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Abstract. Primary platinum‑based chemoresistance occurs in 
~30% of patients with serous ovarian cancer. Chemoresistance 
is the main cause of disease recurrence, and accurate predic-
tors to identify these patients with chemoresistance are 
required. Alternative splicing (AS) is a post‑transcriptional 
modification process that is altered in cancer. A possible 
association between AS and chemoresistance is unclear and 
needs to be studied comprehensively in ovarian cancer. In the 
present study, RNA‑sequencing data and clinical information 
for 320 patients with ovarian serous cystadenocarcinoma (OV) 
were downloaded from The Cancer Genome Atlas (TCGA) 
database. Splicing events were determined using the TCGA 
SpliceSeq tool. Seven types of AS events were identified. 
Univariate and multivariate logistic analyses were performed, 
and predictive models for OV chemoresistance were estab-
lished, as well as a splicing network. A total of 22,036 AS 
events were identified in 7,404 genes, with 915 AS events 
detected in 677 genes that were significantly associated with 
chemoresistance in patients with OV. A receiver operating 
characteristic (ROC) curve was constructed for resistance 
predictive models composed of the most significant AS events. 
The area under the ROC curve was 0.931, indicating strong 
and efficient prediction of chemoresistance. Additionally, the 
high‑risk score was associated with shorter overall survival. 
The splicing correlation network suggested a potential role of 
splicing factors in chemoresistance. In summary, the present 
study created a powerful predictor for primary platinum‑based 
chemoresistance in patients with OV, identified splicing 
networks that could be involved in potential mechanisms of 
chemoresistance and provided potential targets to overcome 
chemoresistance.

Introduction

Ovarian cancer was the fifth‑leading cause of cancer‑asso-
ciated mortality in females in 2015 in the United States, 
with 295,414 newly‑diagnosed cases globally in 2018 and 
184,799 cancer‑associated deaths globally in 2018  (1,2). 
Statistical analyses indicate that 90% of ovarian cancer 
cases are epithelial, with serous carcinoma being the most 
common pathological type with a 5‑year survival rate of 
43% (3). Conventional treatment for epithelial ovarian cancer 
involves cytoreductive surgery followed by platinum‑ and 
taxane‑based chemotherapy  (4). However, development of 
resistance to chemotherapy eventually induces recurrence 
after treatment (5). An accurate and robust predictive marker 
of chemoresistance is urgently required to improve individu-
alized treatment and enhance the prognosis and survival of 
patients with epithelial ovarian cancer. Previous studies have 
identified a number of chemoresistance‑associated biomarkers, 
such as reactive stroma signature, markers of cancer stem cells 
and miRNAs (6‑10), but they have not been used in clinical 
practice. Effective predictors of primary platinum‑based 
chemotherapy resistance would provide novel strategies for 
treating patients with epithelial ovarian cancer.

Dysregulation of genomic expression serves a critical role 
in tumorigenesis and chemoresistance in epithelial ovarian 
cancer. Previous progress in developing genomics‑based and 
precision‑targeted therapies has provided novel strategies for 
treating patients with ovarian cancer (11). However, previous 
studies have only focused on gene expression levels rather 
than investigating how alternative splicing (AS) can affect 
transcript architecture (12,13).

AS is a post‑transcriptional modification process that 
produces a variable mature mRNA transcript from a single 
gene by removing different intronic or exonic regions from 
the precursor mRNA and subsequently combining the spliced 
exons (14,15). AS generates mRNAs with different stabilities 
or coding potentials, enabling quantitative control of protein 
production and achieving distinct protein functions (16). AS 
serves crucial roles in specialized muscle functions (17), angio-
genesis  (18) and pathological processes, including hearing 
loss (19), Huntington's disease (20) and cancer (21). Emerging 
evidence suggests that AS is associated with tumorigenic 
processes, such as tumor proliferation, invasion, metastasis and 
apoptosis (22). Splicing factors perform splicing by binding 
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to pre‑mRNAs, influencing exon selection and selecting the 
splicing site (23). Splicing factors are expressed differentially 
between normal and cancerous tissues  (24,25). Therefore, 
identifying AS signature profiles and exploring splicing factors 
may reveal useful cancer biomarkers.

