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Abstract. Signal transducer and activator of transcription 
(STAT) proteins represent novel therapeutic targets for the 
treatment of cancer. In particular, STAT‑3 serves critical 
roles in several cellular processes, including the cell cycle, 
cell proliferation, cellular apoptosis and tumorigenesis. 
Persistent activation of STAT‑3 has been reported in a 
variety of cancer types, and a poor prognosis of cancer may 
be associated with the phosphorylation level of STAT‑3. 
Furthermore, elevated STAT‑3 activity has been demon-
strated in a variety of mammalian cancers, both in vitro and 
in vivo. This indicates that STAT‑3 serves an important role 
in the progression of numerous cancer types. A significant 
obstacle in developing STAT‑3 inhibitors is the demonstra-
tion of the antitumor efficacy in in vivo systems and the lack 
of animal models for human tumors. Therefore, it is crucial 
to determine whether available STAT‑3 inhibitors are suit-
able for clinical trials. Moreover, further preclinical studies 
are necessary to focus on the impact of STAT‑3 inhibitors 
on tumor cells. When considering STAT‑3 hyper‑activation 
in human cancer, selective targeting to these proteins holds 
promise for significant advancement in cancer treatment. In 
the present study, advances in our knowledge of the struc-
ture of STAT‑3 protein and its regulatory mechanisms are 
summarized. Moreover, the STAT‑3 signaling pathway and 
its critical role in malignancy are discussed, in addition to the 
development of STAT‑3 inhibitors in various cancer types.
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1. Introduction

Signal transducer and activator of transcription (STAT) 
proteins are a class of transcription factor that are activated 
by cytokines, growth factors and other peptide ligands. STATs 
are activated by tyrosine phosphorylation in response to 
diverse cytokine signals in the cytoplasm. Following activa-
tion, the STAT proteins translocate to the nucleus, binding 
their specific targets and serving as transcription factors (1‑4). 
STATs influence numerous physiological processes, including 
cell proliferation, apoptosis, division and differentiation (5). In 
healthy cells, the activation of STATs is tightly regulated to 
prevent uncontrolled gene expression; however, prolonged acti-
vation of STATs in cancer cells may result in significant adverse 
effects, such as drug resistance and poor prognosis (5,6). In 
humans, the STAT family comprises seven proteins, including 
STAT‑1, ‑2, ‑3, ‑4, ‑5A, ‑5B and ‑6, and the genes encoding the 
STAT family are located on chromosomes 2 (STAT‑1 and ‑4), 
12 (STAT‑2 and ‑6) and 17 (STAT‑3, ‑5A and ‑5B) (7). Among 
the seven members, STAT‑3 and ‑5 exhibit the strongest 
association with tumor progression. Persistent activation of 
STAT‑3 or STAT‑5 (particularly STAT‑3) regulates a variety of 
functions, including proliferation, cell cycle progression, apop-
tosis, angiogenesis and immune evasion (8‑10). Consequently, 
STAT‑3 mainly contributes to tumor proliferation and survival 
owing to its role in stromal cells, including immune cells 
recruitment in the tumor microenvironment to promote tumor 
growth, and is, therefore, recognized as a promising target for 
cancer therapy (11‑16).

Previous studies have demonstrated that DNA methylation 
and chromatin modulation may also be regulated by STAT‑3 
via epigenetic mechanisms  (17,18). Moreover, STAT‑3 has 
been recognized as a potent immune checkpoint regulator for 
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multiple antitumor immune response pathways (12,13). Despite 
the plethora of evidence implicating STAT‑3 in the progression 
of several types of cancer and indicating it as an ideal target 
for cancer therapy, there is still no clinical drug available that 
directly targets STAT‑3 (19). Thus, a novel small molecule able 
to directly target STAT‑3 may represent a promising novel 
STAT‑3 inhibitor. Notably, STAT‑3 is highly complex in its 
diverse biological functions, as well as its various activators. 
Therefore, further investigations into STAT‑3 biology and 
signaling pathways are particularly important.

