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Abstract. Gastric cardia adenocarcinoma (GCA) has a high 
mortality rate worldwide; however, current early diagnostic 
methods lack efficacy. Therefore, the aim of the present 
study was to identify potential biomarkers for the early 
diagnosis of GCA. Global metabolic profiles were obtained 
from plasma samples collected from 21 patients with GCA 
and 48 healthy controls using ultra‑performance liquid 
chromatography/quadrupole‑time‑of‑flight mass spectrom-
etry. The orthogonal partial least squares discrimination 
analysis model was applied to distinguish patients with 
GCA from healthy controls and to identify potential 
biomarkers. Metabolic pathway analysis was performed 
using MetaboAnalyst (version 4.0) and revealed that ‘glyc-
erophospholipid metabolism’, ‘linoleic acid metabolism’, 
‘fatty acid biosynthesis’ and ‘primary bile acid biosyn-
thesis’ were significantly associated with GCA. In addition, 
an early diagnostic model for GCA was established based 
on the relative levels of four key biomarkers, including 

phosphorylcholine, glycocholic acid, L‑acetylcarnitine and 
arachidonic acid. The area under the receiver operating 
characteristic curve revealed that the diagnostic model had 
a sensitivity and specificity of 0.977 and 0.952, respectively. 
The present study demonstrated that metabolomics may 
aid the identification of the mechanisms underlying the 
pathogenesis of GCA. In addition, the proposed diagnostic 
method may serve as a promising approach for the early 
diagnosis of GCA.

Introduction

Gastric cardia adenocarcinoma (GCA) is characterized by 
short disease duration and poor prognosis (1). GCA has a high 
incidence rate (~3.3 new cases per 100,000 per year) world-
wide (2), and is much higher in China, with 49.59 new cases 
per 100,000 per year (3). GCA presents with non‑specific 
symptoms at the early stages of the disease, and the majority 
of patients are diagnosed at an advanced stage; consequently, 
patients with GCA have a low survival rate (4,5). Previous 
studies have revealed that early diagnosis and treatment of 
GCA improves patient outcomes and results in a more favorable 
prognosis (6,7). The currently available methods for the early 
diagnosis of GCA include barium X‑ray radiography (8,9), 
endoscopy (10,11), abdominal ultrasound (12), spiral 
computed tomography (13,14) and proton nuclear magnetic 
resonance (15,16). However, these methods are invasive and 
not cost‑effective (17). Therefore, there is a requirement for a 
non‑invasive, cost‑effective and efficient method to diagnose 
early GCA and improve patient prognosis.

Systems biology and high‑throughput screening methods 
have revealed that the incidence of GCA is associated with 
mutations in tumor protein P53 (18,19) and the vitamin D 
receptor (20), as well as polymorphisms in the Fas ligand 
gene (21) and thymidylate synthase (22). In addition, proteins 
such as cancer antigen 125 and minichromosome mainte-
nance 5 serve as potential biomarkers for the early diagnosis 
of GCA (23,24). However, the aforementioned genes and 
proteins lack specificity and sensitivity, and previous studies 
have revealed that a single biomarker is unlikely to accurately 
diagnose GCA (23,25). Laser capture microdissection‑based 
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proteome analysis on human GCA tissues revealed that 23 
proteins are abnormally expressed in patients with GCA 
compared with healthy controls (26). Metabolomics has 
been widely applied for the diagnosis for several types of 
cancer, including colorectal (27,28), liver (29), pancre-
atic (30,31) and gastric (32,33) cancer. However, a limited 
number of studies have investigated a metabolomics‑based 
approach for the diagnosis of GCA (34,35). Cai et al (34) 
have suggested that the metabolites and proteins associated 
with glycolysis may serve as potential biomarkers for the 
diagnosis of GCA; however, an established diagnostic model 
has not been reported.

The present study aims to identify potential biomarkers 
for the early detection of GCA. The ultra‑performance liquid 
chromatography/quadrupole‑time‑of‑flight mass spectrometry 
(uPLC/Q‑ToF MS) was utilized to establish the metabolic 
fingerprints of patients with GCA and healthy controls, and 
the specific biomarkers associated with GCA were screened 
to develop an early diagnostic model. Furthermore, metabolic 
pathway analysis was performed to investigate the pathways 
associated with the pathogenesis of GCA.