An analysis of AS in cancer has become possible with the 
advent of deep‑sequencing techniques that allow the discovery 
of previously unknown prognostic and therapeutic biomarkers 
for patients with cancer. Prognostic predictors based on AS 
events have been identified in patients with various types of 
cancer, including ovarian cancer  (26‑28). However, to the 
best of our knowledge, no systematic analyses of chemoresis-
tance‑associated AS in ovarian cancer have been performed, 
even though these are urgently required due to the major 
role of chemoresistance in disease recurrence. In the present 
study, The Cancer Genome Atlas (TCGA) RNA‑sequencing 
(RNA‑seq) data was used to investigate whether AS events 
could serve as predictors of primary platinum‑based 
chemotherapy resistance in serous ovarian carcinoma.

Materials and methods

Data acquisition. AS profiles were analyzed using the 
TCGA SpliceSeq tool version 1 provided by the MD 
Anderson Cancer Center (https://bioinformatics.mdanderson.
org/TCGASpliceSeq/) (29). Seven types of AS events were 
quantified using the percent spliced‑in (PSI) value: Exon 
skip (ES), alternate promoter (AP), alternate terminator (AT), 
alternative acceptor site (AA), alternate donor site (AD), 
retained intron (RI) and mutually exclusive exons (ME). 
The PSI values for the seven types of AS in ovarian serous 
cystadenoma (OV) were downloaded from TCGA SpliceSeq. 
AS events with a standard deviation >0.05 and a PSI value 
>75% were included. Clinical information for the TCGA‑OV 
cohort was obtained from the TCGA database (https://portal.
gdc.cancer.gov/projects/TCGA‑OV)  (30). Individuals who 
met the following criteria were included in the present study: 
i) Patients diagnosed with serous ovarian cancer; ii) patients 
who received platinum‑based chemotherapy; and iii) patients 
with well‑defined responses to chemotherapy. Patients without 
AS information were excluded from the present study. A total 
of 63 splicing factors and their information were obtained 
from SpliceAid 2 (31). Level three mRNA expression data of 
splicing factors were also acquired from the TCGA database.

Statistical analysis. Univariate logistic regression analyses 
were performed to assess the predictive value of AS events 
for primary platinum‑based chemotherapy resistance. 
Subsequently, the top 30 most significant AS events from 
the univariate analyses were included in multivariate logistic 
regression analyses to build prediction models for each type of 
AS event individually and for all types of AS events combined. 
The Akaike information criterion was applied to select the 
most appropriate risk model (32). The prediction accuracy of 
the risk models was evaluated by receiver operating charac-
teristic (ROC) analysis. Patients were classified into high‑ and 
low‑risk groups, with the median score as the cut‑off value. 
Kaplan‑Meier analysis and a log‑rank test were performed to 
estimate the difference in overall survival (OS) time between 
the high‑ and low‑risk groups.

Resistance‑associated splicing factor genes were identi-
fied using univariate logistic regression analysis. Pearson's 
correlation test was used to determine whether expression of 
the splicing factor genes was significantly associated with the 
PSI values of resistance‑associated AS events. The regulatory 
network map was built based on the significantly correlated 
splicing factors and AS events.

All analyses were performed using R (version  3.5.2; 
www.r‑project.org). P<0.05 was considered to indicate a 
statistically significant difference, unless otherwise specified. 
Differences in clinicopathologic parameters between chemo-
sensitive and chemoresistant groups, including age, grade, 
FIGO (International Federation of Gynecology and Obstetrics) 
stage and debulking status (33), were tested by unpaired t‑test 
or the χ2 test.

Procedures. R was used to perform the univariate and multi-
variate logistic analyses and build chemoresistance prediction 
models. UpSet plots were generated using UpSetR (version 1.4.0; 
https://cran.r‑project.org/web/packages/UpSetR/index.html). 
The pROC package (version  1.13.0; https://cran.r‑project.
org/src/contrib/Archive/pROC/) was used to create ROC 
curves and to calculate the area under the curve (AUC). The 
Functional Annotation Result Summary tool version  6.8 
(https://david.ncifcrf.gov/summary.jsp) from the Database 
for Annotation, Visualization, and Integrated Discovery 
(version 6.8) was used for Gene Ontology (GO) (http://geneon-
tology.org) analysis of the corresponding genes (34). The gene 
interaction network and correlation network were visualized 
using Cytoscape (version 3.7.1; https://cytoscape.org).