2. STAT‑3 structure

STAT‑3 is comprised of ~800 amino acids, and its relative 
mass is 92 kDa; it has several conserved functional domains, 
including N‑terminal, coiled‑domain, DNA‑binding domain 
(DBD), Src‑homology‑2 (SH‑2) domain and transactivation 
(TA) domain (20‑22). DBD has specificity with certain regions 
of DNA, allowing STAT‑3 to bind downstream of the target 
gene‑promoter element to induce the expression of target 
genes. The SH‑2 domain participates in phosphorylation of 
tyrosine residues, facilitating protein‑protein interactions with 
tyrosine‑phosphorylated proteins (23). Furthermore, the SH‑2 
domain is critical in the formation of the STAT‑3 dimer (the 
region that STAT‑3 binds to in order to activate receptors). In 
between the DBD and SH‑2 domain there is a linker protein 
that mediates the stability of DNA binding and assembly of 
the transcriptional body (24). The TA domain contains one 
tyrosine phosphorylation site (Yyr705) and one serine phos-
phorylation site (Ser727). During STAT‑3 activation, tyrosine 
and serine residues are phosphorylated by upstream kinases 
and recognized by the SH‑2 domain (25), as indicated in Fig. 1.

However, it has been demonstrated that STAT‑3 contains 
three different isomers: The full‑length α form, and two shorter 
isoforms, β and γ, which are the result of mRNA splicing and 
proteolysis, respectively. STAT‑3α primarily participates in cell 
proliferation and transformation, while STAT‑3β regulates cell 
differentiation mediated by granulocyte colony‑stimulating 
factor (G‑CSF) and lacks a serine phosphorylation site (26). 
Activated STAT‑3γ has been identified in differentiated neutro-
phils and does not contain a transactivation domain (27,28). A 
previous study also suggested that these isoforms may exert a 
dominant‑negative effect on their full‑length counterparts (29).

3. STAT‑3 signal transduction cascade

Transient STAT3 activation is a key determinant of tissue 
integrity restoration, wound healing and immune response 
resolution, given its critical biological functions (30). STAT‑3 is 
heavily regulated to ensure transient activation under standard 
conditions. To mediate this process, three classes of proteins 
located upstream of STAT‑3 influence negative regulation of 
its activation, including tyrosine phosphatases, protein inhibi-
tors of activated STATs (PIAS) and suppressors of cytokine 
signaling (SOCS) (31). Tyrosine phosphatases downregulate 
Janus kinase (JAK)/STAT signaling via dephosphorylation of 
STAT and its upstream kinases (32). It has been reported that 
the protein tyrosine phosphatase receptor T specifically dephos-
phorylates the Tyr705 residue in the TA domain of STAT‑3 (32). 
The PIAS family comprises four members: PIAS‑1, ‑3, ‑x and 

‑y (33). Of these, PIAS‑3 is associated with STAT‑3 inhibition 
via blocking its binding to DNA, recruiting co‑repressors or 
serving as SUMOylation E3 ligases (34‑36). The SOCS family 
of proteins, also known as cytokine‑induced SH‑2‑containing 
proteins, inhibit STAT‑3 binding and decrease JAK activity 
via competitive binding to phosphorylated tyrosine residues on 
activated cytokine receptors or JAK (19). As the receptor lacks 
its own enzymatic activity, STAT‑3 is primarily activated via the 
JAK‑dependent pathway (37).

The JAK/STAT‑3 pathway is typically considered 
the most crucial signaling pathway in the activation 
of STAT‑3  (18). Notably, interleukin (IL)‑6 is the most 
well‑characterized upstream cytokine, which binds specifi-
cally to membrane‑bound receptors in the JAK/STAT‑3 
pathway  (38‑40). IL‑6 binds IL‑6 receptor‑α on the cell 
surface, inducing conformational changes and resulting in the 
formation of a homodimer and heterodimer. This initiates the 
activation of JAK, followed by recruitment and activation of 
cytosolic STAT‑3 (18). Consequently, activated STAT‑3 trans-
locates to the nucleus and binds to its target gene (Fig. 2).

Certain other IL family members can induce STAT‑3 
translocation to the nucleus, including IL‑11 and ‑31, leukemia 
inhibitory factor, ciliary neurotrophic factor and oncostatin M. 
Moreover, it has been reported that IL‑6‑class cytokines serve 
crucial roles in the progression of numerous tumor types, 
including breast, lung and prostate cancer, and also multiple 
hematopoietic malignancies (41‑50). Although other IL‑6‑class 
cytokines contribute to tumor development, IL‑6 is considered 
the most significant regulator of the JAK/STAT‑3 pathway in 
tumors. Furthermore, certain reports have demonstrated that 
IL‑6 is regulated by specific oncogenes, such as breakpoint 
cluster region‑ABL protooncogene and RAS (51,52). Recent 
studies have reported that IL‑6 promotes cell migration via the 
induction of epithelial‑mesenchymal transition (EMT), and 
IL‑6‑mediated EMT in breast cancer may be a consequence 
of STAT‑3 activation  (53‑55). These findings indicate that 
STAT‑3 may represent a target that can inhibit tumor develop-
ment mediated by the aforementioned oncogenes (53).

