
ONCOLOGY LETTERS  19:  1017-1023,  2020

Abstract. Role of circ-FNTA in the progression of bladder 
cancer (BCa) and its underlying mechanism were investigated. 
circ-FNTA level in BCa tissues and cell lines was detected. 
The prognostic potential of circ-FNTA was assessed by 
Kaplan-Meier methods and the proliferative and invasive abili-
ties of BCa influenced by circ‑FNTA were explored. Through 
dual-luciferase reporter gene assay, miRNA-451a, the target of 
circ-FNTA and the target gene of miRNA-451a, S1PR3 were 
determined. circ-FNTA was upregulated in BCa, especially in 
invasive BCa. High level of circ-FNTA indicated worse prog-
nosis in BCa patients. Silence of circ-FNTA attenuated the 
proliferative and invasive abilities of T24 and UM-UC-3 cells. 
miRNA‑451a was verified to be the target of circ‑FNTA, which 
was downregulated in BCa cells. circ-FNTA negatively regu-
lated the expression level of miRNA‑451a. Moreover, S1PR3 
was the downstream gene of miRNA‑451a. Overexpression 
of miRNA-451a downregulated S1PR3 level in BCa cells. 
circ-FNTA accelerates the proliferative and invasive abilities 
of BCa through targeting miRNA‑451a/S1PR3 axis, and indi-
cates a poor prognosis of BCa patients.

Introduction

Bladder cancer (BCa) is the most common tumor in the urinary 
system (1). In recent years, the number of deaths caused by 
BCa has increased year by year, ranking 13th among all 
tumors, which poses a huge impact on human health (2). At 
present, therapeutic strategies, including surgery, chemo-
therapy and radiotherapy are applied in the treatment of 

BCa. Nevertheless, the 5-year survival of BCa is still low 
owing to the high recurrent rate and rapid progression (3). 
Previous studies have found that the microenvironment 
of tumor immunity is closely related to the progression of 
BCa (4). Some novel treatments are applied for BCa, such as 
the targeted drug Balversa, neoadjuvant chemotherapy and 
radiotherapy (5-7). It is of significance to clearly uncover 
the pathogenesis of BCa, thus improving the diagnostic and 
therapeutic efficacies.

Development of high-throughput sequencing technology 
deepens gene research (8). circRNA is newly discovered and 
is considered to have a huge role in tumor progression (9). 
Previous studies have suggested that circRNA may become 
a potential target for tumor prediction and treatment (10). 
The circRNA has a cyclic structure composed of covalent 
bonds, characterized as high stability, high abundance, and 
high conservation compared with other non-coding RNAs. 
Functionally, circRNA is involved in rearrangement of gene 
information, prevention of gene degradation, and RNA 
folding (11). circRNAs have been reported to exert a crucial 
role in many types of tumors, serving as oncogenes or tumor 
suppressors (12-14).

A previous study demonstrated that circ-FNTA 
(circ_0084171) is abnormally upregulated in BCa (15). 
circ-FNTA locates on chr8: 42914234-42932507 with the 
cleavage sequence length of 582 bp. In the circbase database 
(http://www.circbase.org/cgi-bin/listsearch.cgi), the annotated 
gene of circ-FNTA is FNTA (farnesyltransferase, CAAX 
box, alpha, NCBI Gene 3782, transcript NM_002027) (16). 
Farnesyltransferase inhibitors (FTIs) are proved to inhibit the 
activation of multiple tumor muteins and delay tumor progres-
sion (17). It is speculated that circ-FNTA may be important 
in the progression of BCa. This study mainly explored the 
expression pattern and biological function of circ‑FNTA in 
BCa, and the potential mechanism.

Patients and methods

Sample collection. BCa tissues (n=40) and matched normal 
tissues (n=40) were surgically resected, immediately placed in 
liquid nitrogen and preserved at ‑80˚C. None of enrolled BCa 
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patients received preoperative anti-tumor therapies. Patients 
and their families in this study have been fully informed. This 
study was approved by Ethics Committee of Linyi Cancer 
Hospital (Linyi, China). All the patients provided written 
informed consent. This study was conducted in accordance 
with the Declaration of Helsinki.

