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Abstract. Colorectal cancer (CRC) is a life‑threatening 
disease with a poor prognosis. Therefore, it is crucial to iden-
tify molecular prognostic biomarkers for CRC. The present 
study aimed to identify potential key genes that could be used 
to predict the prognosis of patients with CRC. Three CRC 
microarray datasets (GSE20916, GSE73360 and GSE44861) 
were downloaded from the Gene Expression Omnibus (GEO) 
database, and one dataset was obtained from The Cancer 
Genome Atlas (TCGA) database. The three GEO datasets 
were analyzed to detect differentially expressed genes (DEGs) 
using the BRB‑ArrayTools software. Functional and pathway 
enrichment analyses of these DEGs were performed using 
the Database for Annotation, Visualization and Integrated 
Discovery tool. A protein‑protein interaction (PPI) network 
of DEGs was constructed, hub genes were extracted, and 
modules of the PPI network were analyzed. To investigate the 
prognostic values of the hub genes in CRC, data from the CRC 
datasets of TCGA were used to perform the survival analyses 
based on the sample splitting method and Cox regression 
model. Correlation among the hub genes was evaluated using 
Spearman's correlation analysis. In the three GEO datasets, 
a total of 105 common DEGs were identified, including 51 
down‑ and 54 up‑regulated genes in CRC compared with 
normal colorectal tissues. A PPI network consisting of 100 
DEGs and 551 edges was constructed, and 44 nodes were 
identified as hub genes. Among these 44 genes, the four hub 

genes TIMP metallopeptidase inhibitor 1 (TIMP1), solute 
carrier family 4 member 4 (SLC4A4), aldo‑keto reductase 
family 1 member B10 (AKR1B10) and ATP binding cassette 
subfamily E member 1 (ABCE1) were associated with overall 
survival (OS) in patients with CRC. Three significant modules 
were extracted from the PPI network. The hub gene TIMP1 
was present in Module 1, ABCE1 was involved in Module 2 
and SLC4A4 was identified in Module 3. Univariate analysis 
revealed that TIMP1, SLC4A4, AKR1B10 and ABCE1 were 
associated with the OS of patients with CRC. Multivariate 
analysis demonstrated that SLC4A4 may be an independent 
prognostic factor associated with OS. Furthermore, the results 
from correlation analysis revealed that there was no correlation 
between TIMP1, SLC4A4 and ABCE1, whereas AKR1B10 
was positively correlated with SLC4A4. In conclusion, the four 
key genes TIMP1, SLC4A4, AKR1B10 and ABCE1 associated 
with the OS of patients with CRC were identified by integrated 
bioinformatics analysis. These key genes may be used as prog-
nostic biomarkers to predict the survival of patients with CRC, 
and may therefore represent novel therapeutic targets for CRC.

Introduction

Colorectal cancer (CRC) is the third most common type 
of cancer, and the fourth leading cause of cancer associ-
ated‑mortality in the world, with 1.8 million new cases 
diagnosed and 881,000 deaths in 2018 (1,2). Since surgical 
techniques and chemotherapy regimen have been improved, 
and molecular targets have been determined, attention has 
focused on early detection of CRC, which led to an increase in 
survival time of patients with CRC (3,4). However, the 5‑year 
overall survival (OS) rate of patients with CRC is still unsat-
isfactory, particularly for patients with advanced CRC (5). In 
China, CRC is the third most frequent type of cancer and the 
fourth leading cause of cancer‑associated mortality (6). In 
order to precisely predict the prognosis of patients with CRC, 
it is crucial to identify novel molecular prognostic biomarkers.

Many lifestyle factors have been investigated, with imbal-
anced diet, tobacco use, alcohol consumption, lack of physical 
activity, obesity and sleep deprivation being considered as the 
risk factors in the progression of CRC (7). Heredity, epigen-
etic, somatic cell and endocrine aberration seem to play 
significant roles in CRC (8). Increasing evidence has suggested 
that multiple genes and cellular signaling pathways serve 
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important roles in the pathogenesis of CRC (9,10). Diagnostic 
and prognostic signatures, for example BRAF, RAS and MSI, 
can monitor the response to therapy in patients with CRC (11). 
Therefore, it is critical to identify novel biomarkers with high 
sensitivity and specificity in order to allow the early detection 
of CRC and to choose the best treatment option for patients with 
CRC. Microarray analysis has been considered as a promising 
tool in cancer research and may have important clinical appli-
cations, including in diagnosis, cancer classification, prognosis 
prediction and detection of therapeutic targets (12‑14). In the 
last decade, microarray technology has been used to study 
the gene expression profiles of CRC, which has led to the 
identification of thousands of differentially expressed genes 
(DEGs) (15). However, DEGs identified in one study might not 
be detected in another study. In addition, interactions among 
DEGs and their prognostic values remain unknown.