Materials and methods

Chemicals. Isopropanol [high‑performance liquid chromatog-
raphy (HPLC)‑grade], acetonitrile (HPLC‑grade), methanol 
(HPLC‑grade) and formic acid (98%) were purchased from 
J.T. Baker; Avantor, Inc. The internal standard L‑2 chlorophe-
nylalanine was obtained from Ark Pharm, Inc. and ultrapure 
water was purchased from eMD Millipore.

Clinical samples. The present study was approved by the 
ethics Committee of the People's Hospital of Yangzhong City 
(Yangzhong, China) and all participants provided written 
informed consent. Plasma samples were obtained from 
21 patients with GCA (14 males and 7 females; mean age, 
66 years; age range, 60-80 years) and 48 healthy volunteers 
(14 males and 34 females; mean age, 52.15 years; age range, 
40‑68 years) at the People's Hospital of Yangzhong City 
between July and December 2015. Patients with GCA were 
diagnosed by gastroscopy and had not received chemotherapy 
or other therapy, including surgery and radiotherapy. A mucosal 
biopsy was performed to classify patients according to the 
Tumor‑node‑Metastasis (TnM) Classification of Malignant 
Tumors (36). The clinical information of the participants is 
summarized in Table I.

A total of 5 ml peripheral venous blood was obtained 
from the participants and collected in anticoagulation tubes 
containing heparin sodium. The blood was centrifuged at 
670 x g for 15 min at 4˚C, and the supernatant was collected 
and stored at ‑80˚C until further analysis.

Sample preparation. Plasma samples were thawed on ice 
prior to analysis. A total of 100 µl plasma was added to 300 µl 
methanol and acetonitrile mixture (1:1) containing 5 µg/ml 
L‑2 chlorophenylalanine internal standard, which was used to 
check the integrity of the automated integration and to assess 
instrument performance throughout the batch analysis. The 
mixture was vortexed for 30 sec and maintained at 4˚C for 1 h, 
vortexed again for 30 sec and maintained at 4˚C for 3 h. The 

mixture was vortexed and centrifuged at 37,730 x g for 10 min 
at 4˚C. Subsequently, 300 µl of the supernatant was centri-
fuged at 37,730 x g for 10 min at 4˚C, and 200 µl supernatant 
was decanted into a vial with an inner cannula.

To monitor the robustness of sample preparation and the 
stability of instrument analysis, a quality control (QC) sample 
was prepared by pooling 10 µl plasma from all samples.

UPLC‑Q/TOF MS analysis. The uPLC analysis was 
performed in a Waters Acquity™ ultra‑performance LC 
system coupled with a Waters Micromass™ Q/ToF MS 
(Waters Corporation). The chromatographic separation was 
performed on an ACQuITY BeH‑C18 column (2.1x100 mm; 
1.7 µm; Waters Corporation). The mobile phase is composed 
of (A) 0.1% formic acid and (B) isopropanol, acetonitrile and 
methanol [20:40:40 (v/v)] in 0.1% formic acid, and the gradient 
was used as follows: 98‑50% (A) and 2‑50% (B) for 0‑3.5 min; 
50‑0% (A) and 50‑100% (B) for 3.5‑20 min. The flow rate 
was 0.4 ml/min. The temperature of the autosampler and 
the chromatographic column was maintained at 4 and 50˚C, 
respectively. A total of 5 µl sample solution was injected per 
run. The MS scan ranged from 50‑1,000 m/z in the positive 
and negative ion mode. The cone and capillary voltages were 
set at 35 V and 3.0 kV for positive ionization mode, and 35 V 
and 2.8 kV for negative ionization mode. The collision energy 
was set at 4 eV. A desolvation gas flow rate of 600 l/h at 115˚C 
was used. The data acquisition rate was set to 0.3 spec/sec. 
Data acquisition was performed using Waters MassLynx 
software (version 4.1; Waters Corporation).