G‑protein‑coupled receptors (GPCRs) are not tradi-
tional receptors in the JAK/STAT‑3 pathway; however, 
several f indings suggested that GPCRs may be a 
STAT‑3 activator contributing to tumor progression  (56). 
Sphingosine‑1‑phosphate receptor‑1 (S1PR‑1) is a type of 
GPCR that is upregulated in malignant, immune and endo-
thelial cells. Previously, S1PR‑1 was revealed to be associated 
with tumor cell survival and resistance to chemotherapy 
in a variety of cancer cells  (57‑62). Moreover, sphingo-
sine‑1‑phosphate receptor 1 (S1PR‑1) activates STAT‑3 
via JAK‑2, resulting in the cyclical upregulation of S1PR‑1 
expression (63). In general, toll‑like receptors (TLRs) partici-
pate in innate immune system responses, connecting specific 
immunity to non‑specific immunity. Nevertheless, recent 
studies have demonstrated the crucial role of TLRs in the acti-
vation of STAT‑3 and tumor progression. It has been reported 
that TLR‑4 induces STAT‑3 activation via upregulation of 
IL‑6 and microRNA (miR)‑21, resulting in the neoplastic 
progression of colon cancer in vivo (64). Furthermore, TLR‑2, 
‑7 and ‑9 were all identified to correlate with STAT‑3 activa-
tion and tumor progression (65‑67). These findings indicate 
that GPCRs and TLRs activate the JAK/STAT‑3 signaling 
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pathway and support the potential of targeting GPCRs and 
TLRs to inhibit STAT‑3‑induced tumor growth. Although 
numerous STAT‑3‑associated regulatory mechanisms medi-
ating cancer progression have been revealed, the targeting of 
STAT3 in oncotherapy remains a challenge. This is due to the 
shallow surface pockets of STAT3 molecules, which make it 
difficult to form effective binding.

Additionally, inactivation can also occur via two pathways: 
i) The RAS/MAPK pathway; and ii) the non‑receptor tyrosine 
kinase pathway. Mitogen‑activated protein kinase (MAPK) is 
a serine/threonine‑protein kinase and a downstream signaling 
molecule of the RAS pathway, which influences cell prolif-
eration and differentiation, the inflammatory response and 
cell pathology. Various reports have demonstrated that RAS 

mediates STAT‑3‑induced autophagy and tumorigenesis via 
regulation of MAPK signaling (68‑70), and that the influence 
of STAT‑3 on gene transcription is significantly decreased 
following inhibition of MAPK (71,72). This is due to phos-
phorylation of tyrosine residues during signal transduction of 
STAT‑3 and phosphorylation of serine residues.

Independent of the JAK/STAT‑3 and RAS/MAPK path-
ways, STAT‑3 influences numerous other cytokine signal 
transduction pathways by interacting with molecules such as 
cardiotrophin‑1, angiotensin II and epidermal growth factor 
receptor. Moreover, certain non‑receptor tyrosine kinases also 
activate STAT‑3, such as Src (37). Oncogenic Src can activate 
STAT‑3, while BCR‑ABL fusion protein can co‑activate STATs 
‑1, ‑3 and ‑5 (73). A recent study revealed aberrant activation of 

Figure 1. Structure of the STAT‑3 protein. STAT‑3 is comprised of of six main sections. The N‑terminal domain mediates the interaction between STAT‑3, 
promoter binding and assembly of transcriptional machinery. The coiled‑coil domain promotes interactions with regulatory proteins and transcription factors. 
The DNA‑binding domain is in direct contact with the STAT‑3 regulated gene promoter. The SH‑2 domain mediates dimerization via interaction with the 
phosphorylated Tyr705 region of a different STAT‑3 monomer. The transactivation domain is responsible for the transcriptional activation of the target gene. 
STAT‑3, signal transducer and activator of transcription‑3.

