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Abstract. Numerous types of molecular mechanisms mediate 
the development of cancer. Non‑coding RNAs (ncRNAs) are 
being increasingly recognized to play important role in medi-
ating the development of diseases, including cancer. Long 
non‑coding RNAs (lncRNAs) and microRNAs (miRNAs) are 
the two most widely studied ncRNAs. Thus far, lncRNAs are 
known to have biological roles through a variety of mecha-
nisms, including genetic imprinting, chromatin remodeling, 
cell cycle control, splicing regulation, mRNA decay and 
translational regulation, and miRNAs regulate gene expres-
sion through the degradation of mRNAs and lncRNAs. 
Although ncRNAs account for a major proportion of the total 
RNA, the mechanisms underlying the physiological or patho-
logical processes mediated by various types of ncRNAs, and 
the specific interaction mechanisms between miRNAs and 
lncRNAs in various physiological and pathological processes, 
remain largely unknown. Thus, further research in this field 
is required. In general, the interaction mechanisms between 
miRNAs and lncRNAs in human cancer have become 
important research topics, and the study thereof has led to 
the recent development of related technologies. By providing 
examples and descriptions, and performing chart analysis, the 
present study aimed to review the interaction mechanisms and 
research approaches for these two types of ncRNAs, as well 
as their roles in the occurrence and development of cancer. 

These details have far‑reaching significance for the utilization 
of these molecules in the diagnosis and treatment of cancer.
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1. Introduction

In 1993, Lee et al (1) discovered the first microRNA (miRNA), 
lin‑4, which by repressing the lin‑14 gene is essential for 
controlling the timing of Caenorhabditis elegans larval 
development. In 2000, the miRNAlet‑7 was discovered to 
repress lin‑41 to promote a later developmental transition 
in C. elegans  (2). Since then, a number of evolutionarily 
conserved miRNAs have been identified, from plants and 
fungi to humans, and have been shown to play various roles 
in biological and pathophysiological processes. To date, thou-
sands of studies on miRNAs using well‑developed methods 
which are now performed routinely (3). Mature miRNAs are 
short, single‑stranded RNA molecules,~22 nucleotides in 
length, processed from well‑characterized precursors through 
a highly accurate pathway involving a fold‑back hairpin struc-
ture (4). The majority of miRNA genes are located in intergenic 
regions; however, a small portion are located in intron and exon 
sequences. miRNAs function via their seed sequence (5'‑end 
2‑8 nucleotide sequence), which is completely complemen-
tary or partially complementary to the 3'untranslated region 
(3'UTR), or even the coding sequence and 5'UTR, of the target 
gene. A ribonucleoprotein complex, named the RNA‑induced 
silencing complex (RISC), is involved in regulating diverse 
biological processes, with argonaute (AGO) being the catalytic 
component (5). Gene silencing occurs either through RNA 
cleavage promotion or translational inhibition. In addition, 
some miRNAs do not inhibit target gene expression, but rather 
bind to the 5'UTR of ribosomal protein mRNA and promote 
ribosomal protein synthesis (6).

The discovery of long non‑coding RNAs (lncRNAs) 
occurred earlier than that of miRNAs: The first lncRNA, 
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H19, was discovered by Brannan et al (7) in 1990. However, 
defining lncRNAs based simply on the size and the absence 
of protein‑coding capability is insufficient. Thus far, miRNAs 
which greatly expand the functional genome from a large‑scale 
regulatory network are well understood, while the lncRNA 
counterpart of the transcriptome has been relatively neglected. 
Nonetheless, the evolution and functions of lncRNAs have 
recently piqued interest among researchers due to the avail-
ability of sensitive detection techniques. lncRNAs are most 
commonly defined as non‑protein‑coding RNA molecules 
(>200 nucleotides) transcribed by RNA polymerase that may 
or may not be polyadenylated, and can be present within the 
nucleus or cytoplasm (8). lncRNAs share a similar conserved 
structure with mRNAs (9,10) and are considered sense, anti-
sense, bidirectional, intronicor intergenic mRNAs, according 
to their location in the gene sequence. Some lncRNAs tend to 
be transcribed away from the 5' or the 3'ends of the gene and 
are concentrated near promoters. The initial exons and introns 
of these genes suggest that the transcription of these lncRNAs 
comprises a potential regulatory aspect (11). ncRNAs also 
participate in a wide variety of biological processes (12,13), 
such as post‑transcriptional regulation (14). In general, weak 
conservation of lncRNAs exists due to evolution, and due to 
selective pressure, several local highly conserved sequences 
are often distributed in fragile chromosome sites. A number 
of studies on lncRNAs have focused on their regulation of 
protein‑coding genes, and little is known about interactions 
between RNA classes. In addition, recent reports (15) suggest 
that lncRNAs may interact with other RNA classes, including 
miRNAs. Thus, non‑coding RNAs (ncRNAs) are not mere 
evolutionary relics; rather, they provide a ʻRosetta Stone ,̓ 
facilitating the interpretation of much of the genomic reper-
toire of non‑coding transcripts.