Table I. Demographic and clinical characteristics of ovarian 
serous cystadenocarcinoma cases in The Cancer Genome Atlas 
datasets involved in developing alternative splicing signatures 
to predict primary platinum‑based chemoresistance.

	 Resistance	 Sensitive
Characteristics	 cases, n	 cases, n	 P‑value

Sample number	 95	 225	
Age, years			   0.734
  <60	 56	 128	
  ≥60	 39	 97	
Stage			   0.027
  FIGO I/II	 1	 16	
  FIGO III/IV	 94	 209	
Grade			   0.788
  Low	 12	 26	
  High	 81	 194	
  Unknown	 2	 5	
Debulking status			   <0.001
  Optimal	 53	 164	
  Suboptimal	 36	 36	
  Unknown	 6	 25	

FIGO, International Federation of Gynecology and Obstetrics.
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Results

Comprehensive analysis of AS events in the OV data. The 
overall process of the present study is described in Fig. 1A. 
Integrated AS event signatures for 320 patients with OV were 
curated from the TCGA database (Table I). Seven types of AS 
events were identified, as shown in Fig. 1B. A total of 22,036 
AS events were detected in 7,404 genes, suggesting that one 
gene might have had more than one AS event. The following 
numbers of AS events were detected for each type: 8,280 ES 
events in 3,835 genes; 1,535 RI events in 1,073 genes; 4,841 AP 
events in 2,196 genes; 3,806 AT events in 1,801 genes; 1,735 
AD events in 1,291 genes; 1,741 AA events in 1,357 genes; and 
98 ME events in 96 genes (Fig. 1C). The most common type of 
AS events was ES, followed by AP and AT events.

Chemoresistance‑associated AS events in the OV data. 
The univariate logistic regression analyses of OV data from 
the TCGA database identified 915 AS events associated 
with chemotherapy resistance in patients with OV (P<0.05; 
Table SI). Among these, 151 AS events were significantly asso-
ciated with chemotherapy resistance (P<0.01; Table SII), 407 

AS events were risk factors for chemotherapy resistance [odds 
ratio (OR)>1], and 508 were protective factors for chemotherapy 
resistance (OR<1). The distribution of 677 genes involved in 
915 AS events was visualized in the UpSet plot (Fig. 2A). A 
total of 640 genes had only one type of AS event associated 
with chemoresistance, whereas 37 genes had more than one 
type of AS event associated with them. For example, ES, AA 
and AD events in GPR56 were all significantly associated with 
chemoresistance (Table SI).

GO bioinformatics analysis was performed on 677 genes 
with AS events. A total of 13 biological processes and 6 
molecular functions were identified in the GO analysis 
(P<0.01; Fig. 2B). These genes were found to be significantly 
associated with ‘protein binding’ and ‘negative regulation of 
transcription from RNA polymerase II promoter’. The gene 
interaction network analysis for these 677 genes revealed a hub 
that included RHOA, POLR2G, RPS9, DYNLL1 and RPL13A 
(the top 5 genes with higher degree of connectivity) (Fig. 2C).

Chemoresistance predictors for patients with OV. The top 
30 most significant events for each AS type (except for ME, 
which had only 6 events) and for all types of AS events were 

Figure 1. Overview of the seven types of AS. (A) Flowchart of the present study. (B) Illustrations of the seven types of AS events, including AA, AD, AP, AT, 
ES, ME and RI. (C) Number of AS events and involved genes from 320 patients with OV. AS, alternative splicing; OV, ovarian serous cystadenocarcinoma; AA, 
alternate acceptor site; AD, alternate donor site; AP, alternate promoter; AT, alternate terminator; ES, exon skip; ME, mutually exclusive exons; RI, retained 
intron; TCGA, The Cancer Genome Atlas; GO, Gene Ontology; ROC, receiver operating characteristic; AUC, area under the curve.
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selected as candidates to identify the independent predictive 
model for chemoresistance in OV (Table SIII). Multivariate 
logistic regression analysis was performed for the 30 candi-
date events for each AS type and for all AS types combined, 
and the Akaike information criterion was used to select the 
most appropriate risk model (32). The predictive models are 
presented in Table II. The median score was used as the cut‑off 
value, the patients were divided into high‑ and low‑risk groups, 