The present study aimed to determine potential novel 
prognosis biomarkers for CRC. Three microarray datasets 
obtained from the Gene Expression Omnibus (GEO) database 
were analyzed in order to further identify the DEGs in CRC, 
by comparing their expression levels between CRC and normal 
samples. Subsequently, a protein‑protein interaction (PPI) 
network was constructed, from which modules were extracted, 
and functional and pathway analyses were performed to further 
analyze the roles of the CRC‑associated DEGs. To verify the 
prognostic roles of DEGs in CRC, the CRC dataset from The 
Cancer Genome Atlas (TCGA) was used to perform survival 
analysis based on the sample splitting method and Cox regres-
sion model. The key genes that were identified may be used to 
characterize the survival of CRC, and may serve as potential 
therapeutic targets and prognostic biomarkers.

Materials and methods

Microarray datasets. The GEO database (http://www.ncbi.
nlm.nih.gov/geo) is a public functional genomics data reposi-
tory that contains multifaceted data, including data derived 
from microarray and next‑generation sequencing. GEO data-
base was searched using the following key words: (‘colorectal 
neoplasms’[MeSH Terms] OR colorectal cancer [All Fields])) 
AND ‘Homo sapiens’[porgn] AND (‘gse’[Filter] AND 
‘Expression profiling by array’[Filter] AND ‘attribute name 
tissue’[Filter] AND (‘60’[n_samples] : ‘3000’[n_samples])) 
AND (‘gse’[Filter] AND ‘Expression profiling by array’[Filter] 
AND ‘attribute name tissue’[Filter] AND (‘60’[n_samples]: 
‘3000’[n_samples])). Following systematic review based 
on the key words, a total of 77 datasets were identified for 
further analysis. The selection criteria for these datasets were 
as follows: i) Included datasets must include paired CRC and 
normal control tissues; ii) sample size of each group must be 
>30; and iii) adequate clinical information must be available 
to perform the analysis. According to the selection criteria, 
three gene expression profiles were collected, including 
GSE20916  (16), GSE73360  (17) and GSE44861  (18). The 
microarray data of GSE20916, GSE73360 and GSE44861 were 
downloaded from the GEO database. GSE20916 was based on 
the Affymetrix GPL570 platform (Human Genome U133 Plus 
2.0 Array), GSE73360 was based on the Affymetrix GPL17586 
platform (Human Transcriptome Array 2.0) and GSE44861 
was based on Affymetrix GPL3921 platform (Human 

Genome U133A Array). The GSE20916 dataset included 101 
CRC tissue samples and 44 normal samples. Expression data 
from the GSE73360 dataset included 55 CRC samples and 37 
normal samples. Microarray data from the GSE44861 dataset 
included 56 CRC samples and 55 normal samples.

Data pre‑processing and identification of DEGs in CRC. The 
Series Matrix File(s) of GSE20916, GSE73360 and GSE44861 
were downloaded from the GEO database. Prior to analysis, 
the probes in each dataset were transformed into standard 
gene symbols. Normalization of the three datasets was imple-
mented based on robust multi‑array average in the R software, 
version 2.6.0 (www.R‑project.org/) (19), and normalization 
was separately conducted in each gene expression dataset.

The BRB‑ArrayTools package (v4.6.0 Beta 1; https://brb.
nci.nih.gov/BRB‑ArrayTools/download.html) is an integrated 
software for the visualization and statistical analysis of 
microarray gene‑expression data, gene‑methylation data and 
RNA‑sequencing data (20). In the present study, DEGs from 
each dataset were identified using BRB‑ArrayTools software. 
A P‑value <0.01 and |log fold change| >1 were set as the cut‑off 
criteria. A heatmap and Volcano Plot of the DEGs from each 
dataset were subsequently generated using BRB‑ArrayTools. 
The Venn diagram illustrating the intersection of these DEGs 
among the three microarray profiles was visualized using 
FunRich_V3.1.3 software (http://www.funrich.org).

PPI network construction and module analysis. The Search 
Tool for the Retrieval of Interacting Genes (STRING; 
https://string‑db.org) database is an online software that is 
used to analyze PPI information, and to present the interactions 
with a combine‑score (21). In the present study, DEGs with 
a confidence score >0.4 were extracted, and the PPI network 
of these DEGs was subsequently constructed and visualized 
using Cytoscape software (version 3.5.1; http://www.cyto-
scape.org) (22). Edge width was determined according to the 
combined score of the PPI relationship. Since the networks 
were scale‑free, the biological importance of genes associated 
with degree centrality was described to improve the under-
standing of the functionality of these complicated networks. 
The degree is determined as the number of links between a 
node and its adjacent nodes (23). In the current study, hub 
genes were defined as the nodes with a degree >10, and were 
extracted.

The analysis of modules was conducted on the PPI 
network by using MCODE version  2.2 (https://dspace.
mit.edu/handle/1721.1/75242) according to the following 
parameters: Node score cut‑off=0.2, k‑core=2 and max. 
Depth=100 (24).