2. Interactions between lncRNAs and miRNAs

With the development of gene networks, and differential 
expression and pathway analyses, lncRNAs are emerging 
as important regulators implicated in various biological 
processes (16). However, our understanding of the impact of 
miRNA‑lncRNA regulatory networks remains limited.

ʻSponge effectʼ of lncRNAs on miRNAs. Competing endog-
enous RNAs (ceRNAs) and microRNA response elements 
(MREs), two important components involved in the ʻsponge 
effect ,̓ can act in almost all interaction mechanisms as 
lncRNAs and miRNAs (Fig. 1). ceRNAs were first proposed 
by Salmena et al (17), who hypothesized molecular regulation 
patterns, such as an lncRNA that competes with a miRNA to 
release the inhibition of other genes; this lncRNA was called 
a ceRNA. Lewis et al (18) described more fully the concept 
of an MRE in 2004; an MRE (miRNA response element) is a 
seed region that comprises nucleotides 2‑8 of the 5'portion of 
the miRNA and is particularly crucial for mRNA recognition 
and silencing or interaction with ncRNAs. Moreover, MREs 
and ceRNAs play an irreplaceable role in the ‘sponge effect’ 
of lncRNAs and miRNAs. The characteristics of this ‘sponge 
effect’ can be observed via the following aspects.

At present, there are two modes used to describe the 
‘sponge effect’ of lncRNAs and miRNAs, namely complete 

complementary mode and partial complementary mode. 
miRNAs that bind to target gene sequences are partially 
complementary, and this process is mediated by MREs that 
harbor conserved target sites. In 2009, Seitz (19) proposed that 
miRNA‑binding sites identified via bioinformatics can titrate 
miRNAs and thereby impair their activity. Such ceRNAs regu-
late MREs on their targets, and thus play an important role in 
post‑transcriptional regulation. When the sponging effect of an 
lncRNA and a miRNA occurs, it is usually complete comple-
mentation. However, when an miRNA negatively controls an 
lncRNA, the mature lncRNA usually has a hat and a poly5‑A 
tail, that is, a 5'UTR and a 3'UTR. Therefore, miRNAs can 
also have partial complementation with an lncRNA, similar to 
an mRNA (11).

In general, an lncRNA has multiple MREs, and the more 
it has, the more the lncRNAs and miRNAs communicate with 
each other. This has an important effect indifferent physiolog-
ical and pathological conditions. For instance, lncRNA‑BGL3 
functions as a ceRNA for miR‑17, miR‑93, miR‑20a, miR‑20b, 
miR‑106a and miR‑106b to prevent repression of the mRNA 
for phosphatase and tensin homolog (20). lncRNAs that share 
multiple MREs will crosstalk effectively, which is also of great 
significance in a variety of biochemical processes (21).

Moreover, the same MREs on a ceRNA are not equal. 
For miRNA, all lncRNAs that do not contain an MRE will 
have a sponging effect with the corresponding miRNA, 
exhibiting a preference when several miRNAs are present 
at the same time (22). For instance, the lncRNA BC032469 
contains elements complementary to the miR‑1207‑5p and 
miR‑1266 seed regions; however, BC032469 functions as a 
ceRNA by impairing only miR‑1207‑5p‑dependent target gene 
downregulation (23). It is proposed that the primary targets 
of a certain miRNA are preferentially affected, whereas the 
remainder are less affected Moreover, previous studies (24,25) 
have suggested that MREs in lncRNAs show a positional 
preference for the AGO binding sites in mid‑regions and at 
the 3'ends of the lncRNAs (11). These sites harbor a possible 
pattern of regulatory elements across transcripts.

