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Abstract. Homeobox D 10 (HOXD10) is important in cell 
differentiation and morphogenesis and serves as a tumor 
suppressor gene (TSG) in a number of malignancies. The 
present study investigated its promoter methylation status 
and association with the clinicopathological features of 
endometrial cancer (EC), and measured HOXD10 protein 
expression levels. EC samples (n=62), including 50 endome-
troid adenocarcinoma (EA) and 12 mucinous endometrial 
carcinoma samples (EC) and 70 non-cancerous samples were 
collected. All samples were evaluated for the methylation 
status of several TSGs, including HOXD10, using methyla-
tion‑specific PCR. HOXD10 expression level was evaluated 
using immunohistochemistry. 5-Aza-2-deoxycytidine treat-
ment was performed in the EC cell line Ishikawa to observe 
the change in HOXD10 expression levels. HOXD10 promoter 
methylation was more frequent in cancer samples (P<0.001). 
Downregulation of HOXD10 in EC samples was confirmed 
at the protein level using immunohistochemistry (P<0.001) 
and immunohistochemical staining was negatively associated 
with methylation status (P<0.05). Less HOXD10 protein was 
expressed in MEC compared with EA samples (P<0.001). 
The HOXD10 promoter was hypermethylated in both EA and 
MEC, causing decreased HOXD10 protein expression levels 
in EC cells. HOXD10 expression levels were partially reversed 

by 5-Aza-2-deoxycytidine treatment. The results of the present 
study demonstrated that epigenetic silencing of HOXD10 
putatively contributed to the tumorigenesis of EA. Although 
there was no significant difference in HOXD10 methylation 
between EA and MEC, HOXD10 protein expression levels 
differed between these two diseases, indicating that it may be 
a useful protein biomarker for distinguishing between these 
two lesions.

Introduction

Endometrial carcinoma (EC) is one of the most common 
gynecological malignancies in developed countries, 
accounting for 20-30% of female malignancies, with a 
prevalence that is increasing annually (1,2). Early diagnosis 
and treatment has allowed a possible 5-year survival rate of 
90% (3,4). Mucinous endometrial carcinoma (MEC) is an 
independent and infrequent pathological pattern of EC and 
accounts for 1‑9% of all uterine carcinomas (5). Previous 
studies describing its pathomorphism and diagnostic criteria 
have suggested that MEC and endometroid adenocarci-
noma (EA) differ with respect to patient age and lymphatic 
metastasis (6-9). MEC is more frequent in older women, 
and is more likely to involve lymphatic metastasis (6-9). 
Compared with EA, MEC samples exhibit decreased 
paired box 2 expression levels, low TP53 mutation rates 
and increased CD10, estrogen receptor (ER), progesterone 
receptor (PR), K‑ras, p16, c‑MET, epidermal growth factor 
receptor (EGFR), PTEN and PD‑L1 expression levels and 
sporadic promoter hypermethylation of the mutL homolog 1 
gene (10-15).

Like many malignancies, endometrial cancer is a complex 
disease driven by genetic, epigenetic and environmental 
factors (16-18). DNA methylation at the 5-C of a cytosine 
ring of a CpG island is one of the most important epigenetic 
alterations in cancer initiation (19). Studies have demonstrated 
that aberrant DNA methylation is associated with malignant 
formation (20-23). Tumor suppressor genes (TSG) may be 
hypermethylated, which leads to decreased expression levels 
and alteration of cell growth, differentiation, proliferation and 
apoptosis, resulting in the development of tumors (20-23). 
Therefore, assaying DNA methylation status may be a method 
for early diagnosis (24,25).
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Hypermethylation of promoters of a number of TSGs, such 
as EGF‑containing fibulin extracellular matrix protein 1, gluta-
thione S‑transferase P1, suppressor of cytokine signaling 3, 
3OST2, basic helix-loop-helix family member E22/cysteine 
deoxygenase 1/CUGBP Elva‑like family member 4, SHP1 and 
transmembrane protein with EGF-like and two follistatin-like 
domains 2, have been studied in certain EC tissues and 
cell lines (such as Ishikawa and KLE) and the methylation 
frequency is high (26-31). The present study investigated 
five TSGs (HOXD10, SHH, ZNF545, PCDH17 and MEIS1) 
whose promoters are reported to be hypermethylated in other 
malignancies but have not been evaluated for methylation 
in EC (32-40). For example, HOXD10 is hypermethylated 
and lowly expressed in colon adenocarcinoma cells, which 
downregulates the RHOC/AKT/MAPK pathway to enhance 
apoptosis and restrict the proliferation, migration and inva-
sion of colon adenocarcinoma (32,33). Methylation of the 
Shh promoter and reduced expression of SHH is frequent in 
basal cell carcinoma (34,35). ZNF545 functions as a tumor 
suppressor in colorectal cancer and is frequently inactivated 
by promoter methylation (36,37). Hypermethylation of 
PCDH17 is correlated to poor prognosis in acute lymphoblastic 
leukemia (38,39). MEIS1 genes are frequently hypermethyl-
ated in different types of leukemia (40). The present study 
measured the methylation statuses of these genes, and then 
selected the most hypermethylated genes and measured 
protein expression levels in tumor and control samples. The 
present study aimed to analyze the methylation status of the 
TSG in EC and to elucidate the association between methyla-
tion, expression levels and clinicopathological characteristics. 
In order to further validate the association between the meth-
ylation status of a gene and its expression level, the present 
study detected the expression level of HOXD10 before and 
after DNA methylation transferase inhibitor treatment.