Functional and pathway enrichment analysis. Gene Ontology 
(GO) (25) analysis has become a common method used for 
functional studies of large‑scale transcriptomic data and 
analysis of genomic data. Kyoto Encyclopedia of Genes and 
Genomes (KEGG; http://www.genome.jp/kegg/pathway) is 
a reference database for systematic analysis of gene func-
tions (26). The Database for Annotation Visualization and 
Integrated Discovery (DAVID; https://david.ncifcrf.gov) is 
a tool used to systematically detect biological significance 
in large lists of genes or proteins (27). In the present study, 
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the GO function and KEGG pathway enrichment analysis of 
identified DEGs and the genes in the significant modules were 
performed using DAVID. Terms with a P‑value <0.001 were 
considered statistically significant.

Pathway crosstalk analysis. Enrichment map is a 
network‑based method for gene‑set enrichment visualization 
and interpretation (28). In order to extract the interactions 
between significantly enriched signaling pathways, pathway 
crosstalk analysis was performed using the EnrichmentMap 
tool (http://www.baderlab.org/Software/EnrichmentMap). 
Benjamini‑Hochberg adjusted P‑value <0.05 and the Jaccard 
Coefficient (50%) + Overlap Coefficient (50%) >0.5 were 
considered as the thresholds. The Jaccard Coefficient, and 
Overlap Coefficient are two indexes to examine the similarity 
between sample sets.

Survival analysis of hub genes. The Human Protein Atlas 
(http://www.proteinatlas.org) is an online database that 
contains clinical data of 597  patients with CRC, which 
were from the TCGA database (https://tcga‑data.nci.nih.
gov/tcga/). The present study aimed to investigate the impact 
of the expression levels of the identified hub genes on the OS 
of patients with CRC. Kaplan‑Meier survival analysis was 
carried out by using the Human Protein Atlas database. The 
survival rates of patients with CRC according to the expres-
sion level of each hub gene were compared. Briefly, according 
to the Fragments Per Kilobase Million (FPKM) value of each 
hub gene, patients with CRC were classified into a high or low 
expression group based on the best expression cut‑off value, 
which is the FPKM value that yields maximal difference 
by survival analysis between the two groups at the smallest 
log‑rank P‑value. Kaplan‑Meier survival curves were plotted, 
and the log‑rank test was applied to compare the survival rates 
between the high and low expression groups. P<0.001 was 
set as the cut‑off criterion. Univariate and multivariate Cox 
models were subsequently used to investigate the prognostic 
value of OS‑associated hub genes. P<0.01 was considered to 
indicate statistical significance.

Correlation between hub genes. The correlation between the 
hub genes that were associated with CRC was evaluated using 
Spearman's correlation analysis. Spearman's correlation coef-
ficients range between ‑1 and 1, with ‑1, 0 and 1 indicating 
negative, no and positive correlation, respectively. In addition, 
the threshold for gene correlation was set as Spearman's corre-
lation coefficient (|R|<0.3) and P<0.05.

Results

Identification of DEGs. A total of 2,836, 2,942 and 420 DEGs 
were identified from the GSE20916, GSE73360 and GSE44861 
datasets, respectively. Volcano plots showing the distribution 
of these DEGs in the three datasets were created (Fig. 1A). 
The results from cluster heat maps (Fig. 1B) identified distinc-
tive patterns in CRC and normal samples. Subsequently, 
the intersection of these DEGs from the three microarray 
profiles was identified using FunRich_V3 software. A total 
of 105 mutual DEGs were identified in CRC tissues among 
the three datasets compared with normal colorectal tissues 

(Fig. 1C), including 51 down‑regulated and 54 up‑regulated 
genes. Fig. 1D shows the expression pattern of the common 
up‑regulated and down‑regulated DEGs from the expression 
data of the GSE20916, GSE44861 and GSE73360 datasets.

Functional and pathway enrichment analysis. In order to 
comprehensively understand the biological roles of these 
DEGs in CRC, DAVID was used to determine the GO func-
tions and pathways in which they were involved (Table I). 
The down‑regulated DEGs were significantly enriched in the 
biological processes ‘bicarbonate transport’, and ‘regulation 
of intracellular pH’, and in the cellular components ‘extracel-
lular exosome’ and ‘integral component of plasma membrane’. 
Furthermore, down‑regulated DEGs were enriched in the 
molecular functions ‘chloride channel activity’ and ‘carbonate 
dehydratase activity’. The up‑regulated DEGs were signifi-
cantly enriched in the biological processes ‘cell proliferation’, 
‘collagen catabolic process’, ‘extracellular matrix organization’, 
‘extracellular matrix disassembly’, and ‘leukocyte migration’ 
in certain cellular components, including ‘extracellular space’, 
‘extracellular region’, ‘proteinaceous extracellular matrix’, 
‘collagen trimer’ and ‘cell surface’, and in the molecular func-
tions ‘CXCR chemokine receptor binding’, ‘platelet‑derived 
growth factor binding’ and ‘endopeptidase activity’.

The 20 significant pathways which the up‑ and down‑regu-
lated DEGs were involved in are presented in Table II. The 
results demonstrated that down‑regulated DEGs were signifi-
cantly enriched in the pathways ‘proximal tubule bicarbonate 
reclamation’ and ‘nitrogen metabolism’, whereas up‑regulated 
DEGs were enriched in ‘ECM‑receptor interaction’, ‘focal 
adhesion’, ‘PI3K‑Akt signaling pathway’ and ‘TNF signaling 
pathway’.