In addition, the overall influence of the sponging effect 
depends on the specific spatial‑temporal distribution. For 
example, during embryonic development, an miRNA has been 
proven to be an important post‑transcriptional regulator that 
can promote the rapid clearance of core transcription factors 
(TFs) during human embryonic stem cell (hESC) differen-
tiation  (26). Long intergenic non‑coding RNA, regulator 
of reprogramming (Linc‑RoR) can serve as the endogenous 
‘sponge’ for differentiation‑related miRNAs. In hESC 
self‑renewal, Linc‑RoR suppresses miRNAs at a certain stage 
when highly expressed or under treatment with various agents. 
However, in hESCs with strong differentiation ability, the 
relevant miRNA is highly transcribed, and Linc‑RoR levels 
decrease. Linc‑RoR is important for suppressing miRNA 
expression in the early stage of hESC differentiation, which 
may facilitate further hESC differentiation (26). Moreover, 
these results may provide an insight into miRNA‑lncRNA 
interactions occurring in multiple stem cells.

In summary, the sponging effect is the basis of the 
molecular mechanism of the network involved in various 
biochemical processes mediated by miRNAs, lncRNAs and 
related molecules.
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Main mechanisms of regulation between lncRNAs and 
miRNAs. There are two aspects of regulatory factors and regu-
latory targets: Οne is the regulation of lncRNAs by miRNAs, 
and the other is the regulation of miRNAs by lncRNAs (Fig. 2). 
Regarding the former, miRNAs can indirectly regulate the 
expression of lncRNAs. lncRNAs and miRNAs interact to 
form the transcriptome of regulatory networks, an interaction 
that is sometimes similar to an enhancer function, influencing 
the expression of flanking genes (27). An interesting example 
of the interaction between an miRNA and an lncRNA is the 
DLK1‑MEG3 imprinted domain, which includes the tumor 
suppressor factor MEG3 lncRNA, and an miRNA, such as 
miR‑29, which is involved in a number of cancer types (28). 
miR‑29 negatively regulates DNA methylase and indirectly 
regulates the expression of MEG3 in liver cancer. In addition, 
miRNAs degrade lncRNAs in an AGO‑dependent manner. 
Within the RISC, miRNA binds to the target lncRNA 3’UTR, 
leading to full mRNA degradation or blockade of the ribo-
somal machinery, both of which result in gene silencing (29). 
lncRNAs also regulate miRNAs in further ways. The most 
common involves lncRNA‑mediated inhibition of miRNA 
expression via the sponging effect. lncRNAs can be used as 
precursors of miRNAs to directly affect miRNA regulation; 
some differences between the two sequences may exist (30). 
Guo et al  (31) examined H19 and the product of miR‑675 

sequencing analysis, and found that the H19 main base is G, 
with miR‑675 having a G or C. These two types of mature 
miRNA sequences are reversed inmiR‑675‑3p/5p, and this 
structure ensures the stability of the pre‑miRNA stem‑loop 
structure. Differences in nucleotide composition tend to 
indicate that different lengths are required for functioning. 
Although miR‑675 and H19 belong to the ncRNA family, 
they exhibit different conservation and nucleotide mutation 
frequencies. Additionally, lncRNAs bind competitively with 
miRNA targets (some mRNAs), and lncRNAs compete with 
the 3'UTR of the target mRNA, which indirectly inhibits the 
negative regulation of the target mRNA by the miRNA (18,31). 
For example, lncRNA FEZF1‑AS1 can competitively inhibit 
miRNA‑30a, leading to Nanog silencing in breast cancer (32). 
lncRNAs also bind to several proteins in complex to regu-
late miRNA expression, such as H19, which can act on 
PCAF/hnRNPU/Pol RNA II and enhance the histone acety-
lation of the region upstream of miR‑200 (33), and lncRNAs 
can affect the expression of miRNAs via other chromatin 
modifications (34).