Materials and methods 

Patients and samples. A total of 132 well-conserved 
paraffin-embedded tissue blocks were obtained from the 
Department of Pathology, Shandong University Qilu Hospital 
(Shandong, China), which were initially taken between 
2006 and 2015, including endometrial adenocarcinoma 
(n=50), mucinous endometrial carcinoma (n=12), simple 
hyperplasia (n=22) and complex hyperplasia (n=48). Patient 
data, such as age, tumor differentiation, depth of myometrial 
invasion and lymph node metastasis, were collected. Case 
diagnoses were made according to World Health Organization 
Classification of Tumors of Female Reproductive Organs 
(4th edition) (41). The present study was approved by the 
Ethical Research Committee at Shandong University (approval 
no. mecsdums 2012032).

Cell lines and culture. The human endometrial carcinoma cell 
line Ishikawa was obtained from the European Collection of 
Cell Cultures (Sigma‑Aldrich; Merck KGaA) and maintained 
at 37˚C in Dulbecco's modified Eagle's medium/Ham's F‑12 
medium (DMEM/F12; Gibco; Thermo Fisher Scientific, Inc.) 
supplemented with 10% fetal bovine serum (FBS; Gibco; 
Thermo Fisher Scientific, Inc.). Cell lines were treated at 

37˚C for 72 h with 5‑Aza‑2'‑deoxycytidine (5‑Aza‑CdR; 
Sigma‑Aldrich; Merck KGaA) at a concentration of 1, 2, 5 µM 
as a demethylation treatment. Media and 5-Aza-CdR were 
replaced every 24 h.

Methylation‑specific PCR (MSP). DNA samples were extracted 
from paraffin‑embedded tissue blocks using a genomic DNA 
purification kit (Qiagen GmbH), and treated to convert unmeth-
ylated cytosine to uracil using a cpGenome DNA modification 
kit (InterGen Co.). Primer sequences, conditions and product 
length for MSP are presented in Table SI. MSP reactions were 
performed in a 10 µl system, using 1 µl (20 ng) template DNA 
for each reaction. H2O was used as a negative control.

Immunohistochemistry. A two-step method was used according 
to the manufacturer's instructions regarding primary antibody 
and secondary antibody described below. Sections (5‑µm 
thick) were pre‑treated using sodium citrate buffer (pH 6.0; 
0.01 mol/l; Beijing Solarbio Science & Technology Co., Ltd.) 
at 98˚C for 5 min to retrieve cell antigens and blocked with 
goat serum (1:10; cat. no. ZLI‑9021; OriGene Technologies, 
Inc.) at room temperature for 20 min. Sections were incubated 
overnight at 4˚C with primary antibody (anti‑HOXD10; 1:150; 
cat. no. ab172865; Abcam). Colonic carcinoma tissue sections 
(5‑µm thick) were used as the positive control. The primary 
antibody was replaced with phosphate-buffered saline and was 
used as a negative control. The sections were incubated with 
horseradish peroxidase‑labeled secondary antibody (1:100; 
Universal PV9000 kit; OriGene Technologies) for 30 min 
at 37˚C and visualized using DAB (1:20; Beijing Solarbio 
Science & Technology Co., Ltd.). The sections were stained 
with hematoxylin for 2 min at room temperature. Optical 
microscope (magnification, x100 and x400; Carl Zeiss AG) 
was used for visualization.