PPI network construction and module analysis. The PPIs of 
the DEGs were obtained using STRING with a confidence 
score>0.4, and the PPI network of these DEGs was visualized 
using Cytoscape. The results demonstrated that the PPI network 
covered 100 nodes and 551 edges, including 49 down‑regulated 
genes and 51 up‑regulated genes (Fig. 2A). Subsequently, hub 
nodes in the PPI network with a connectivity degree >10 were 
selected. A total of 44 genes were identified as hub genes. 
Among these hub genes, 17 were down‑regulated [transmem-
brane serine protease 2, sorcin, solute carrier family 4 member 4 
(SLC4A4), solute carrier family 26 member 3, nuclear receptor 
subfamily 3 group C member 2, myosin heavy chain 11, keratin 
20, 15‑hydroxyprostaglandin dehydrogenase, guanylate cyclase 
activator 2A, fatty acid binding protein 1, CEA cell adhesion 
molecule 7, carbonic anhydrase 4, carbonic anhydrase 2, 
carbonic anhydrase 1, ADP ribosylation factor like GTPase 
14, alanyl aminopeptidase, membrane and aldo‑keto reductase 
family 1 member B10 (AKR1B10)] and 27 were up‑regulated 
[TIMP metallopeptidase inhibitor 1 (TIMP1), thrombospondin 
2, transforming growth factor β induced, stanniocalcin 1, 
secreted phosphoprotein 1, secreted protein acidic and cysteine 
rich, serpin family B member 5, stearoyl‑CoA desaturase, 
receptor interacting serine/threonine kinase 2, regenerating 
family member 3α, prostaglandin‑endoperoxide synthase 2, 
MYC proto‑oncogene, bHLH transcription factor, matrix metal-
lopeptidase 3, matrix metallopeptidase 1, MET proto‑oncogene, 
receptor tyrosine kinase, leucine rich repeat containing G 
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protein‑coupled receptor 5, growth differentiation factor 15, 
dual specificity phosphatase 4, C‑X‑C motif chemokine ligand 
2, C‑X‑C motif chemokine ligand 1, collagen type III α1 chain, 
collagen type I α2 chain, collagen type I α1 chain, complement 
factor B, CD44 molecule (Indian blood group), cyclin D1 and 
ATP binding cassette subfamily E member 1 (ABCE1)].

Three significant modules with a node score cut‑off=0.2, 
k‑core=2, and max. Depth=100 were extracted from the PPI 
network. A total of 18 nodes and 136 edges were included in 
Module 1 (Fig. 2B). There were six nodes and 12 edges in 
Module 2 (Fig. 2C), and Module 3 contained six nodes and 
10 edges (Fig. 2D). The up‑regulated hub gene TIMP1 was 

included in Module 1, the up‑regulated ABCE1 gene was 
involved in Module 2 and the down‑regulated SLC4A4 was 
present in Module 3.

Module 1 was enriched in eight GO terms, including 
‘extracellular matrix organization’, ‘extracellular space’ and 
‘platelet‑derived growth factor binding’. Module 2 was enriched 
in two GO terms; ‘ATPase activity’ and ‘protein binding’. 
Module 3 was enriched in the four terms ‘regulation of intra-
cellular pH’, ‘bicarbonate transport’, ‘chloride transmembrane 
transport’ and ‘chloride channel activity’ (Table III).

In addition, the results from KEGG pathway enrichment 
analysis demonstrated that genes in Module 1 were significantly 

Figure 1. Expression pattern of genes between CRC and normal samples. (A) Volcano plots exhibiting expression data of CRC and normal tissues in the micro-
array profiles of GSE20916, GSE44861 and GSE73360. The x‑axis presents the mean differences between CRC and normal samples. The y‑axis presents the 
log transformed P‑values. DEGs are shown in blue. (B) Hierarchical clustering analysis of DEGs between CRC and normal samples in GSE20916, GSE44861 
and GSE77360. Each row represents a DEG and each column represents a different sample. (C) Intersection of all DEGs (n=105), up‑regulated DEGs (n=54) 
and down‑regulated DEGs (n=51) among the expression data of GSE20916, GSE44861 and GSE73360. (D) Hierarchical clustering analysis of the mutual 
up‑regulated and down‑regulated DEGs in the expression data of GSE20916, GSE44861 and GSE73360. Red represents down‑regulated genes, whereas blue 
represents up‑regulated genes. CRC, colorectal cancer; DEGs, differentially expressed genes.
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involved in the four pathways ‘ECM‑receptor interaction’, 
‘PI3K‑Akt signaling pathway’, ‘focal adhesion’ and ‘miRNAs 
in cancer’. The genes in Module 3 were significantly enriched 
in the ‘pancreatic secretion’ pathway (Table IV).