miRNAs and lncRNAs constitute a negative feedback loop. 
Another important mechanism of interaction between 
miRNAs and lncRNAs is that they can function together to 
form a negative feedback regulation pathway. A relatively 

Figure 1. Different ‘Sponge’ effect of lncRNAs on miRNAs. (1) Complete complementarity between lncRNAs and miRNAs. (2) Partial complementarity 
between lncRNAs and miRNAs. (3) lncRNAs can have multiple MREs for different miRNAs. (4) The overall influence of the sponging effect depends on the 
specific spatial‑temporal distribution. (5) For different miRNAs containing the same MRE, lncRNAs will give priority to one of these miRNAs for binding. 
lncRNA, long non‑coding RNA; miRNA, microRNA; MRE, microRNA response element.
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simple example is that miRNA‑200a and histone deacetylase4 
(HDAC4) can form a negative feedback regulation loop in 
hepatocellular carcinoma; that is, HDAC4 overexpression 
can inhibit miR‑200a (33). Other studies have confirmed that 
HDAC4 overexpression also inhibits H19, indicating that 
H19, miR‑200A and HDAC4 together constitute a negative 
feedback regulation loop (33,35). Another example involves 
the tumor formation process, whereby the enhancer of zeste 
homolog 2 (EZH2) gene participates in polycomb complex 2 
core subunit inhibition, with epigenetic modification playing 
a crucial role. EZH2 has been confirmed to interact with a 
variety of miRNAs and has been accepted as a negative regu-
lator of miRNAs (36). Some miRNAs can bind directly to the 
3'UTR of EZH2, and EZH2 regulates miRNA expression at 
two transcriptional levels. By interacting with EZH2, miRNAs 
can affect H3K27 methylation and regulate cellular processes. 
Thus, miRNAs and EZH2 constitute an important regulatory 
and feedback pathway in which EZH2 is a stable factor. In addi-
tion, miR‑26a‑2 forms a negative feedback loop with miR‑101 
and EZH2 and is under the negative regulation of MYC and 
HIF‑1a/1b (36,37). EZH2 inhibits cell cycle regulatory factors 
and the tumor suppressor gene Rap1GAP, and participates in 
the epithelial‑mesenchymal transition process via molecules 
such as E‑cadherin (36). Moreover, EZH2 and lncRNAs are 
closely related, affecting both each other and the expression 
of target genes. Therefore, miRNA‑101, miR‑26a, EZH2 
and HOTAIR lncRNA also comprise a negative feedback 
loop (38). Furthermore, lncRNAs and related molecules can 
form other negative feedback loops. In addition, MIR100HG, 
miR‑100 and miR‑125b overexpression has been observed in 
cetuximab‑resistant colorectal cancer, head and neck squamous 
cell cancer cell lines, as well as in tumors from patients with 
colorectal cancer whose disease progressed on cetuximab, and 
miR‑100 and miR‑125b have been observed to coordinately 
repress five Wnt/β‑catenin negative regulators (mitochondrial 
genome maintenance exonuclease 1, Dbf4‑dependent kinase 3, 
ring finger protein 4, cell division cycle 27 and nuclear factor, 
erythroid 2 like 2). These results describe a double‑negative 
feedback loop between MIR100HG and the TF GATA binding 

protein 6 (GATA6): GATA6 represses MIR100HG; however, 
this repression is relieved through targeting of GATA6 by 
miR‑125b, which results in increased Wnt signaling, and Wnt 
inhibition in cetuximab‑resistant cells restores cetuximab 
responsiveness (39). Thus, the lncRNA MIR100HG, miR‑100, 
miR‑125b and GATA6 form a double‑negative feedback loop. 
These examples also indicate that lncRNAs and miRNAs 
may be involved in the diversity of the negative feedback loop 
(Fig. 3).