A semi-quantitative scoring system was used to obtain a 
staining score for HOXD10 expression levels. A total of five 
high power fields from each section were randomly selected, 
and scores were assigned according to intensity and percentage 
of stained cells. Scores were averaged to yield a final score. 
Intensity scores were classified according to staining inten-
sity: Negative staining (staining intensity score, 0); positive 
yellow staining (staining intensity score, 1); positive brown 
staining (staining intensity score ≤2); and positive dark 
brown staining (staining intensity score, 3). Percentage score 
was classified according to percentage of stained cells: No 
staining (score =0); positive staining 0‑10% (score, 1); positive 
staining 11‑50% (score, 2); positive staining 50‑80% (score, 3); 
80-100% (score, 4). A two-score average was used as the score 
of the fields. Final scores of 0‑3 were considered negative, 
while scores >4 were considered positive.

Western blot analysis. Ishikawa cells were harvested and 
subjected to protein extraction with RIPA lysis buffer 
(Beijing Solarbio Science & Technology Co., Ltd.). The 
concentration of protein was measured using the BCA method 
(BCA Protein Assay kit; cat. no. PC0020; Beijing Solarbio 
Science & Technology Co., Ltd.). Equal amounts of protein 
(50 µg) were separated by 10% SDS‑PAGE gel and transferred 
to PVDF membranes (EMD Millipore). After blocking with 5% 
skim milk (Beijing Solarbio Science & Technology Co., Ltd.) at 
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room temperature for 1 h, the membranes were incubated over-
night at 4˚C with primary antibodies as follows: Anti‑HOXD10 
(1:100; cat. no. ab172865; Abcam) and anti‑β‑actin (1:1,000; 
cat. no. 4970T; Cell Signaling Technology, Inc.). The immune 
complexes were incubated with horseradish peroxidase- 
conjugated secondary antibody. The blots were developed 
using chemiluminescence (EMD Millipore) with the Las-4000 
Imaging system (Fujifilm).

Statistical analysis. SPSS software (version 22.0; IBM, Corp.) 
was used for statistical analysis. A Pearson χ2 test was used 
to compare gene methylation status with clinical data among 
patients with cancer. P<0.05 was considered to indicate a 
statistically significant difference.

Results

HOXD10 promoter hypermethylation in EC. HOXD10 
promoter methylation measured by MSP was greater in cancer 
samples compared with non-cancerous samples (Fig. 1 and 
Table I). Hypermethylation of SHH, ZNF545, PCDH17 and 
MEIS1 in EA and MEC occurred, but a similar methylation 
frequency was observed in non-cancerous lesions (Fig. S1).

Decreased expression levels of HOXD10 in EC. HOXD10 
expression levels were measured in cancer and control 
samples. Downregulation of HOXD10 in cancer samples was 
confirmed at the protein level using immunohistochemistry. 
HOXD10 expression levels were decreased in cancer cases 
(EA and MEC) compared with the controls (37/62 vs. 14/70; 
P<0.01). Compared with EA, MEC samples did not express 
HOXD10 (P<0.001; Table II). In EC, positive staining for 
HOXD10 occurred in the cytoplasm. For simple and complex 
hyperplasia, positive staining was evident in the nucleus and 
cytoplasm (Fig. 2). Staining of colonic carcinoma tissues was 
provided as positive control (Fig. S2).

Association between HOXD10 methylation, gene expression 
levels and clinicopathological features in EC. The present 
study compared methylation of the HOXD10 gene and its 
expression levels in cancer and control samples. Staining 
intensity of HOXD10 was negatively associated with promoter 
methylation (P<0.05). The majority of samples with promoter 
methylation lacked HOXD10 protein expression levels, 

indicating a significant association between promoter hyper-
methylation and transcriptional silencing (P<0.05).

There was no significant difference in HOXD10 methyla-
tion between EA and MEC samples (P>0.05). No association 
between HOXD10 methylation and clinical characteristics 
(patient age, tumor differentiation, tumor size, depth of myome-
trial invasion and lymph node metastases) was observed in EA 
or MEC cases (Table III).