Pathway crosstalk analysis. To determine how the 20 signifi-
cant pathways interacted with each other, a pathway crosstalk 
analysis was conducted. The results demonstrated that a cross 
talk existed among ‘PI3K‑Akt signaling pathway’, ‘focal adhe-
sion’ and ‘ECM‑receptor interaction’. In addition, a separate 
crosstalk existed between ‘proximal tubule bicarbonate 
reclamation’ and ‘nitrogen metabolism’. No interaction was 
observed between ‘TNF signaling pathway’ and the other 
pathways (Fig. 3).

Survival analysis of hub genes. The prognostic value of the 
44 hub genes from the PPI network was investigated using 
The Human Protein Atlas database. The results demonstrated 
that four hub genes were associated with the OS of patients 
with CRC, including TIMP1, SLC4A4, AKR1B10 and ABCE1 
(Fig. 4). The results of the survival analysis suggested that 
TIMP1 may be considered as an oncogene, whereas SLC4A4, 
AKR1B10 and ABCE1 may be tumor suppressor genes.

The results from univariate analysis revealed that the 
Union for International Cancer Control (UICC) stage (29) and 
TIMP1, SLC4A4, AKR1B10 and ABCE1 expression levels 
were significantly associated with the OS of patients with CRC 
(all P<0.01). However, there was no significant association 
between age/sex and OS in the univariate analysis (P>0.01). 
The results of multivariate analysis demonstrated that age, 
UICC stage and SLC4A4 expression were independent prog-
nostic factors associated with the OS of patients with CRC 
(Table V; all P<0.01).

Correlation between hub genes. Correlation analysis between 
the expression levels of the four hub genes (TIMP1, SLC4A4, 
ABCE1 and AKR1B10) was performed using Spearman’s 
correlation analysis. The results demonstrated that there was 
no correlation between TIMP1, SLC4A4 and ABCE1 expres-
sion (Fig. 5); however, the expression levels of AKR1B10 and 
SLC4A4 were positively correlated (R=0.39; P<0.05; Fig. 5).

Discussion

Despite advances in surgical and medical therapies for the 
treatment of CRC, the incidence and mortality rates remain 

Table I. GO analysis of differentially expressed genes in colorectal cancer tissues.

A, Downregulated

Category	 Term	 Count, n	 Percentage	 P‑value

GOTERM_BP_DIRECT	 GO:0015701 ‘bicarbonate transport’	 6	 9.17	 1.10x10‑7

	 GO:0051453 ‘regulation of intracellular pH’	 4	 6.11	 1.21x10‑4

GOTERM_CC_DIRECT	 GO:0070062 ‘extracellular exosome’	 29	 44.32	 2.28x10‑11

	 GO:0005887 ‘integral component of plasma membrane’	 15	 22.95	 1.38x10‑5

GOTERM_MF_DIRECT	 GO:0005254 ‘chloride channel activity’	 4	 6.11	 4.54x10‑4

	 GO:0004089 ‘carbonate dehydratase activity’	 3	 4.59	 6.76x10‑4

B, Upregulated

Category	 Term	 Count, n	 Percentage	 P‑value

GOTERM_BP_DIRECT	 GO:0030574 ‘collagen catabolic process’	 6	 7.70	 1.55x10‑6

	 GO:0030198 ‘extracellular matrix organization’	 8	 10.26	 2.27x10‑6

	 GO:0022617 ‘extracellular matrix disassembly’	 6	 7.70	 3.66x10‑6

	 GO:0050900 ‘leukocyte migration’	 6	 7.70	 3.69x10‑5

	 GO:0008283 ‘cell proliferation’	 8	 10.26	 1.27x10‑4

GOTERM_CC_DIRECT	 GO:0005615 ‘extracellular space’	 19	 24.38	 2.07x10‑8

	 GO:0005576 ‘extracellular region’	 17	 21.81	 8.07x10‑6

	 GO:0005578 ‘proteinaceous extracellular matrix’	 7	 9.00	 1.23x10‑4

	 GO:0005581 ‘collagen trimer’	 5	 6.42	 1.47x10‑4

	 GO:0009986 ‘cell surface’	 8	 10.26	 9.33x10‑4

GOTERM_MF_DIRECT	 GO:0045236 ‘CXCR chemokine receptor binding’	 3	 3.85	 3.05x10‑4