Cell culture. Human bladder immortalized epithelium cells 
(SV‑HUC‑1) and BCa cells (5637, T24, RT4 and UM‑UC‑3) 
were provided by the American Type Culture Collection 
(ATCC). Cells were cultured in Roswell Park Memorial 
Institute 1640 (RPMI‑1640) containing 10% fetal bovine 
serum (FBS) (Thermo Fisher Scientific, Inc.), 100 U/ml 
penicillin and 100 µg/ml streptomycin. Cells were maintained 
at 37˚C, in 5% CO2 incubator. Medium was replaced every 
2-3 days.

Transfection. Transfection plasmids were provided by Sangon 
Biotech. Cells were pre‑seeded in the 6‑well plates and trans-
fected using Lipofactamine 2000 (Invitrogen; Thermo Fisher 
Scientific, Inc.) at 50‑70% confluence. At 24‑48 h, cells were 
harvested for subsequent experiments.

RNA extraction and quantitative real‑time polymerase chain 
reaction (qRT‑PCR). RNA extraction from cells was performed 
using TRIzol reagent (Invitrogen; Thermo Fisher Scientific, 
Inc.). RNA was reverse transcribed into complementary deoxy-
ribose nucleic acid (cDNA) using Primescript RT Reagent 
(TaKaRa). The obtained cDNA was subjected to qRT-PCR 
using SYBR®Premix Ex Taq™ (TaKaRa). Glyceraldehyde 
3‑phosphate dehydrogenase (GAPDH) and U6 were used as 
internal references. Each sample was performed in triplicate, 
and relative level was calculated by 2-ΔΔCt. Primer sequences 
are listed in Table I.

Cell Counting Kit (CCK‑8). Cells were seeded in the 96‑well 
plate with 5x103 cells per well. At the appointed time points, 
absorbance value at 450 nm of each sample was recorded 
using the CCK-8 kit (Dojindo Laboratories) for depicting the 
viability curve.

5‑Ethynyl‑2'‑deoxyuridine (EdU) proliferation assay. Cells 
were inoculated into 96‑well plates with 1x105 cells per well, 
and labeled with 100 µl of EdU reagent (50 µM) per well for 
2 h. After washing with phosphate buffered saline (PBS), the 
cells were fixed in 50 µl of fixation buffer, decolored with 
2 mg/ml glycine and permeated with 100 µl of penetrant. After 
washing with PBS once, cells were stained with AdoLo and 
4',6‑diamidino‑2‑phenylindole DAPI) in the dark for 30 min. 
EdU‑positive ratio was determined under a fluorescent micro-
scope.

Transwell invasion assay. Cell density was adjusted to 
3x104 cells/ml. Suspension (100 µl) was applied to the upper 
Transwell chamber (Corning Inc.). Into the lower chamber, 
600 µl of medium containing 20% FBS was applied. After 24 h 
of incubation, cells migrated to the lower chamber were fixed in 
methanol for 15 min, stained with crystal violet for 20 min and 
counted using a microscope. The number of migratory cells 
was counted in 5 randomly selected fields per sample (x200).

Target gene prediction. Target genes of circ-FNTA and 
miRNA-451a were predicted on Starbase (http://starbase.sysu.
edu.cn/) (18) and TargetScan (http://www.Targetscan.org) (19). 
Predicted miRNAs on both websites were depicted by Venn 
diagram. The network of target genes of miRNA-451a was 
depicted using Cytoscape software v.3.5.1.