Data processing. Prior to statistical analysis, raw data were 
imported into the Progenesis QI software package (version 
2.0; Waters Corporation) for data standardization. The orthog-
onal partial least squares discriminant analysis (oPLS‑DA) 
model was performed using SIMCA software (version 14.1; 
umetrics Ltd.). Potential biomarkers were identified from 
loading plots constructed following analysis with oPLS‑DA, 
and the biomarkers were selected based on the variable impor-
tance in the projection (VIP) value. The model parameters 
of R2Y(cum) is used to estimate the ‘goodness of fit’ of the 
model, and Q2 (cum) estimates the ability of prediction. The 
S‑plot is used to visualize both the covariance and the correla-
tion structure between the X‑variables and the predictive score 
t[1]. Thus, the S‑plot is a scatter plot of the p[1] vs. p(corr)
[1] vectors of the predictive component. A response permuta-
tion test with 200 iterations was performed to assess the risk 
that the current oPLS‑DA model is spurious. The structure 
of the differential metabolites was identified using the Human 
Metabolome Database (HMDB; version 4.0; www.hmdb.
ca/spectra/ms/search) and The LIPID MAPS Lipidomics 
Gateway (updated March 9th, 2016; www.lipidmaps.org) 
based on secondary mass spectrometry information.

Statistical analysis. Statistical analyses were performed using 
SPSS software (version 19.0; IBM Crop.). Student's t‑test was 
performed to compare the differences in metabolite levels 
between healthy subjects and patients with GCA. P<0.05 was 
considered to indicate a statistically significant difference. 
The diagnostic abilities of the biomarkers were assessed by 
systematic cluster analysis, receiver operating characteristic 
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(RoC) curves and binary logistic regression. In addition, the 
pathway analysis module of MetaboAnalyst software (version 
4.0; www.metaboanalyst.ca) (37) was used to analyze signifi-
cant metabolic pathways, which has pathway impact value of 
no less than 0.1 and ‑log(p) value of no less than 2.

Results

UPLC‑Q/TOF MS analysis of plasma samples. A total of 
69 samples were analyzed in a random order, and QCs were 
inserted into the analysis sequence to monitor and correct 
changes in the instrument response. To identify and remove 
probable characteristic peaks caused by source contaminants, 
test tube components or solvent impurities, blank samples 
were inserted every 10 runs. Analyses were performed in the 
positive and negative ion mode (Fig. 1).

The method validation was performed based on precision 
and stability testing, which permitted <10% relative stan-
dard deviation. The results demonstrated the stability of the 
instrument and the samples (Tables SI‑SIV).

Multivariate statistical analysis. In the present study, multi-
variate statistical analysis and pattern recognition methods, 
principal component analysis (PCA) and oPLS‑DA, were 
used to analyze the metabolomics data. PCA resulted in poor 
distinction between patients and healthy subjects (Fig. S1). 
The oPLS‑DA model was subsequently applied to the 
metabolomics data to eliminate interference from various 
non‑experimental factors, including sex and age. The model 
exhibited a trend for distinguishing between patients with 
GCA and controls (Fig. 2A and B). The model parameters of 
R2Y(cum) and Q2 (cum) were 89.6 and 62.1% in the negative 
pattern and 73.1 and 55.4% in positive pattern, respectively, 
which indicated that the model had a good fit and predictive 
ability.

Identification of potential biomarkers. A total of 27 differen-
tial metabolites based on VIP >1 with S‑plot (Fig. 2C and D) 
and P<0.05 (Table II), including L‑acetylcarnitine, arachi-
donic acid, phosphorylcholine and glycocholic acid, were 
identified and used to establish the oPLS‑DA model (Fig. 2e). 
This model was able to clearly distinguish patients with 
GCA from healthy subjects (99.7 and 99.2% for R2Y and Q2, 
respectively), and compared with Fig. 2A and B, the clustering 
effect was improved. Following the 200 iterations of the 
permutation test, the results revealed that the oPLS‑DA model 
did not result in overfitting as the left replacement R2 and Q2 
values were lower than the original point on the right, and the 
Q2 intercept was <0 (Fig. 2F). Therefore, the identified 27 
differential metabolites may serve as potential biomarkers for 
the diagnosis of GCA.