	 GO:0048407 ‘platelet‑derived growth factor binding’	 3	 3.85	 4.65x10‑4

	 GO:0004175 ‘endopeptidase activity’	 4	 5.13	 5.45x10‑4

BP, biological process; CC, cellular component; GO, Gene Ontology; MF, molecular function.
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high (1,2). Successful screening techniques and reducing the 
risk of CRC are essential to help decrease the incidence of 
CRC. Understanding the etiology and mechanisms of CRC 
progression is crucial to improve the survival rate of patients 
with CRC and prevent the disease occurrence. Recently, 
microarray technology, which has rapidly developed, has been 
widely used to compare the expression levels of genes, and has 
been used to predict disease progression, to make an accurate 
diagnosis and evaluate prognosis (30‑32). In the present study, 
a meta‑analysis method was used to analyze three microarray 
datasets (GSE20916, GSE73360 and GSE44861) in order to 
identify DEGs in CRC tissue samples. A total of 105 mutual 
DEGs were identified in the three datasets, including 51 
down‑regulated genes and 54 up‑regulated genes. A total of 
44 DEGs were subsequently selected from the PPI network 
and were identified as hub genes. Furthermore, three signifi-
cant modules were identified in the PPI network. In addition, 
survival analysis of the hub genes demonstrated that two 
down‑regulated genes (SLC4A4 and AKR1B10) and two 
up‑regulated genes (ABCE1 and TIMP1) were significantly 
associated with the OS of patients with CRC. These four genes 
may be the most reliable genes that could be applied in clinical 
settings for the following reasons: i) These four genes were 
simultaneously confirmed using three gene expression profile 
datasets; and ii)  these genes have been demonstrated to be 
associated with cancer.

SLC4A4, which is a member of the SLC4 family, is an elec-
trically induced transmembrane transporter, which is mostly 
involved in sodium and bicarbonate transport to the epithelial 
cell membrane (33). A previous study reported that the SLC4 
family is mainly involved in CO2 transport by red blood cells, the 

absorption or secretion of H+ or HCO3 − by epithelial cells and 
regulation of cell volume and intracellular pH in the majority of 
cells (34). Furthermore, abnormal SLC4A4 expression has been 
reported in thyroid carcinoma, and this biomarker may be used 
for the diagnosis of thyroid cancer (35). However, to the best of 
our knowledge, only a few studies have investigated SLC4A4 
expression in CRC. For example, Chen et al (36) demonstrated 
that the expression of SLC4A4 was decreased in CRC samples. 
Another study also reported that SLC4A4 was significantly 
down‑regulated in the CRC group (37). In the present study, a 
PPI network was constructed to identify the hub genes for CRC, 
and SLC4A4 was identified to be down‑regulated. The clinical 
data of 597 patients with CRC were then collected using TCGA 
database. The results from survival analysis demonstrated that 
patients with CRC in the SLC4A4 high expression group had 
a longer OS compared with patients with CRC in the SLC4A4 
low expression group. These findings suggested that SLC4A4 
may be used to evaluate the prognosis of patients with CRC.

ABCE1 is located on chromosome 4q31 and codes for 
599 amino acids. Previous studies have reported that ABCE1 
suppresses the interferon (IFN)‑dependent 2‑5A/RNase L system 
and serves key roles in cell proliferation and apoptosis (38,39). 
IFN is involved in cell immune defense by inducing transcription 
processes of a large number of genes, and has been demonstrated 
to be able to fight virus infection, inhibit tumor growth and 
control cell proliferation and differentiation (39). Zheng et al (40) 
have demonstrated that ABCE1 is up‑regulated in lung cancer 
samples, and that decreased ABCE1 expression can impair cell 
proliferation and increase cell apoptosis. Hlavata et al (41) also 
reported that ABCE1 is up‑regulated in CRC. Furthermore, 
it has been reported that ABCE1 knockdown can inhibit the 

Table II. Kyoto Encyclopedia of Genes and Genomes pathway analysis of differentially expressed genes in colorectal cancer 
tissues.

A, Downregulated				  

Term	 Count, n	 Percentage	 P‑value	 Genes

hsa04964: Proximal tubule bicarbonate	 4	 6.11	 7.06x10‑5	 CA4, CA2, SLC4A4, PCK1
reclamation			   	

hsa00910: Nitrogen metabolism	 3	 8.25	 5.12x10‑4	 CA2, CLCA4, SLC4A4

B, Upregulated

Term	 Count, n	 Percentage	 P‑value	 Genes

hsa04512: ECM‑receptor interaction	 6	 7.70	 1.83x10‑5	 CD44, COL3A1, COL1A2, COL1A1, 
			   	 THBS2, SPP1
hsa04510: Focal adhesion	 7	 9.00	 1.14x10‑4	 CCND1, COL3A1, MET, COL1A2, 
			   	 COL1A1, THBS2, SPP1
hsa04151: PI3K‑Akt signaling pathway	 8	 10.26	 2.71x10‑4	 CCND1, COL3A1, MET, COL1A2, 
			   	 COL1A1, THBS2, MYC, SPP1
hsa04668: TNF signaling pathway	 5	 6.42	 7.00x10‑4	 CXCL1, PTGS2, CXCL3, CXCL2, 
			   	 MMP3

ECM, extracellular matrix; TNF, tumor necrosis factor.
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proliferation and invasion of breast cancer cells (42) and small 
cell lung cancer cells (43). In addition, a previous study has 
demonstrated that ABCE1 participates in the immune response 
of colon cancer (44). Consistent with these results, the present 
study demonstrated that ABCE1 was an upregulated hub DEG, 
and that high ABCE1 expression was associated with a high OS 
in patients with CRC. These findings indicated that ABCE1 may 
be considered as a diagnostic and prognostic biomarker in CRC 
and may be used for targeted therapy of CRC.