and the OR for each model was calculated. ROC curves were 
generated and the AUCs were determined to evaluate the effec-
tiveness of the chemoresistance predictive models. The seven 
predictors that were built using the seven types of AS events 
displayed considerable power in distinguishing the chemo-
therapy response of patients with OV. The model based on 
ES events was the most effective predictor among the models 
based on each type of AS event, with an AUC of 0.894 (Fig. 3). 

Table II. General characteristics of chemoresistance predictors for ovarian cancer.

Alternative		  OR (95% CI) 
splicing	 Formula	 (High vs. low)

AA	 25.108023‑4.442929*‘TSACC‑8246‑AA’+3.315118*	 7.14 (3.65‑14.85)
	 ‘FAM111A‑16027‑AA’‑5.747130*‘SERPINA1‑29121‑AA’‑7.858303*
	 ‘TNK1‑38931‑AA’‑10.248344*‘USHBP1‑48249‑AA’‑11.439197*
	 ‘DNAAF3‑52039‑AA’‑11.843241*‘POLM‑79455‑AA’
AD	 ‑12.309890‑6.338744*‘RNF220‑2559‑AD’‑9.644038*‘GBP3‑3711‑AD’	 9.55 (5.18‑18.71)
	 +4.0052598*‘CLEC16A‑34006‑AD’+9.383993*‘GPR56‑36585‑AD’
	 +14.723866*‘TADA2A‑40522‑AD’+3.932024*‘YIF1B‑49610‑AD’
	 +7.967860*‘YBEY‑60918‑AD’+5.746687*‘ZSCAN25‑80706‑AD’
AP	 8.898032‑4.064766*‘ANGEL2‑9775‑AP’‑3.745283*	 6.68 (4.06‑11.41)
	 ‘KIAA0391‑27213‑AP’+2.045282*‘PPP1R13L‑50435‑AP’‑9.158386*
	 ‘FAM110A‑58466‑AP’‑5.969009*‘RBM47‑69086‑AP’‑6.474537*
	 ‘MYO10‑71601‑AP’‑5.998058*‘NUDT1‑78608‑AP’+2.415810*
	 ‘MID1‑88461‑AP’
AT	 1.333149+1.932604*‘FPGT‑TNNI3K‑3457‑AT’+6.408309*	 11.95 (6.78‑22.31)
	 ‘ADAMTSL4‑7486‑AT’‑6.490989*‘TMEM180‑12952‑AT’+3.711496*
	 ‘CSTF3‑14883‑AT’‑5.673945*‘KLC1‑29468‑AT’+4.2497568*
	 ‘JUP‑40930‑AT’‑4.365262*‘ZNF544‑52425‑AT’‑5.382822*
	 ‘RAPH1‑57077‑AT’+1.901203*‘KRBOX1‑64325‑AT’‑3.998685*	
	 ‘ST3GAL6‑65794‑AT’
ES	 8.884081+12.456874*‘BTAF1‑12524‑ES’+3.040003*‘SPAG9‑42494‑ES’	 22.05 (10.31‑54.59)
	 +6.529384*‘GAA‑44021‑ES’‑6.241932*‘RBM6‑64950‑ES’‑5.268264*
	 ‘SLC10A7‑70775‑ES’+6.110066*‘TRAPPC13‑72245‑ES’‑6.730836*
	 ‘PNISR‑77056‑ES’‑4.439848*‘PEX2‑84241‑ES’‑5.337279*
	 ‘EEF1D‑98099‑ES’‑12.321102*‘COL1A2‑1412008‑ES’
ME	 ‑2.554826+2.383275*‘ATE1‑91855‑ME’+2.300138*‘GOLT1B‑92984‑ME’	 2.13 (1.36‑3.35)
	 +5.824629*‘RAB28‑265743‑ME’
RI	‑ 14.038586+3.701273*‘POLR2G‑16420‑RI’+11.008279*‘GLG1‑37565‑RI’	 10.23 (5.52‑20.39)
	‑ 5.099955*‘C17orf58‑43119‑RI’+3.088192*‘CDKN2D‑47553‑RI’‑4.112494*
	 ‘UNC50‑54643‑RI’‑10.031071*‘ID1‑58896‑RI’‑7.797206*‘HOPX‑69372‑RI’
	‑ 1.959239*‘TTC23L‑71732‑RI’+4.305603*‘SOD2‑78304‑RI’+3.626741*
	 ‘PILRB‑80936‑RI’+2.983951*‘VPS28‑85606‑RI’
All	 14.333930‑8.697005*‘SERPINA1‑29121‑AA’+5.713988*‘SMIM7‑48190‑AD’‑	 64.88 (22.55‑284.86)
	 9.355225*‘TRAPPC6B‑27360‑ES’+9.130642*‘GAA‑44021‑ES’‑2.458800*
	 ‘PDE4D‑72144‑AP’‑5.978179*‘RBM6‑64950‑ES’‑4.543145*
	 ‘SLC10A7‑70775‑ES’+11.331974*‘TRAPPC13‑72245‑ES’‑5.850540*
	 ‘FAM49B‑85160‑ES’‑6.577849*‘EEF1D‑98099‑ES’+5.275202*
	 ‘CLEC16A‑34006‑AD’‑11.452096*‘COL1A2‑1412008‑ES’‑8.721743*
	 ‘ZNF544‑52425‑AT’