Cluster analysis revealed that the 27 potential biomarkers 
could be divided into four categories: i) Phospholipids (including 
phosphorylcholine); ii) cholic acid (including glycocholic acid); 
iii) unsaturated fatty acids (including arachidonic acid); and 
iv) amino acids (including L‑acetylcarnitine; Fig. 3A). RoC 
curve analysis was performed for the candidate biomarkers, 
and the area under the curve (AuC), sensitivity and specificity 
were determined (Tables III and SV). Phosphorylcholine, 
glycocholic acid, arachidonic acid and L-acetylcarnitine had 
the largest AuC values (0.913, 0.808, 0.887 and 0.803, respec-
tively), and were thus selected for binary logistic regression to 
establish a joint index and plot RoC curves (Fig. 3F). The AuC 
value of this four biomarker model was 0.990 for the discrimi-
nation between patients with GCA and healthy subjects. In 
addition, the sensitivity and specificity of the model for GCA 
diagnosis were 97.7 and 95.2%, respectively. Compared with 
single biomarker models using phosphorylcholine, glycocholic 

Figure 1. The base peak chromatograms of the quality control samples in the 
(A) positive and (B) negative ion modes.

Table I. Clinical information of the enrolled subjects.

Characteristics Healthy GCA

Sex (male/female) 14/34 14/7
Age, years 52.15±6.96 66.00±8.48
TnMa stage  
  IA ‑ 2
  IB ‑ 1
  IIA ‑ 1
  IIIA ‑ 7
  IIIC ‑ 9
  IV ‑ 1

aThe Tumor‑node‑Metastasis Classification of Malignant Tumors 
(TnM) is a globally recognized standard for classifying the extent 
of spread of cancer. It is a classification system of the anatomical 
extent of tumor cancers. T describes the size of the original (primary) 
tumor and whether it has invaded nearby tissue, n describes nearby 
(regional) lymph nodes that are involved, M describes distant metas-
tasis (spread of cancer from one part of the body to another) (67). 
GCA, gastric cardia adenocarcinoma.
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acid, arachidonic acid and L-acetylcarnitine individually, 
a model comprising the aforementioned four metabolites 
exhibited improved AuC values, sensitivity and specificity 
(Fig. 3B‑F).

Metabolic pathway analysis. To gain a deeper understanding 
of the biological significance of the potential biomarkers 
identified in the present study, MetaboAnalyst software 
(version 4.0) was used for metabolic pathway analysis. The 
results demonstrated that ‘glycerophospholipid metabolism’, 
‘linoleic acid metabolism’, ‘primary bile acid biosynthesis’, 
‘fatty acid synthesis’, ‘arachidonic acid metabolism’, ‘seleno 
amino acid metabolism’ and ‘aminoacyl‑tRnA biosynthesis’ 
pathways were closely associated with GCA (Figs. 4 and 5). 
These pathways are mainly associated with energy metabolism, 
inflammatory reactions and immune responses.

Discussion

The lack of an effective diagnostic model is the major cause 
contributing to the high mortality of GCA (38). To date, 
a limited number of biomarkers for GCA diagnosis have 
been identified (23,25,39). The present study identified 27 
biomarkers and established a combined diagnostic model 
comprising phosphorylcholine, glycocholic acid, arachidonic 
acid and L‑acetylcarnitine for the early diagnosis of GCA. 
Metabolic pathway enrichment analysis was performed based 
on all 27 biomarkers identified in the present study. The results 
revealed that disruptions in glycerophospholipid and linoleic 
acid metabolism and fatty acid and primary bile acid biosyn-
thesis were significantly associated with the development of 
GCA. These metabolic disturbances may help understand the 
underlying pathogenesis of the disease.