TIMP1 is a soluble protein released from endometrium 
cells, fibroblasts and cancer cells, which has been demon-
strated to be associated with prognosis in various types of 
carcinoma (45‑47). Xiong et al (48) reported that TIMP1 is 
overexpressed in CRC. A recent study demonstrated that TIMP1 
depletion can inhibit the proliferation, migration and invasion 
of colonic carcinoma cells, and inhibit the tumorigenesis and 
metastasis in CRC (49). In addition, TIMP1 overexpression is 
associated with focal adhesion kinase (FAK) activation. FAK 
is an upstream regulator of the PI3K‑Akt signaling pathway, 
which is crucial in the cell survival pathway (50‑52). Consistent 
with these studies, the present study reported that TIMP1 was 
up‑regulated in CRC tissues samples compared with normal 
tissue samples, and that low TIMP1 expression was associated 
with a higher OS of patients with CRC. Therefore, TIMP1 may 

be considered as a potential biomarker that could be used to 
predict the clinical outcome of patients with CRC.

Abnormal AKR1B10 expression has been reported in 
numerous types of cancer, including breast cancer, endo-
metrial cancer, oral squamous cell carcinoma and lung 
cancer (35,53,54). AKR1B10, which is one member of the 
AKR superfamily, is an essential regulatory gene involved in 
the physiological function of intestinal tissue, including cell 
apoptosis, proliferation and migration (55). Previous studies 
have demonstrated that AKR1B10 expression is lower in CRC 
tissues compared with in normal colorectal tissues (44,56). 
Furthermore, AKR1B10 is one of the direct transcriptional 
targets of the p53 gene (34,57). Significantly, p53 is activated 
in cases of DNA damage, oncogene activation, anoxia and 
excessive proliferation (38). A previous study reported that 
the p53 mutation rate in CRC is ~40%  (56). In addition, 
survival analysis using the TCGA database has demonstrated 
that patients with CRC and high AKR1B10 expression have a 
significantly longer survival rate (58). Consistent with these 
findings, the present study demonstrated that AKR1B10 
was down‑regulated in CRC tissues compared with normal 
tissues, and that patients with CRC in the AKR1B10 high 
expression group had a higher OS compared with patients in 
the AKR1B10 low expression group. These results suggest 

Figure 2. PPI network construction and module composition. (A) Construction of the PPI network covered 100 nodes and 551 edges, including 49 up‑regulated 
genes and 51 down‑regulated genes. The nodes represent the protein (gene). Red nodes represent down‑regulated DEGs. Orange nodes represent up‑regulated 
DEGs. Edge width was determined according to the combined score of the PPI relationship. (B) A total of 18 nodes and 136 edges were included in Module 1. 
(C) A total of six nodes and 12 edges were included in Module 2. (D) A total of six nodes and 10 edges were included in Module 2. DEGs, differentially 
expressed genes; PPI, protein‑protein interaction.
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Table III. GO analysis of the genes of each module in colorectal cancer tissues.

A, Module 1

Category	 Term	 Count, n	 Percentage	 P‑value

GOTERM_BP_DIRECT	 GO:0030198 ‘extracellular matrix organization’	 8	 44.44	 4.67x10‑10

	 GO:0030574 ‘collagen catabolic process’	 5	 27.78	 4.40x10‑7

	 GO:0022617 ‘extracellular matrix disassembly’	 5	 22.78	 8.82x10‑7

	 GO:0032355 ‘response to estradiol’	 4	 22.22	 9.91x10‑5

GOTERM_CC_DIRECT	 GO:0005615 ‘extracellular space’	 12	 66.67	 2.28x10‑11

	 GO:0005576 ‘extracellular region’	 12	 66.67	 1.38x10‑5

GOTERM_MF_DIRECT	 GO:0048407 ‘platelet‑derived growth factor binding’	 3	 16.67	 5.22x10‑5

	 GO:0050840 ‘extracellular matrix binding’	 3	 16.67	 3.06x10‑4

B, Module 2

Category	 Term	 Count, n	 Percentage	 P‑value

GOTERM_MF_DIRECT	 GO:0016887 ‘ATPase activity’	 2	 33.33	 3.05x10‑4

	 GO:0005515 ‘protein binding’	 5	 83.33	 4.65x10‑4

C, Module 3

Category	 Term	 Count, n	 Percentage	 P‑value

GOTERM_BP_DIRECT	 GO:0051453 ‘regulation of intracellular pH’	 3	 50	 1.34x10‑5

	 GO:0015701 ‘bicarbonate transport’	 3	 50	 2.01x10‑5

	 GO:1902476 ‘chloride transmembrane transport’	 3	 50	 9.07x10‑5

GOTERM_MF_DIRECT	 GO:0005254 ‘chloride channel activity’	 3	 50	 6.00x10‑5

BP, biological process; CC, cellular component; GO, Gene Ontology; MF, molecular function.

Table IV. Kyoto Encyclopedia of Genes and Genomes pathway analysis of the genes of each module in colorectal cancer tissues.

