (38). Although H. pylori 
is an extracellular pathogen, it can also reside and grow in 
gastric epithelial cells, causing persistent infection (47). The 
first observation of autophagy was reported for a cytotoxin of 
H. pylori in 1992 (48). Subsequently, it has been verified that 
H. pylori invasion of the gastric mucosa can trigger canonical 
rather than non-canonical autophagy (17,49,50).

4. Acute infection of H. pylori can induce autophagy

A physiological mechanism of outer membrane vesicles 
(OMVs) from bacteria can deliver peptidoglycans into the 
host cell cytosol and induce an immune response in vivo (51). 
OMVs from H. pylori can induce autophagy, which is essential 
for proinflammatory chemokine production (52). OMVs rely 
on the nucleotide-binding oligomerization domain-1-receptor 
interacting serine/threonine kinase 2 signaling pathway, which 
is essential for the induction of autophagy and the produc-
tion of interleukin 8 (52,53). In addition, H. pylori OMVs 
induce autophagosome formation, which is not dependent 
on VacA (52). H. pylori secretes HP0175, which has been 
identified as an inducer of apoptosis in gastric epithelial 
cells (54). HP0175 can also upregulate the expression of 
autophagy‑associated genes independent of functional VacA 
during acute infection (17).

VacA is a critical virulence factor involved in the patho-
genesis of peptic ulceration and gastric cancer (55). The 
toxins of VacA can induce a series of intracellular alterations, 
including cell vacuolation, membrane channel formation, 



ONCOLOGY LETTERS  18:  6221-6227,  2019 6223

disruption of endosomal/lysosomal function, apoptosis and 
immunomodulation (56). VacA localizes in the mitochondria 
and induces their dysfunction (57). VacA relies on the inhibi-
tion of rapamycin complex 1 (mTORC1), which coordinates 
nutrients and energy stress signals in order to promote 
metabolic homeostasis (58). In VacA‑intoxicated cells, the 
VacA‑dependent inhibition of mTORC1 signaling results in the 
activation of cellular autophagy via the ULK1 complex (59). 
Low-density lipoprotein receptor-related protein-1 (LRP1) is 
the receptor for VacA‑induced autophagy (60). VacA forms 
LRP1 conjugates in order to regulate the formation of autopha-
gosomes and autolysosomes (60). Additionally, VacA can 
induce autophagy via endoplasmic reticulum (ER) stress (61). 
Inhibition of autophagy can decrease VacA‑induced cell death 
in AGS cells (61). Tribble pseudokinase 3 (TRIB3) serves an 
important role in ER stress‑induced autophagy (61,62). VacA 
can trigger ER stress and increase the expression of TRIB3 in 
AGS cells (61). Knockdown of the ER stress effector protein 
can significantly decrease the formation of autolysosomes 
and cell death (61). Therefore, VacA causes autophagic cell 
death via ER stress in gastric epithelial cells. Additionally, 
VacA‑induced autophagy can degrade the toxins and limit 
host cell damage, leading to the maintenance of cellular 
homeostasis (63). VacA‑induced autophagy does not affect the 
formation of VacA‑large vacuoles (49). 

The CagA protein is the fourth most abundant protein of 
H. pylori (64). This bacterium uses the Cag type IV secre-
tion system to release CagA into host cells (65). CagA can 
induce multiple cellular activities, such as cytosolic vacu-
olation, mitochondrial dysfunction, ER stress, and endosomal 
stress, resulting in tissue inflammation (66). Intracellular 
CagA does not persist in the AGS cell line (67). VacA can 
reduce glutathione levels and bind to LRP1 to enhance Akt 
phosphorylation and activate autophagy, leading to CagA 
protein degradation (60,68). Intracellular CagA is degraded 
by autophagy induction caused by the accumulation of ROS, 
suggesting that CagA may not promote carcinogenesis (68). 
Due to the resistance of ROS, CD44-positive gastric cancer 
stem‑like cells increase the expression levels of CagA by 
inhibiting autophagy (68,69). Sulfasalazine can prevent the 
accumulation of CagA in CD44-positive cells by upregulating 
autophagy, suggesting a prophylactic effect of this compound 
on CagA-dependent gastric cancer development (68). Overall, 
H. pylori may disturb homeostasis in host cells during 
acute infection. This effect has been noted in the VacA+ or 
Cag+ H. pylori strains (60,61,68). Autophagy, which targets 
intracellular bacteria to restrict their growth and survival, is 
an important defence mechanism for gastric epithelial cells 
(Fig. 1).

5. Chronic infection of H. pylori can inhibit autophagy

The mechanisms of chronic infections of H. pylori are not 
the same as those described for acute infection. MicroRNA 
(miR)-30b is upregulated during chronic H. pylori 
infection (70). Beclin-1 (BECN1) and ATG12 are targets 
of miR-30b, and inhibit autophagosome formation (71). 
Compromised autophagy promotes persistent infection of 
H. pylori (71). Additionally, ATG2B, ATG5, ATG12, BECN1 
and BCL2 interacting protein 3 like are targets of miR-30d, 

leading to the repression of autophagy (72). miR-30d further 
promotes the intracellular survival of H. pylori during chronic 
infection (72). Furthermore, H. pylori infection induces meth-
ylation silencing of microtubule associated protein 1 light 
chain 3α variant 1, which may impair autophagy and facilitate 
gastric carcinogenesis (73). With regard to chronic infection and 
H. pylori-induced autophagy in vitro and in vivo, a consensus 
has been reached. A total of 28 autophagic genes are signifi-
cantly downregulated in H. pylori GC026-challenged AGS 
cells (74). Previous findings derived from the human autophagy 
database and published microarray data demonstrated that the 
core autophagic genes (ATG16l1, ATG5, ATG4D and ATG9A) 
are downregulated in patients with chronic H. pylori infection 
with mild dyspeptic symptoms (75).