5‑Aza‑CdR treatment reverses the expression levels of 
HOXD10 in Ishikawa cells. In order to further validate the 
association between the methylation status of the HOXD10 
gene and its expression level, the present study detected the 
expression level of HOXD10 in the Ishikawa cell line both 
before and after DNA methylation transferase inhibitor treat-
ment. As presented in Fig. 3, HOXD10 was weakly expressed 
in Ishikawa cell lines and the expression level of HOXD10 
was increased after 72 h treatment with 5‑Aza‑CdR (P<0.01). 
These results suggested that DNA methylation may be associ-
ated with the promoter methylation status of HOXD10.

Discussion

DNA promoter methylation is considered to be a promising 
diagnostic biomarker for cancer. For certain malignancies, 
aberrant methylation occurs at the promoter of TSG, which 
plays a crucial role in the regulation of tumor growth and cell 
differentiation, proliferation and apoptosis. This causes low gene 
expression levels, leading to alterations in tumor growth and cell 

Table I. MSP data for HOXD10 in primary endometrial lesions and clinical pathological correlations.

 HOXD10
 --------------------------------------------------------------------------------------
Category Methylated Unmethylated P‑value

Simple hyperplasia 4 18 0.4750
Complex and atypical hyperplasia 7 41 
Endometroid adenocarcinoma 35 15 0.5380
Mucinous endometrial 8 4 
Total endometrial carcinoma 43 19 <0.0001
Total control group 11 59 

HOX, homeobox.

Figure 1. HOXD10 promoter hypermethylation in EC. Methylation statuses 
of eight out of 62 cancer samples and eight out of 70 non-cancerous samples. 
U, unmethylated HOXD10; M, methylated HOXD10; EC, endometrial 
carcinoma; N, non‑cancerous tissue; T, tumor tissue. H2O were used as 
negative control.
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differentiation, proliferation and apoptosis, finally resulting in 
malignancies that may occur prior to tumor formation. Therefore, 
DNA methylation may be used as a marker in early cancer 
screening (24,42‑44). Hypermethylation of specific TSG, as well 
as low mRNA and protein expression levels, has been reported 
in a number of human malignancies, including EC (28,45,46).

HOXD10 is one of the ANTP homeobox genes located on 
chromosome 2 (2p31). This gene cluster consists of 39 genes 
and multiple transcripts and can be divided into four groups 
(HOX A, B, C and D) (47). HOX regulates stem cell differen-
tiation and embryonic development (48). Abnormal HOX gene 
expression levels are responsible for certain malignancies, such 
as breast, thyroid and ovarian cancer (49). The potential use of 
homeobox genes as diagnostic and prognostic biomarkers has 
been described in the literature (50,51).

HOXD10 acts as a TSG in a number of malignancies, 
such as breast cancer (52), gastric carcinogenesis (53) and 
cholangiocellular carcinoma (54). It inhibits tumorigen-
esis (55) and angiogenesis and inhibits vascular EGFR, matrix 

metalloproteinase 14 and uPAR (56). In certain tumor cell 
lines, upregulation of HOXD10 decreases invasiveness, migra-
tion and survival of cancer cells (40,34,44). For example, 
HOXD10 acts as a tumor-suppressive factor that suppresses 
proliferation and invasion, promotes G1/S progression arrest 
and apoptosis via inhibition of the RHOC/AKT/MAPK 
pathway in human cholangiocellular carcinoma (40). Low 
or absent HOXD10 expression levels promoted invasion and 
migration in colorectal cancer (54,57) and inhibited benign 
transformation of breast tumors (58).

The present study demonstrated that hypermethylation 
of the HOXD10 promoter occurred more frequently in EC 
and thus may be a diagnostic tool for EC compared with 
non-cancerous tissue. In EA and MEC samples, HOXD10 

Table II. Immunohistochemistry data of HOXD10 in primary 
endometrial lesions.

 HOXD10
 ---------------------------------------------
Category Positive Negative P‑value

EA 25 25   0.0010
MEC   0 12 
Cancer samples 25 37 <0.0001
Control samples 56 14 

HOX, homeobox; EA, endometroid adenocarcinoma; MEC, muci-
nous endometrial carcinoma.