A, Module 1

Term	 Count, n	 Percentage	 P‑value	 Genes

hsa04512: ECM‑receptor interaction	 5	 27.78	 2.13x10‑5	 CD44, COL3A1, COL1A2, COL1A1, SPP1
hsa04151: PI3K‑Akt signaling	 7	 38.89	 3.17x10‑5	 CCND1, COL3A1, MET, COL1A2, COL1A1, 
pathway			   	 MYC, SPP1
hsa04510: Focal adhesion	 6	 33.33	 3.61x10‑5	 CCND1, COL3A1, MET, COL1A2, COL1A1, 
			   	 SPP1
hsa05206: MicroRNAs in cancer	 3	 33.33	 1.70x10‑4	 CCND1, CD44, PTGS2, SERPINB5, MET, 
			   	 MYC

B, Module 3

Term	 Count, n	 Percentage	 P‑value	 Genes

hsa04972: Pancreatic secretion	 3	 50	 1.79x10‑4	 SLC26A3, CLCA4, SLC4A4

ECM, extracellular matrix.
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the importance of AKR1B10 in evaluating the prognosis of 
patients with CRC.

The results of the present study may have clinical signifi-
cance for CRC; however, the current study presented certain 

Table V. Predictive values of clinical characteristics of patients with colorectal cancer and the four hub genes.

	 Univariate analysis	 Multivariate analysis
		  ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑	 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
Variable	 Group	 Number	 95% CI	 P‑value	 95% CI	 P‑value

Age (years)	 <60 vs. ≥60	 173 vs. 424	 1.043‑2.483	 0.030	 1.335‑3.414	 0.002
Sex	 Male vs. female	 322 vs. 275	‑	  0.818	‑	  0.566
UICC stage	 I and II vs. III and IV	 338 vs. 259	 2.094‑4.591	 <0.001	 2.123‑4.716	 <0.001
TIMP1	 FPKM <172.3 vs. ≥172.3	 272 vs. 325	 1.376‑2.929	 <0.001	 1.019‑2.302	 0.040
SLC4A4	 FPKM <2.5 vs. ≥2.5	 477 vs. 120	 0.195‑0.673	 0.001	 0.189‑0.709	 0.003
AKR1B10	 FPKM <2.5 vs. ≥2.5	 207 vs. 390	 0.365‑0.739	 <0.001	 0.454‑0.962	 0.030
ABCE1	 FPKM <16.2 vs. ≥16.2	 331 vs. 266	 0.373‑0.784	 0.001	 0.414‑0.930	 0.021

ABCE1, ATP binding cassette subfamily E member 1; AKR1B10, aldo‑keto reductase family 1 member B10; CI, confidence interval; FPKM, 
fragments per kilobase million; SLC4A4, solute carrier family 4 member 4; TIMP1, TIMP metallopeptidase inhibitor 1; UICC, Union for 
International Cancer Control.

Figure 3. Crosstalk analysis for significant pathways. ECM, extracellular matrix; TNF, tumor necrosis factor.

Figure 4. Kaplan‑Meier OS curves according to the expression levels of 
TIMP1, SLC4A4, AKR1B10 and ABCE1. OS curves demonstrated that 
high TIMP1 expression and low SLC4A4/AKR1B10/ABCE1 expression 
were significantly associated with low OS in patients with colorectal cancer. 
ABCE1, ATP binding cassette subfamily E member 1; AKR1B10, aldo‑keto 
reductase family 1 member B10; OS, overall survival; SLC4A4, solute carrier 
family 4 member 4; TIMP1, TIMP metallopeptidase inhibitor 1.

Figure 5. Correlations among the four hub genes (TIMP1, SLC4A4, 
AKR1B10 and ABCE1) evaluated using Spearman's correlation analysis 
based on Spearman's correlation coefficient (|R|<0.3) and P<0.05. ABCE1, 
ATP binding cassette subfamily E member 1; AKR1B10, aldo‑keto reductase 
family 1 member B10; SLC4A4, solute carrier family 4 member 4; TIMP1, 
TIMP metallopeptidase inhibitor 1.
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limitations. Firstly, since the candidate prognosis‑associated 
hub DEGs were detected using data from the GEO and TCGA 
databases, there was no validation for these genes based on 
the data generated in the present study. Secondly, the expres-
sion levels of the prognosis‑associated hub DEGs were not 
validated using PCR, western blotting or other experimental 
methods. Thirdly, since the potential roles of AKR1B10, 
SLC4A4, ABCE1 and TIMP1 in CRC remain unknown, 
future investigations will determine the effects of these hub 
genes in CRC by using in vivo and in vitro experiments.

In conclusion, through GEO and TCGA data analyses, four 
hub DEGs (SLC4A4, ABCE1, AKR1B10 and TIMP1) were 
identified as being significantly associated with the OS of 
patients with CRC. These four genes may serve as novel inde-
pendent prognostic biomarkers that could be used to predict 
the clinical outcomes of patients with CRC. However, further 
investigations using cancer cell lines and xenograft models are 
required in order to determine the underlying mechanisms of 
these four hub genes and their roles in the prognosis of CRC.
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