Figure 2. JAK‑STAT‑3 signaling pathway. Upon cytokine‑mediated stimulation of the cell‑surface receptor, the JAK protein on the receptor is phosphorylated 
and recruits STAT‑3 monomers. STAT‑3 binds to, and is phosphorylated by, JAK. The phosphorylated STAT‑3 then dissociates from JAK and binds cytosolic 
phosphorylated STAT‑3 to form a dimer. The STAT‑3 dimer translocates into the nucleus and promotes the transcription of downstream genes. STAT‑3, signal 
transducer and activator of transcription‑3; JAK, Janus kinase; c‑Myc, MYC proto‑oncogene bHLH transcription factor; Bcl‑xL, BCL2‑like 1; Bcl‑2, BCL2 
apoptosis regulator; VEGF, vascular endothelial growth factor; PIAS, protein inhibitors of activated STATs; SOCS, suppressors of cytokine signaling.
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STAT‑3 in normal and neoplastic colorectal epithelial cells and 
tumor tissues with upregulated Src (74). Src homology region 
2 domain‑containing phosphatase 1 (SHP‑1) is a non‑receptor 
protein tyrosine phosphatase and serves as a tumor suppressor 
gene in numerous cancer types. Liu et al (75) demonstrated 
that SHP‑1 expression levels are downregulated in the majority 
of tumor types and correlate with high expression levels of 
p‑STAT3 expression. Thus, the SHP‑1/p‑STAT3 signaling 
axis may represent a potential therapeutic target and a clinical 
prognostic indicator in patients with cancer.

4. Target genes regulated by STAT‑3

Activation of STAT‑3 is transiently and rapidly sustained for 
a few minutes in the normal physiological state. However, 
persistent activation of STAT‑3 can induce abnormal expres-
sion of various genes associated with cell proliferation, 
differentiation and apoptosis  (76). Due to its significant 
carcinogenic properties, STAT‑3 has been recognized as an 
oncogene. Numerous genes downstream of STAT‑3 have been 
identified, including Mcl‑1, cyclin D1, MYC proto‑oncogene 
bHLH transcription factor (c‑Myc) and vascular endothelial 
growth factor (77). Bcl‑xL and Mcl‑1 are both members of 
the Bcl‑2 anti‑apoptotic family. Bcl‑xL and Bcl‑2 bind Bax 
via BH‑1 and BH‑2, forming homologous and heterologous 
dimmers that influence cellular apoptosis (78). In addition, 
Mcl‑1 inhibits the release of cytochrome c, which may induce 
the intrinsic apoptosis pathway. A recent study have demon-
strated that the Bcl‑xL promoter initiates transcription during 
the activation of STAT‑3, resulting in a malignant transforma-
tion (79). Typically, cancer cells originate from healthy cells 
due to the combinatorial effects of various factors at different 
phases of cell division and growth, resulting in abnormal cell 
proliferation and differentiation. Notably, the cell cycle is a 
key aspect of this malignant transformation. STAT‑3 binds 
Src proto‑oncogene non‑receptor tyrosine kinase via its SH‑2 
domain, activating c‑myc and inducing the upregulation of 
cyclin D1. However, cyclin D1 and c‑myc participate in the 

regulation of cell cycle progression, and their upregulation 
results in dysfunction of the cell cycle and uncontrolled cell 
proliferation (80). Angiogenesis is essential for cancer cell 
proliferation and metastasis, as it provides tumor cells with 
the nutrients and oxygen required for survival. Increasing 
evidence has indicated that persistently activated STAT‑3 
stimulates tumor angiogenesis (81). It has been reported that 
STAT‑3 not only regulates the expression of VEGF in a variety 
of human cancer types, but that it also influences other critical 
angiogenic factors, including angiopoietin, matrix metallopep-
tidase‑9, chemokine (C‑X‑C motif) ligand 16 and insulin‑like 
growth factor binding protein (81‑84).