Figure 2. Multivariate statistical analysis for GCA (blue circles) and healthy controls (red triangles). (A) oPLS‑DA score plot with all variables Pareto scaled 
using the metabolomics data in the positive ion modes. (B) S‑plot of all compounds that were detected in the positive ion modes. (C) oPLS‑DA score plot 
with all variables Pareto scaled using the metabolomics data in the negative ion modes. (D) S‑plot of all compounds that were detected in the negative ion 
modes. (e) oPLS‑DA score plot based on 27 differential metabolites of GCA. (F) Permutation test following 200 iterations. The vertical axis corresponds to 
R2 and Q2 values of each model. R2 was the estimate of ‘goodness of fit’ of the model, and Q2 is the estimate of the ability of prediction. The horizontal axis 
corresponds to the correlation coefficient between the original Y and the permuted Y. GCA, gastric cardia adenocarcinoma; oPLS‑DA, orthogonal partial 
least squares discrimination analysis.
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Figure 3. Results of cluster and RoC curve analysis. (A) Results of cluster analysis of 27 potential biomarkers. RoC of (B) L‑acetylcarnitine, 
(C) phosphorylcholine, (D) glycocholic acid and (e) arachidonic acid. (F) RoC of the combined model (1, phosphorylcholine; 2, L‑acetylcarnitine; 
3, arachidonic acid; 4, glycocholic acid). RoC, receiver operating characteristic.

Table III. Receiver operating characteristic curve analysis of the four biomarkers (phosphorylcholine, L‑acetylcarnitine, 
arachidonic acid and glycocholic acid) and the combined model.

 95% CI
 ----------------------------------------
Metabolite AuC Standard error Lower upper Sensitivity Specificity

Phosphorylcholine 0.913 0.035 0.843 0.982 0.854 1.000
L‑Acetylcarnitine 0.803 0.054 0.698 0.907 0.762 0.708
Arachidonic acid 0.887 0.050 0.789 0.985 0.905 0.833
Glycocholic acid 0.808 0.056 0.697 0.918 0.729 0.810
Four metabolites modela 0.990 0.008 0.000 1.000 0.979 0.952

aThe four metabolites model comprised phosphorylcholine, L‑acetylcarnitine, arachidonic acid and glycocholic acid. CI, confidence interval; 
AuC, area under the curve.
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The present study used uPLC‑Q/ToF MS plasma metabo-
lomics analysis to determine the characteristic metabolic 
fingerprints in the plasma of patients with GCA. An oPLS‑DA 
model based on plasma metabolomics data exhibited sufficient 
sensitivity and specificity to distinguish between patients with 

GCA and healthy controls. using the cut‑off criteria of VIP >1 
and P<0.05, 27 potential biomarkers for the diagnosis of GCA 
were identified. Systematic cluster analysis and area under RoC 
curve values were used to establish a combined diagnostic model 
consisting of phosphorylcholine, glycocholic acid, arachidonic 

Figure 4. Analysis of gastric cardia adenocarcinoma‑associated metabolic pathways. a, ‘Glycerophospholipid metabolism’; b, ‘linoleic acid metabolism’; 
c, ‘primary bile acid biosynthesis’; d, ‘fatty acid biosynthesis’; e, ‘arachidonic acid metabolism’; f, ‘aminoacyl‑tRnA biosynthesis’; g, ‘seleno amino acid 
metabolism’. A circle of darker color indicates a greater ‑log(p) value, and a circle of larger size indicates a greater pathway impact value.

Figure 5. Schematic diagram of the metabolism of phosphorylcholine, L‑acetylcarnitine, arachidonic acid and glycocholic acid.
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acid and L‑acetylcarnitine for the early diagnosis of GCA. 
Compared with a single indicator diagnostic model, the combined 
diagnostic model exhibited significantly improved sensitivity and 
specificity for the diagnosis of GCA. Additionally, the four key 
biomarkers and associated metabolic pathways were investigated 
to shed new light on the pathogenesis of GCA.

L‑acetylcarnitine serves as an acetyl carrier and provides 
an acetyl group for coenzyme A (CoA) (40). Acetyl‑CoA 
is required for the de novo synthesis of fatty acids (41). 
Hexadecanol‑CoA, a product of fatty acid metabolism, is metab-
olized to produce phosphorylcholine and glycerophospholipid. 
Acetaldehyde, which is produced from phosphorylcholine, 
is the link between the glycerophospholipid and pyruvate 
metabolic pathways (42). Additionally, acetyl‑CoA synthesis 
is catalyzed by pyruvate dehydrogenase (43). Increased 
L‑acetylcarnitine levels in patients with GCA are associ-
ated with excessive fatty acids and previous studies have 
revealed that fatty acids, particularly unsaturated fatty acids, 
are a major source of energy for cancer cells (44,45).