3. Methods of research into lncRNAs and miRNAs

Databases for studying interactions between miRNAs and 
lncRNAs. In recent years, a number of lncRNA/miRNA‑related 
databases have been established by researchers in combination 
with bioinformatics technology (Table I) (40‑50). The estab-
lishment of these databases not only provides comprehensive 
information on various types of lncRNAs, but also a very 
important platform for studying the regulatory relationship 
between lncRNAs and miRNAs. Three representative data-
bases (44,46,50) are discussed below. The DIANA‑LncBase 
database (http://www.microrna.gr/LncBase) is a tool devel-
oped by the DIANA Laboratory for researchers to explore 
potential interactions between miRNAs and lncRNAs. The 
DIANA‑LncBase database offers detailed information for 
each miRNA‑lncRNA pair, such as graphical plots of the 
genomic location of the transcript, a representation of binding 
sites, lncRNA tissue expression, and MRE conservation and 
prediction scores. The CHIP database (http://rna.sysu.edu.
cn/chipbase/) is an open database developed by Zhongshan 
University (Guangzhou, China). The CHIP database is 
mainly used for comprehensive annotation of ncRNAs, 
including TF binding sites and motifs, and for decoding 
the transcriptional regulatory networks of lncRNAs, 
miRNAs, other ncRNAs and protein‑coding genes based 
on chromatin immunoprecipiation‑sequencing (seq) data. 
By integrating experimental and predicted ncRNA‑disease 
associations from manual literature curation and other 
resources under one common framework, the MNDR v2.0 

Figure 2. Main mechanisms of regulation between lncRNAs and miRNAs. (1) miRNAs can affect the expression of lncRNA genes through DNA methylation. 
(2) miRNAs can degrade lncRNAs in an argonaute‑dependent manner. (3) lncRNAs can serve as precursors of miRNAs to directly affect the regulation of 
miRNAs. (4) lncRNAs can bind with some proteins to act as a complex which enhances acetylation of the upstream region of the miRNA gene. (5) lncRNA can 
bind with some proteins to act as a complex which regulates the expression of the miRNA gene. (6) lncRNAs can act as a sponge of miRNAs, thereby inhibiting 
the degradation of mRNAs targeted by miRNAs. lncRNA, long non‑coding RNA; miRNA, microRNA; HAT, histone acetylation.



ONCOLOGY LETTERS  19:  595-605,  2020 599

database (http://www.rna‑society.org/mndr/index.html) was 
developed by Harbin Medical University (Harbin, China) for 
ncRNAs and related diseases.

Research technology for lncRNAs and miRNAs. As 
lncRNAs/miRNAs have various functions through numerous 
types of mechanisms, the establishment and application of 

Figure 3. Three common types of negative feedback loops composed of miRNAs and lncRNAs. (1) lncRNA, miRNA and a protein constitute a single‑negative 
feedback loop. (2) lncRNA, two miRNAs and a protein constitute a double‑negative feedback loop. (3) lncRNA, two miRNAs and multiple proteins constitute 
a double‑negative feedback loop. miRNA, microRNA; lncRNA, long non‑coding RNA.

Table I. Related databases for the study of interactions between miRNAs and lncRNAs.

Author, year	 Database	 Website	 Applicable ncRNA	 (Refs.)

Erdmann et al, 2000	 Non‑codingRNA	 http://biobases.ibch.poznan.pl/	 lncRNA/miRNA	 (40)
	 database	 ncRNA
Mituyama et al, 2009	 fRNAdb	 http://www.ncRNA.org/frnadb	 lncRNA/miRNA	 (41)
Dinger et al, 2009	 NERD 	 http://jsm‑research.imb.uq.edu.au/	 lncRNA	 (42)
		  NRED
Amaral et al, 2011	 lncRNAdb   	 http://www.lncrnadb.org/	 lncRNA	 (43)
Yang et al, 2013	 ChipBase v2.0	 http://rna.sysu.edu.cn/chipbase/	 lncRNA/miRNA	 (44)
Volders et al, 2013	 LNCipedia  	 http://www.lncipedia.org	 lncRNA	 (45)
Paraskevopoulou et al, 2013 	 DIANA‑LncBase   	 http://www.microrna.gr/LncBase	 lncRNA/miRNA	 (46)
Cook et al, 2011	 RBPDB  	 http://rbpdb.ccbr.utoronto.ca/	 lncRNA/miRNA	 (47)
Li et al, 2014	 lncRNABase(starBase)	 http://starbase.sysu.edu.cn/	 lncRNA	 (48)
	 v2.0			 
Hsu et al, 2006	 miRNAMap 	 http://mirnamap.mbc.nctu.edu.tw	 miRNA	 (49)
Cui et al, 2018	 MNDR v2.0	 http://www.rna‑society.org/mndr/	 lncRNA/miRNA	 (50)
		  index.html