5. Advances in antitumor therapeutics targeting STAT‑3

STAT‑3 is essential in various cellular processes, including 
the cell cycle, cell proliferation, cellular apoptosis, tumorigen-
esis and the regulation of the tumor niche. In healthy cells, 
STAT‑3 activation is regulated to prevent uncontrolled gene 
regulation; however, abnormal activation of STAT‑3 can result 
in the occurrence of numerous disease types (18). Increasing 
evidence has indicated that high‑frequency abnormal activa-
tion of STAT‑3 is associated with a variety of cancer types, 
including brain, lung, pancreatic, renal, colorectal, endome-
trial, cervical, ovarian, breast and prostate cancer, melanoma, 
glioma, head and neck squamous cell carcinoma, lymphoma 
and leukemia  (85‑87). Grivennikov et al  (43) constructed 
a colitis‑associated cancer model using mice with intestinal 
epithelial cell STAT‑3‑specific deletion and demonstrated that 
STAT‑3‑specific deletion significantly inhibits the occurrence 
of tumors and their progression  (44). In addition, STAT‑3 
inhibits p53 synthesis and reduces its protective effect on 
genomic stability. Following the stimulation of inflammatory 
mediators, the probability of DNA damage and gene mutation 
in parenchymal cells increases significantly, and STAT‑3 is 
also able to reduce the tolerance of ovarian cancer cells to 
stress and damage (67). Another study revealed that STAT‑3 
activates miR‑608, which inhibits the proliferation, migration 

Figure 3. Chemical structures of STAT‑3 inhibitors. STAT‑3, signal transducer and activator of transcription‑3.
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and invasiveness of lung cancer cells (88). Moreover, STAT3 
also serves a critical role in the regulation of tumor niche. 
Sun et al (89) reported that Annexin10 promotes extrahepatic 
cholangiocarcinoma metastasis by stimulating EMT via the 
STAT‑3 pathway. Taken together, the aforementioned evidence 
indicates that persistent activation of STAT‑3 contributes to 
cell proliferation, differentiation, migration and survival, and 
consequently, researchers have attempted to inhibit the STAT‑3 
signaling pathway as a method of cancer treatment (11‑16).

In previous research, attempts were made to inhibit the 
effect of receptor tyrosine kinase (RTK), but mechanistic 
studies indicated that the inhibition of specific RTKs initiated 
the activation of STAT‑3. Although certain small molecules 
targeting RTKs were used clinically, the therapeutic efficacy 
was limited by the development of drug resistance (90). Drug 
resistance represents a significant challenge for effective anti-
tumor therapy, as it often ultimately results in treatment failure. 
Thus, activation of STAT‑3 may contribute to the development 
of drug resistance; therefore, inhibition of the STAT‑3 pathway 
can restore the efficacy of chemotherapeutics agents  (91). 
Notably, only one compound (BBI‑608) targeting STAT‑3 has 
been approved by the Federal Drug Administration for clinical 
use. However, a few small molecules have been demonstrated 
to antagonize the STAT‑3 signaling pathway (Fig. 3).

In order to target STAT‑3 tyrosine phosphorylation, 
researchers have attempted to identify a small inhibitor 
molecule that directly binds the SH‑2 domain of STAT‑3, 
and prevents tyrosine phosphorylation, protein dimerization 
and transcriptional activity (92,93). Recently, structure‑based 
drug design and computational docking techniques have been 
widely used for the identification of small molecules. For 
example, STA‑21 (deoxytetrangomycin) is an analog of tetran-
gomycin (a non‑peptide small molecule STAT‑3 inhibitor) 
that was discovered using structure‑based drug design and 

has successfully completed phase I/II clinical trials (94,95). 
Furthermore, a variety of STA‑21 analogs with improved 
potency, including LLL‑12, S‑3I‑201, BP‑1‑102 and S‑3I‑1757, 
have been demonstrated to inhibit malignant transformation, 
tumor cell proliferation, migration and invasion. LLL‑12 is 
a structurally optimized analog of STA‑21 and inhibits the 
activation of STAT‑3 in a similar manner to STA‑21 (96‑99). 
Additionally, LLL‑12 exerts no inhibitory effects on STAT‑1 
and other RTKs, indicating its specificity to STAT‑3, and is 
more sensitive to a variety of cancer cell lines  (100,101). 
S‑31‑201 is another specific inhibitor of STAT‑3 that inhibits 
STAT‑3 phosphorylation and dimerization. However, 
molecular modeling indicated that S31‑201 selectively binds 
to the SH‑2 domain (102). Consequently, a library of S31‑201 
analogs has been developed and, of these, S31‑201 and ‑1‑066 
exhibit potent inhibition of STAT‑3 dimerization, both in vitro 
and in vivo (103,104). Furthermore, via structure modification, 
BP‑1‑102 (an analog of SF‑1‑066) demonstrated improved spec-
ificity and oral bioavailability. BP‑1‑102 binds three locations 
of the STAT‑3‑SH‑2 domain and inhibits STAT‑3 activation 
at concentrations of 4.1‑6.8 µM (105,106). In addition, certain 
analogs of BP‑1‑102 have been synthesized and evaluated to 
improve potency, such as SH‑5‑07 and ‑4‑54  (107). These 
features indicate that BP‑1‑102 and its analogs may represent 
promising anticancer agents.