Exposure to VacA for prolonged periods may mimic the 
chronic infection model of VacA+ H. pylori strains (76). 
Autophagy is disrupted by the prolonged co‑culture of VacA, 
since cathepsin D expression is inhibited in autophago-
somes (18). Therefore, VacA can further inhibit autophagy in 
gastric epithelial cells during chronic infection of H. pylori.

In addition, CagA+ H. pylori strains can persistently 
reside in gastric mucosal tissues (77). The expression levels 
of autophagic proteins are downregulated by the c-Met/Akt 
signaling pathway, whereas the production of the inflam-
matory cytokines is upregulated in the CagA+ H. pylori 
patients (78). Therefore, several signaling pathways can induce 
the downregulation of autophagy as a result of chronic infec-
tion of H. pylori (Fig. 2). To the best of our knowledge, the role 
of inflammation in H. pylori-induced autophagy dysfunction 
remains largely unknown. Luo et al (79) demonstrated that 
autophagy is required for hepatitis B virus X protein-induced 
NF-κB activation, and for pro‑inflammatory cytokine produc-
tion. Dysregulated autophagy causes activation of NF-κB, 
which can stimulate the inflammatory response (80). This 
process is manifested by upregulation of cytokines and 
chemokines and by the inflammatory cell infiltration of the 
pancreas (81). Notably, the combination of sialic acid and 
catechins can upregulate autophagy and downregulate apop-
tosis in order to protect against H. pylori-induced gastric 
injury (15,82). Additionally, rapamycin can increase the clear-
ance of H. pylori by upregulating autophagy (83). The inducers 
of autophagy may be novel therapeutic antibiotics that can be 
used for the treatment of chronic H. pylori infection.

6. Conclusions

Our previous studies demonstrated that autophagy exhibited 
a cytoprotective function in cancer cells and that it could 
induce autophagic cell death at different stages of cancer 
formation (33-35). H. pylori may disturb homeostasis in 
host cells during acute infection, notably via the secretion 
of virulence factors. Autophagy is an important defence 
mechanism that can restrict bacterial survival and growth. 
Gastric epithelial cells can induce canonical autophagy in 
order to maintain homeostasis during acute infection with 
H. pylori. Chronic infections with H. pylori can cause the 
dysfunction of autophagy-associated proteins. The inhibition 
of autophagy can lead to persistent infection. H. pylori can 
resist antibiotic treatment, and, as a consequence, the chronic 
infection of this bacterial strain has become a global health 
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Figure 2. Chronic infection of H. pylori can inhibit autophagy. Autophagy-associated proteins are the targets of miR-30d and miR-30b, inhibiting autophago-
some formation. Autophagy is disrupted by the prolonged co‑culture of VacA since cathepsin D expression is inhibited in autophagosomes. The expression 
of the autophagic proteins is downregulated by the Akt signaling pathway during chronic CagA+ H. pylori infection. VacA, vacuolating cytotoxin; CagA, 
cytotoxin‑associated gene A; ULK, Unc‑51‑like kinase 1; LC3, microtubule‑associated protein light chain 3; ATG5, autophagy related 5; ATG12, autophagy 
related 12; ATG16L1, autophagy related 16 like 1; mir-30b, microRNA-30b; mir-30d, microRNA-30d.

Figure 1. Acute infection of H. pylori can induce autophagy. H. pylori‑OMVs stimulate NOD1, thereby triggering an autophagic response. H. pylori secretes 
HP0175, which upregulates UPR‑dependent autophagy. VacA inhibits mTORC1, subsequently activating cellular autophagy via the ULK1 complex. VacA 
forms conjugates with LRP1 to regulate the formation of autophagosomes and autolysosomes. VacA can also induce autophagy via induction of ER stress. 
VacA can reduce GSH levels to bind LRP1 and subsequently enhance Akt phosphorylation to activate autophagy, causing CagA degradation. VacA, vacuolating 
cytotoxin; CagA, cytotoxin‑associated gene A; LRP1, low‑density lipoprotein receptor‑related protein‑1; ER, endoplasmic reticulum; EIF2S1, eukaryotic 
translation initiation factor 2 subunit 1; DDIT3, DNA damage-inducible transcript 3; ATF4, activating transcription factor 4; ULK1, Unc-51-like kinase 1; 
UPR, unfolded protein response; PERK, PKR‑like ER kinase; PG‑OMVs, peptidoglycan‑outer membrane vesicles; NOD1, nucleotide‑binding oligomeriza-
tion domain-1; LC3, microtubule-associated protein light chain 3; GSH, glutathione; H. pylori, Helicobacter pylori; mTORC1, mTOR complex 1; VPS34, 
phosphatidylinositol 3-kinase catalytic subunit type 3.
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issue. During infection, the induction of autophagy, which 
maintains cellular homeostasis, is inhibited. By upregulating 
autophagy-associated proteins in gastric epithelial cells, 
H. pylori can be eliminated. This strategy can be applied with 
the use of autophagy inducers as novel therapeutic agents. 
Although the mechanism of multi-drug-resistance acquired 
by H. pylori relies on associated virulence factors to cause 
downregulation of autophagy and maintenance of persistent 
infection, the precise identification of the proteins involved in 
this signaling pathway remains unclear. 
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