Figure 2. Decreased expression levels of HOXD10 in EC. (A) Classic 
HOXD10 staining in EC (x100). (B) No HOXD10 staining was observed in 
MEC samples (x100). (C) For simple hyperplasia, EC tissue was strongly 
stained and HOXD10 is positively stained in the nucleus and cytoplasm 
(x400). (D) In complex hyperplasia, EC tissue was strongly stained, and 
HOXD10 was positively stained in the nucleus and cytoplasm (x100). 
HOX, homeobox; EC, endometrial carcinoma; MEC, mucinous endometrial 
carcinoma. Arrows indicate positively stained cells within the figure.

Figure 3. Effects of 5-Aza-CdR on regulation of expression levels of 
HOXD10 in Ishikawa cell line. β-actin was used as endogenous control. The 
ratio of HOXD10 to β‑actin is shown on the y‑axis. *P<0.01. 5‑aza‑CdR, 
5‑aza‑2'‑deoxycytidine; HOX, homeobox.

Table III. Promoter methylation status of HOXD10 in primary 
endometrial lesions and associations with clinical features.

 HODX10
 ------------------------------------------------------
Clinical feature Methylated Unmethylated P‑value

Age, years 50.56±16.17 53.32±16.63 0.700
Differentiation, n   
  Well 22 13
  Moderate 12   3 0.630
  Poor   9   3
Depth of myometrial   
invasion, n
  <1/2 38 16 0.652
  ≥1/2   5   3 
Lymph node   
metastasis, n
  Yes 38 19 0.149
  No   5   0 
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expression levels were negatively associated with methylation 
status. Aberrant methylation of the HOXD10 promoter may 
decrease HOXD10 protein expression levels.

DNA methylation transferase inhibitor 5-Aza-CdR treat-
ment partly reverted the expression level of HOXD10 in 
the Ishikawa cell line. These findings suggest that aberrant 
DNA methylation may be one of the mechanisms underlying 
HOXD10 downregulation in EC.

In pathological and clinical diagnostic practice, MEC is 
typically mucinous (5), but better biomarkers to clearly identify 
MEC are lacking. MEC often co-occurs with EA and lacks 
clear boundaries, which complicates diagnosis (7). Previous 
studies have suggested that in MEC, immunohistochemistry 
has demonstrated diffuse positivity for ER/PR and vimentin, 
high p16 and low Ki‑67 labeling index, has proven useful for the 
differential diagnosis of EA (12,51). In the present study, immu-
nohistochemistry data revealed a lack of HOXD10 expression 
levels in MEC, so this may be a reliable diagnostic biomarker. 

In the present study, MSP data indicated no differences in 
methylation of the HOXD10 promoter between EA and MEC 
(EA samples vs. MEC; 70 vs. 66.6%; P>0.05). Dysregulation 
of HOXD10 may have mechanisms other than promoter meth-
ylation. The precise mechanism of dysregulation of HOXD10 
in cancer is not clear. In hepatocellular carcinoma, and colon, 
gastric and papillary thyroid cancer, it has been demonstrated 
that promoter methylation of HOXD10 can lead to loss of 
HOXD10 expression levels (32,33,53,59). MicroRNA (miR) can 
affect HOXD10 expression levels at the post-transcriptional level 
in breast, colorectal, ovarian, gastric and non-small cell lung 
cancer, as well as hepatocellular carcinoma, glioma and heman-
gioma. miR-10b, miR-224, miR-23a, miR-501, miR-92b-3p 
and miR-376b reportedly accelerate cancer progression by 
directly targeting HOXD10 within the 3'UTR (60‑65). Other 
suggestions of mechanisms of HOXD10 dysregulation include 
the possible role of long non-coding RNAs (lncRNA), such as 
HOX transcript antisense RNA (HOTAIR). lncRNA HOTAIR 
expression is dysregulated in breast cancer and can inhibit 
HOXD10 expression levels (66). No evidence of HOXD10 
mutations has been identified in cancer. Further studies are 
required to understand the pathology underlying MEC. 

In summary, as decreased protein expression levels caused 
by hypermethylation of TSG may result in tumor progression, 
the present study demonstrated that promoter hypermethyl-
ation-mediated silencing of HOXD10 is a frequent event in 
EC and thus this may be used to diagnose cancers and guide 
epigenetic treatment for EA and MEC.
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