Dual‑luciferase reporter gene assay. Based on the predicted 
binding sites, we constructed pmirGLO-circ-FNTA-mut, 
pmirGLO-circ-FNTA-wt, pmirGLO-S1PR3-mut and 
pmirGLO-S1PR3-wt. Cells were co-transfected with 
miRNA-451a mimics/NC and wild-type/mutant-type vectors 
using Lipofectamine 2000. After 48 h, co-transfected cells 
were collected for determining luciferase activity using a 
dual-luciferase reporter assay system (Promega Cooperation).

Statistical analysis. GraphPad Prism 6 (La Jolla) was used 
for data analyses. Data were expressed as mean ± standard 
deviation. Intergroup differences were analyzed by the t-test. 
Kaplan-Meier method was introduced for survival analysis. 
Two‑tailed P<0.05 was considered as statistically significant.

Results

circ‑FNTA is upregulated in BCa. qRT-PCR showed higher 
abundance of circ-FNTA in BCa tissues relative to normal 
ones (Fig. 1A). Similarly, its level was higher in BCa cells than 
that of bladder epithelial cells (Fig. 1B). According to the inva-
sion status of the enrolled BCa patients, they were classified 
into non-invasive group and invasive group. circ-FNTA was 
upregulated in the invasive group compared with that of the 
non-invasive group (Fig. 1C). Through analyzing the follow-up 
data of BCa patients, it is found that high level of circ-FNTA 
predicted worse prognosis of BCa (Fig. 1D). It is suggested 
that circ‑FNTA may exert a carcinogenic role in the progres-
sion of BCa.

Knockdown of circ‑FNTA suppresses proliferative and inva‑
sive abilities of BCa. T24 and UM-UC-3 cell lines were selected 
for the following in vitro experiments. We constructed two 
circ-FNTA siRNAs (si-circ-FNTA #1 and si-circ-FNTA #2). 
Transfection of si-circ-FNTA #1 or si-circ-FNTA #2 markedly 
downregulated circ-FNTA level in BCa cells (Fig. 2A). CCK-8 
assay showed reduced viability in T24 and UM-UC-3 cells 
transfected with si-circ-FNTA #1 or si-circ-FNTA #2 (Fig. 2B, 
2C). Knockdown of circ-FNTA markedly decreased the ratio 
of EdU-positive cells, suggesting inhibited proliferative ability 
of BCa cells (Fig. 2D). Transwell assay showed that knockdown 
of circ-FNTA in T24 and UM-UC-3 cells markedly decreased 
the ratio of invasive cells, indicating an attenuated invasive 
ability (Fig. 2E). Hence, silence of circ-FNTA was proved to 
attenuate proliferative and invasive abilities of BCa cells.

circ‑FNTA targets miRNA‑451a. According to the prediction on 
Starbase and TargetScan, a total of 29 overlapped target miRNAs 
of circ-FNTA were discovered (Fig. 3A). miRNA-451a is previ-
ously reported to be downregulated in BCa (20). It is predicted to 
be the downstream target of circ-FNTA among the 29 overlapped 
ones. Hence, we focused on the potential role of miRNA-451a 
in the progression of BCa. Through bioinformatics analysis, 
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potential binding sites between circ-FNTA and miRNA-451a 
were identified (Fig. 3B). A remarkable decline in luciferase 
activity was observed after co-transfection of miRNA-451a 

mimics and pmirGLO‑circ‑FNTA‑wt, confirming the binding 
relationship between circ-FNTA and miRNA-451a (Fig. 3C). 
Expression level of miRNA‑451a was markedly upregulated 

Table I. Sequences of transfection primers.