Previous studies have demonstrated that phosphoryl-
choline metabolism is closely associated with the immune 
response (46,47). Phosphorylcholine is taken up by lymphoid 
B cells, which produce anti‑phosphorylcholine immuno-
globulin G and M antibodies that target cancer cells (48). 
However, in the present study, the phosphorylcholine levels in 
patients with GCA were significantly reduced compared with 
healthy subjects, suggesting a weakened immune response. 
Phosphorylcholine synthesizes cytidine 5'‑diphosphocholine, 
a reaction catalyzed by phosphate cytidylyltransferase 1 (49). 
Phosphatidylcholine is subsequently produced by ethanol-
amine phosphotransferase 1 or choline phosphotransferase 
1 (50). Phosphatidylcholine promotes apoptosis in the human 
gastric cancer cell line BGC823, downregulates the expression 
of ATP binding cassette subfamily F member 2 and reduces 
the number of cancer stem cells (51,52). Therefore, decreased 
phosphorylcholine levels in patients with GCA may provide a 
favorable environment for the proliferation of GCA cells.

Phosphatidylcholine is used to synthesize linoleic acid 
through the linoleic acid metabolic pathway, which can be 
further used in the synthesis of arachidonic acid (53). The 
present study revealed that the levels of arachidonic acid in 
patients with GCA were significantly increased compared with 
healthy subjects. eicosanoids, including prostaglandins (PGs) 
and leukotrienes (LTs) are synthesized by cyclooxygenase‑2 
(CoX‑2) and 5‑lipoxygenase (5‑LoX) from arachidonic 
acid (54). In turn, PGs and LTs upregulate the expression 
of CoX‑2 and 5‑LoX via a positive feedback amplification 
mechanism (55,56). PGs and LTs promote cancer cell prolif-
eration and tumor growth by activating the mitogen‑activated 
protein kinase/nuclear factor‑κB signaling pathway (57,58). In 
addition, PGs and LTs increase the survival, proliferation, inva-
sion and migration and decrease apoptosis of tumor epithelial 
cells by regulating multiple signaling pathways (56), such as 
protein kinase C/extracellular signal regulated kinase pathway 
and Ras‑Raf‑erk pathway (59,60). Therefore, the arachidonic 
acid content in patients with GCA may increase to allow the 
proliferation of tumor cells.

Bile acids, particularly unconjugated bile acids, are impli-
cated in gastroduodenal reflux (61). Long‑term gastroduodenal 
reflux may result in chronic inflammation (62), which may lead 

to muscle atrophy in the stomach tissue, intestinal erosion and 
the development of cancer (63). The accumulation of bile salts 
can contribute towards progressive liver damage and fibrosis; 
therefore, the levels of bile acids in the blood and tissues are 
highly regulated (64). Glycocholic acid, which is a combination 
of acetyl glycine (produced by cytidine 5'‑diphosphocholine) 
and bile acid, serves as a detergent and promotes the absorp-
tion of fat as well as its own absorption, thereby preventing 
cholestasis (65). The present study revealed a significant decrease 
in glycocholic acid levels in patients with GCA compared with 
healthy subjects, consistent with the aforementioned studies.

A large sample size is often required for clinical research 
due to individual variations. However, the present study 
implemented strict inclusion/exclusion criteria and required 
informed consent for each patient, which resulted in only 
21 patients being available for sampling. one limitation of 
this study is the low number of samples, which does not allow 
further analysis, for example, to identify the biomarkers for 
TnM staging of GCA, which would require a large number 
of additional clinical samples. Future studies will continue 
to collect clinical samples and perform in‑depth analysis. 
Additionally, digestive tract diseases are closely associated 
with imbalances in the intestinal flora (66). As a limited 
number of studies have investigated the association between 
GCA and the intestinal flora, future studies are warranted. 
The multi‑omics fusion of metabolomics, proteomics, 
genomics and metagenomics may aid the optimization of 
the early diagnostic model of GCA described in the current 
study and elucidate the underlying mechanisms of the disease. 
The present study identified four biomarkers and established 
a combined diagnostic model for early diagnosis of GCA, 
which may achieve progress in the prevention and treatment of 
GCA. Further metabolic pathway analysis is required to better 
understand the molecular pathogenesis of GCA.
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