miRNA, microRNA; lncRNA, long non‑coding RNA; ncRNA, non‑coding RNA.
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molecular biology research methods has a very important 
role in investigating lncRNA/miRNA functions (Table II). At 
present, there are several well‑developed research methods for 
qualitative and quantitative analysis of ncRNAs. Microarray, 
RNA‑seq, northern blotting, reverse transcription‑quantitative 
polymerase chain reaction (RT‑qPCR) and fluorescence in 
situ hybridization (FISH) have been used for such analyses of 
ncRNAs (51). Indeed, Ørom et al (52) observed the expression of 
3,019 types of lncRNAs in a variety of human cell lines through 
microarray detection spectrum analysis. Using RNA‑seq tech-
nology from induced pluripotent stem cells of human neurons, 
Lin et al (53) found that a number of lncRNAs are involved in the 
development of nervous system diseases. Northern blotting (54) 
and RT‑qPCR (55) assays have been employed to examine the 
expression of ncRNAs, and to verify the authenticity of the results 
of microarray experiments. In addition to FISH technology, 
combined knockdown and localization of ncRNAs (c‑KLAN) 
can be used to analyze the localization of non‑coding RNAs in 
cells or tissues (56). Subcellular fractionation (57), which is a 
process used to separate cellular components while preserving 
the individual functions of each component, is has also been 
applied to the study of ncRNA localization. The main technolo-
gies currently being used in research into ncRNA function, in 
terms of silencing ncRNA gene expression, include RNA inter-
ference (RNAi; small interfering or short hairpin RNA) (48), 
locked nucleic acids (58) and clustered regularly interspaced 
short palindromic repeats (CRISPR) (59). As another approach 
to the study of ncRNA functions, the target ncRNA gene can be 
overexpressed by a plasmid or lentiviral vector, followed by the 
observation of changes in cell phenotype. Among these tech-
niques, RNAi has been widely employed to examine a specific 
lncRNA (60), and RNA binding protein immunoprecipitation 
(RIP) has been widely used for examining the mechanism of 
ncRNA action. RIP is also used to screen proteins related to 
lncRNA binding. With the development of molecular biology 
technologies, researchers have combined RIP with microarrays 
to develop a new technology, RIP‑Chip (61), and the combina-
tion of RIP and RNA‑seq has resulted in another technology, 
RIP‑seq (62). With regards to bioinformatics research methods 
for ncRNAs, numerous new approaches have been reported, 
such as catRAPID [fast predictions of RNA and protein inter-
actions and domains; (63)], which is being used in the rapid 
prediction of RNA and protein interactions (thepredictive 
function can provide guidance for finding the lncRNA target). 
Capture long‑read sequencing (CLS), a new technology for 
accelerating lncRNA annotation developed by the GENCODE 
alliance, combines targeted RNA capture with the third genera-
tion of long read sequencing. The full‑length transcriptional 
model produced by CLS is superior to that of the existing 
short‑reading technology, revealing the genomic features of 
lncRNAs, including promoter and gene structure, and protein 
coding potential (64). Chromatin conformation capture (3C 
technology) is another technology that implements quantitative 
or semi‑quantitative methods to assess changes in the interac-
tions between the three‑dimensional structures of genomic 
regions  (65). In recent years, 4C‑seq  (66), 5C‑seq  (67) and 
Hi‑C (68) have been derived from next‑generation sequencing. 
With the increase in the number of lncRNAs involved in chro-
matin conformation interactions, this technology is also used 
to study lncRNA‑mediated chromatin interactions (65‑68). The 