LY‑5 is another small molecule that inhibits STAT‑3 by 
selectively binding the major pTyr‑705 region, as well as a 
sub‑pocket of the STAT‑3‑SH‑2 domain. LY‑5 was designed by 
computer models using docking simulation and evaluated for 
inhibitory effects on STAT‑3 activation and functions in human 
medulloblastoma cells (108,109). Further studies demonstrated 
that LY‑5 not only suppressed various cancer cells with an IC50 
range of 0.5‑1.4 µM, but that it also inhibited tumor growth in 
an in vivo mouse model. Furthermore, previous reports have 

Table I. Small molecule STAT‑3‑activation inhibitors in clinical trials.

			   ClinicalTrials.gov	
Inhibitor name	 Mechanism	 Disease type (clinical trial phase)	 identifier	 (Refs.)

STA‑21	 SH‑2 domain inhibition	 Psoriasis (phase I/II)	 NCT01047943	 (84,85)
Pyrimethamine	 STAT‑3 inhibitor	 Chronic lymphocytic leukemia, small	 NCT01066663	 (108)
		  lymphocytic leukemia (phase I/II)
OPB‑51602	 SH‑2 domain inhibition	 Nasopharyngeal carcinoma (phase I)	 NCT02058017	 (103,104)
		  Advanced cancer (phase I)	 NCT01423903	
		  Multiple myelomas, non‑Hodgkin	 NCT01344876	
		  lymphoma, acute myeloid leukemia, 
		  chronic myeloid leukemia (phase I)
		  Malignant solid tumor (phase I)	 NCT01184807	
OPB‑31121	 SH‑2 domain inhibition	 Leukemia (phase I)	 NCT01029509	 (99,100,106,107)
		  Advanced cancer, solid tumor (phase I)	 NCT00955812	
		  Non‑Hodgkin's lymphoma, multiple	 NCT00511082	
		  myeloma (phase I)	
		H  epatocellular carcinoma (phase I/II)	 NCT01406574	
		  Solid tumor (phase I)	 NCT00657176	

STAT‑3, signal transducer and activator of transcription‑3; SH‑2, Src‑homology‑2.
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demonstrated that a combination of a MEK inhibitor and LY‑5 
may represent a potential therapeutic strategy for overcoming 
resistance to MEK inhibitors in multiple human cancer cell 
lines (108,109). Notably, further evidence has demonstrated 
that the SH‑2 domain is an effective target for small molecule 
STAT‑3 inhibitors. For example, it has been demonstrated that 
OPB‑31121 and ‑51602 represent two potent STAT‑3 inhibi-
tors (110,111). OPB‑31121 and ‑51602 also bind to the SH‑2 
domain; however, molecular docking and dynamic simulations 
indicate that their binding site do not overlap with any other 
STAT‑3 inhibitors (110,111).

Typically, the STAT‑3 SH‑2 domain is considered a 
prime target for various STAT‑3 inhibitors, due to the lack 
of selectivity for other domains. However, previous studies 
have reported that InS3‑54 (designed by an improved in silico 
approach) effectively inhibits the STAT‑3 DBD. ‘In silico’ 
refers to the use of computers to solve biological problems. 
In the present study, optimization and design of the lead 
compound were performed by simulating and calculating 
the interaction between receptor and ligand. This approach is 
known to notably improve the discovery of novel drugs (112). 
Notably, an optimized compound (InS3‑54A18) has been 
identified with improved specificity and pharmacological 
properties, which not only inhibits STAT‑3 activation via 
targeting the DBD of STAT‑3, but also significantly inhibits 
the downstream target gene of STAT‑3 (113‑115). The afore-
mentioned findings indicate that InS3‑54A18 may be a starting 
point for the further development of anticancer therapeutics 
targeting the DBD of STAT‑3.