Genes Primer sequence

miRNA cDNA
  miRNA-451a Primer  5'-AAAAAAACCGTTACCATTACTGAGTT-3'
  U6 Primer  5'‑GCAAATTCGTGAAGCGTTCCATA‑3'
qRT-PCR  primer
  circ-FNTA Forward 5'-GCCCAAAAACTATCAAGTTTGGCAT-3'
 Reverse 5'-ATAACCCATTGTCGATGCTGCC-3'
  S1PR3 Forward 5'-TCTCCGAAGGTCAAGGAAGA-3'
 Reverse 5'-TCAGTTGCAGAAGATCCCATTC-3'
  GAPDH Forward 5'-TCCTCTGACTTCAACAGCGACAC-3'
 Reverse 5'-GAGCAACACAGATGAACCGC-3'
  miRNA-451a Forward 5'-GGCCCTCGAGCTTTTGACCACCCCTTAACC-3'
 Reverse 5'-CCCGGGGCGGCCGCACAATGAATTATAATACAAT-3'
  U6 Forward 5'‑AGAAGGCTGGGGCTCATTTG‑3'
 Reverse 5'-AGGGGCCATCCACAGTCTTC-3'

Figure 1. circ-FNTA was upregulated in BCa. (A) Relative level of circ-FNTA in BCa tissues and normal tissues (compared with normal, **P<0.01). 
(B) Relative level of circ‑FNTA in human bladder immortalized epithelial cells (SV‑HUC‑1) and BCa cells (5637, T24, RT4 and UM‑UC‑3) (compared with 
SV-HUC-1, **P<0.01, ***P<0.001). (C) Relative level of circ FNTA in non invasive BCa tissues and invasive BCa tissues (compared with non-invasive, **P<0.01). 
(D) Kaplan-Meier curves of the overall survival in BCa patients with high level or low level of circ-FNTA. BCa, bladder cancer.
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by transfection of si-circ-FNTA #1 in T24 and UM-UC-3 cells 
(Fig. 3D). It was found that miRNA-451a was downregulated in 
BCa cells relative to bladder epithelial cells (Fig. 3E). The above 
data demonstrated that circ-FNTA targeted miRNA-451a and 
negatively regulated its level in BCa.

miRNA‑451a regulates its target gene S1PR3. Through 
analyzing the database, S1PR3 was predicted to be the target 
gene of miRNA-451a (Fig. 4A). A relevant study reported the 
involvement of S1PR3 in the progression of BCa (21). Potential 
binding sites between miRNA-451a and S1PR3 were identi-
fied (Fig. 4B). Subsequently, dual-luciferase reporter gene 
assay verified the binding relationship between miRNA‑451a 
and S1PR3 (Fig. 4C). Transfection of miRNA-451a mimics 
remarkably downregulated S1PR3 level in T24 and UM-UC-3 
cells (Fig. 4D). In addition, S1PR3 was downregulated in BCa 
tissues compared with those of controls (Fig. 4E). As a result, 
S1PR3 was demonstrated to be the target gene of miRNA-451a. 
It is suggested that circ‑FNTA/miRNA‑451a/S1PR3 axis 
exerted carcinogenic role in BCa.

Discussion

The role of circRNAs in urinary tumors has been well 
studied (22). Plenty of circRNAs have been discovered 
participating in the progression of BCa. For example, 
circRNA-cTFRC absorbs miRNA-107 to regulate target 
gene expression, and thereafter aggravates the progression of 
BCa (23). CircGprc5a is upregulated in BCa. It induces the 
upregulation of Gprc5a through a polypeptide, and further 
stimulates the progression of BCa (24). circRNA-PRMT5 
accelerates EMT of BCa through sponging miRNA-30c (25). 
This study mainly explored the role of circ‑FNTA, a newly 
discovered circRNA, in regulating the progression of BCa.

The reference gene for circ-FNTA is the FNTA gene 
located on chromosome 8. FNTA is considered to be a key 
gene for tumor progression through activating the Ras-MAPK 
pathway. FTI alleviates tumor progression through blocking 
the activation of Ras‑MAPK pathway (26). Abnormal copy 
numbers of FNTA are believed to cause pathological changes of 
breast cancer, which are key targets for developing drugs (27). 