results of ncRNA research technology have recently aided in the 
development of the new technique of frozen electron micros-
copy, which analyzes the structure of nucleic acids (including 
ncRNAs/proteins and their complexes), providing a more 
thorough understanding of their functions (69). Moreover, the 
rapid amplification of cDNA ends technique is used to study 
the function of ncRNAs for loss‑of‑function studies, as well as 
the cellular localization of lncRNAs, starting from a known 
cDNA fragment and extending through the ends to obtain the 
complete 3'and 5'ends and, subsequently, the full‑length lncRNA 
sequence (70). The development of new technologies in func-
tional areas is helpful for discovering the biological functions 
of lncRNAs, their molecular mechanisms, and the pathological 
mechanisms involved in the development of tumors.

4. lncRNAs and miRNAs in cancer

Overall, miRNAs and lncRNAs have important roles in the 
diagnosis and treatment of cancer. Recent studies have indi-
cated that specific lncRNAs and miRNAs related to cancer can 
be detected in blood and serum samples (71,72). For example, 
lncRNA GHET1 is overexpressed in various cancers, which 
can predict unfavorable survival and clinical parameters in 
patients (73). Recent literature has shown that miR‑20a is over-
expressed in colon cancer and acts as a diagnostic and prognostic 
biomarker (74). lncRNAs and miRNAs can also be combined 
for the diagnosis of cancer. Permuth et al (75) reported on the 
use of eight lncRNAs (C00472, MEG3, PANDA, PVT1, UCA1, 
ANRIL, GLIS3‑AS1, and ADARB2‑AS1) for the diagnosis of 
pancreatic ductal carcinoma (PDAC), and Li et al (76) found 
that miRNA1209 in the serum of patients with PDAC has a 
higher diagnostic accuracy than CA‑199. In recent years, the 
mechanisms by which lncRNAs and miRNAs mediate cancer 
progression have been gradually studied (Table III) (77‑86), 
and the main mechanisms involved are epigenetic regula-
tion, transcriptional and post‑transcriptional regulation, and 
ceRNAs. The knowledge on these mechanisms can be useful 
in the treatment and diagnosis of tumors. In China, ncRNAs 
have been used for cancer diagnosis in the form of diagnostic 
kits. Qadir et al (87) attempted to summarize the emerging 
field of ncRNAs and their role in different diseases, including 
cancer, their modes of action, and their potential in target iden-
tification and therapeutic drug development. In addition, some 
gene editing techniques have been used for cancer treatment, 
such as CRISPR. Although, at present, there is no systematic 
evaluation of the clinical prognosis of ncRNA‑mediated 
tumors, more clinical diagnoses and treatments of tumors 
could be explored, according to the interaction mechanisms 
of different ncRNAs in the processes of tumorigenesis and 
development. It is worth noting that in recent years, some other 
types of ncRNA have been involved in the development of 
diseases including cancer, such as circular RNAs(circRNAs) 
and PIWI‑interacting RNAs (piRNAs). circRNA is a novel 
form of RNA which is distinct from the traditional linear 
RNA. circRNA has a strong cyclic structure, species conser-
vation and tissue specificity, and it is not readily cleaved by 
nucleases (88,89). piRNAs, ncRNAs of 25‑33 nt in length, 
function by interacting with the PIWI protein (90,91). Thus, 
various ncRNAs involved in the regulation of the occurrence 
and development of cancer still need further study.
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5. Conclusion

In conclusion, the mechanisms by which miRNAs and lncRNAs 
mediate the occurrence and development of cancer still need 
further exploration in order to provide broader prospects for 
cancer treatment. Currently, the miRNA‑lncRNA interaction 
mechanisms are an important part of research and treatment for 
most cancer types. However, there are numerous challenges to 
be addressed, such as the safety of miRNAs for the treatment of 
tumors. Nonetheless, with additional research on ncRNAs in the 
field of cancer, it is considered likely that the specific mechanism 
of ncRNA‑mediated tumorigenesis and development will be 
found, offering accurate entry points for the treatment of tumors. 
Therefore, exploring miRNA and lncRNA interactions could 
provide new breakthroughs for the clinical treatment of tumors.
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