Currently, only a few small‑molecule inhibitors targeting 
STAT‑3 are undergoing the early phases of clinical trials 
(Table I), and there is no inhibitor of STAT‑3 approved by 
the FDA except BBI‑608, which is a STAT‑3 and cancer 
cell stemness inhibitor. STA‑21, OPB‑31121 and OPB‑51602 
have already completed phase I/II clinical trials in leukemia. 
OPB‑31121 and ‑51602 are currently in phase I/II clinical trials 
for advanced solid tumors. STA‑21 is not undergoing a clinical 
trial at present. Phase I/II studies of OPB‑31121 and ‑51602 
revealed that these compounds exert potent antitumor activi-
ties with an acceptable safety profile (116‑119). Pyrimethamine 
is another STAT‑3 inhibitor used in the treatment of chronic 
lymphocytic and small lymphocytic leukemia, and is currently 
in phase I/II clinical trials (120).

Notably, JAKs serve a crucial role in JAK/STAT‑3 
signaling pathway; thus, inhibiting the activity of JAKs may be 
a novel approach to inhibit STAT‑3 activation. AG490, a JAK 
inhibitor, reduces the proliferation of cancer cells by inhib-
iting JAK‑2 activity and blocking the activation of STAT‑3. In 
addition, AG‑490 has been tested in models and in clinical 
trials (121‑123).

A range of plant‑derived compounds exhibit antitumor 
activity against a variety of cancer types. Notably, during the 
previous decade, a number of STAT‑3 inhibitors derived from 
natural sources have been employed and shown to exhibit 
significant efficacy in regulating STAT‑3 activation. Recent 
studies have demonstrated that certain natural therapeutic 
agents serve an inhibitory role in the genesis, progression 
and metastasis of various cancer types (37). Betulinic acid, a 
pentacyclic triterpene, extracted from Zizyphus mauritiana, 
displayed potency in inhibiting STAT‑3 activation, Src kinase, 

and JAK‑1 and ‑2 (124,125). Furthermore, it has been reported 
that betulinic acid induces apoptosis in thyroid, breast, lung and 
colon carcinomas, indicating its potential as a chemotherapeutic 
agent (124). Furthermore, caffeic acid is a phenolic compound 
discovered in plants, and certain studies have reported that 
caffeic acid exerts potent antioxidant and anti‑inflammatory 
properties (126‑128). However, a previous study demonstrated 
that caffeic acid exhibits antitumor properties via the inhibition 
of STAT‑3, preventing STAT‑3 recruitment and inhibiting the 
formation of a transcriptional unit between STAT‑3, HIF‑1α 
and p‑300 on the VEGF promoter (129). Moreover, celastol, 
obtained from Tripterygium wilfordii, is a Chinese medicinal 
plant. Certain reports have indicated that celastrol can inhibit 
proliferation, induce apoptosis and suppress invasion/migra-
tion and angiogenesis via modulation of the DNA‑binding 
activity of STAT‑3 in a wide variety of in vitro and in vivo 
tumor models  (130‑133). In addition, a variety of agents 
derived from natural plants have also been demonstrated 
to exert antitumor effects, such as curcumin, diosgenin and 
honokiol derived from carcuma longa, and fenugreek and 
mangnolia officinalis, respectively. Furthermore, a number of 
reports confirmed their antitumor effects were mediated via 
modulation of constitutive STAT‑3 activation in glioma cells, 
HCC cells and HepG2 cells (134‑136).

6. Conclusions

At present, specific inhibitors of STAT‑3 predominantly 
target the disruption of the protein‑protein interactions or 
DNA‑binding activity, such as inhibitors that prevent the 
recruitment of STAT‑3 to the IL‑6/IL‑6Rα/gp‑130 complex, 
upstream kinase inhibitors and, primarily, JAK inhibitors. 
Over the past decade, small‑molecule drugs that directly 
target STAT‑3 have been identified; nevertheless, there are 
no STAT‑3‑specific drugs available clinically. It has been 
demonstrated that STAT‑3 activation promotes oncogenesis 
via phosphorylation or acetylation. STAT‑3 inhibition has been 
revealed to reverse acquired resistance, synergistically inhibit 
tumor growth, induce apoptosis and stimulate an immune 
response. Therefore, this signifies a requirement to reas-
sess ongoing strategies in order to develop clinically useful 
drugs. Future research should focus on the development of 
therapeutic molecules with STAT‑3‑inhibitory modalities, as 
this has the potential to improve the treatment of a plethora of 
cancer types.
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