Figure 2. Knockdown of circ‑FNTA suppresses proliferative and invasive abilities of BCa. (A) Transfection efficacy of si‑circ‑FNTA #1 and si‑circ‑FNTA #2 
in UM-UC-3 and T24 cells. (B) Viability in T24 cells transfected with si-NC, si-circ-FNTA #1 or si-circ-FNTA #2. (C) Viability in UM-UC-3 cells transfected 
with si-NC, si-circ-FNTA #1 or si-circ-FNTA #2. (D) EdU assay of the ratio of EdU-positive cells in UM-UC-3 cells transfected with si-NC, si-circ-FNTA #1 
or si-circ-FNTA #2. (E) Transwell assay of the ratio of invasive cells in UM-UC-3 and T24 cells transfected with si-NC, si-circ-FNTA #1 or si-circ-FNTA #2. 
BCa, bladder cancer. Compared with si-NC, **P<0.05, **P<0.01, ***P<0.001.
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Figure 3. circ-FNTA targets miR-451a. (A) Potential binding miRNAs to circ-FNTA predicted by Starbase and Targetscan. (B) Potential binding sites between 
circ-FNTA and miR-451a. (C) Luciferase activity in T24 cells co-transfected with pmirGLO-circ-FNTA-mut/pmirGLO-circ-FNTA-wt and miR-415a 
mimics/NC (compared with NC, *P<0.05). (D) Relative level of miR-451a in UM-UC-3 and T24 cells transfected with si-NC or si-circ-FNTA #1 (com-
pared with si-NC, **P<0.01). (E) Relative level of miR‑451a in human bladder immortalized epithelial cells (SV‑HUC‑1) and BCa cells (5637, T24, RT4 and 
UM-UC-3) (compared with SV-HUC-1, *P<0.05, **P<0.01). BCa, bladder cancer.

Figure 4. miR-451a regulates its target gene S1PR3. (A) Potential binding targets of miR-451a. (B) Potential binding sites between miR-451a and S1PR3. 
(C) Luciferase activity in T24 cells co-transfected with pmirGLO-S1PR3-mut/pmirGLO-S1PR3-wt and miR-415a mimics/NC (compared with NC, *P<0.05). 
(D) Relative expression of S1PR3 in UM‑UC‑3 and T24 cells transfected with NC or miR‑451a mimics (compared with NC, *P<0.05, **P<0.01). (E) Relative 
level of S1PR3 in BCa tissues and normal tissues (compared with normal, **P<0.01). BCa, bladder cancer.
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CeRNA theory proposes that circRNA sponges miRNA 
to influence the target gene expression, thus influencing the 
pathological progression (28).

S1PR3 (sphingosine-1 phosphate receptor 3) is a key 
receptor gene for tumor progression. For example, in lung 
adenocarcinoma, S1PR3 expression is upregulated and closely 
related to the activated TGF-β/SMAD pathway. S1PR3 activa-
tion can promote malignant progression of lung cancer (29). 
In addition, S1PR3 induces expansion of cancer stem cells 
by activating Notch signaling pathway, and S1PR3 may be a 
potential target for tumor therapy (30). S1PR3 is a molecular 
marker for tumor progression of BCa, which exerts prognostic 
potential (21). It is suggested that S1PR3 has a carcinogenic 
role in aggravating the malignant progression of tumors.

In this study, circ-FNTA was upregulated in BCa tissues and 
cell lines. Through analyzing the clinical data of BCa patients, 
circ‑FNTA was found to be highly expressed in invasive BCa 
patients relative to the non-invasive ones. In vitro experiments 
demonstrated that silence of circ-FNTA attenuated prolifera-
tive and invasive abilities of BCa. Subsequently, through online 
prediction and dual‑luciferase reporter gene assay verification, 
miRNA‑451a was confirmed to be the target of circ‑FNTA and 
S1PR3 was found to be the target gene of miRNA-451a. Our 
study identified the role of circ‑FNTA/miRNA‑451a/S1PR3 
axis in aggravating the progression of BCa.

In conclusion, circ-FNTA accelerates the proliferative and 
invasive abilities of BCa through absorbing miRNA-451a to 
regulate the S1PR3 level, and indicates a poor prognosis of 
BCa patients.
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