OR, odds ratio; AA, alternate acceptor site; AD, alternate donor site; AP, alternate promoter; AT, alternate terminator; ES, exon skip; 
ME, mutually exclusive exons; RI, retained intron.
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Figure 2. UpSet plot, GO analysis and gene network of chemoresistance‑associated AS in OV. (A) UpSet plot of interactions between the seven types of chemo-
resistance‑associated AS events in OV. (B) GO analysis of chemoresistance‑associated AS events in OV. (C) Gene network of chemoresistance‑associated AS 
in OV generated by Cytoscape. AS, alternative splicing; OV, ovarian serous cystadenocarcinoma; AA, alternate acceptor site; AD, alternate donor site; AP, 
alternate promoter; AT, alternate terminator; ES, exon skip; ME, mutually exclusive exons; RI, retained intron; GO, Gene Ontology; BP, biological process; 
MF, molecular function. 
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The model based on all types of AS events exhibited the best 
efficiency with an AUC of 0.931. The information for AS event 
candidates involved in this model is presented in Table III. 
This model was utilized in univariate and multivariate logistic 
analyses of chemotherapy resistance together with common 
clinical characteristics. A high‑risk score was an independent 
risk factor for chemoresistance (Table IV).

To verify the prognostic value of these predictive models, 
Kaplan‑Meier analysis and log‑rank tests were performed 
for each model. The results indicated that the patients in the 
high‑risk groups in risk models based on AP, ES, RI and all 
types of AS events had shorter survival time compared with 
patients in the low‑risk groups (Fig. 4). In the risk model based 
on all types of AS events, the median OS time for the high‑ 
and low‑risk groups were 1,341 and 1,875 days, respectively 
(Fig. 4H).

Potential correlation network of AS splicing factors. AS 
is regulated primarily by splicing factors. Therefore, it is 
crucial to determine whether key splicing factors regulate 
chemoresistance‑associated AS events in OV. Univariate 
logistic analyses revealed that the mRNA expression levels 
of five splicing factors were associated with chemoresistance. 
Information of these splicing factors was obtained from 
SpliceAid2 and was shown in Table V. Subsequently, corre-
lation analyses of the expression levels of the five splicing 
factors and the PSI values of 151 AS events were performed 
(P<0.01 in univariate analyses). A splicing correlation 
network was generated from the significant correlations 
(P<0.05; Fig. 5A) between 70 chemoresistance‑associated 
AS events, including 38 protective and 32 adverse AS events, 
and the 5 splicing factors. Most of the protective AS events 
were positively correlated with the expression of splicing 
factors, such as AP PSI value of SH3YL1 with expression of 
PTBP1, AD PSI value of RPL15 with expression of YBX1, 
AP PSI value of CLUL1 with expression of SYNCRIP. Most 
of the adverse AS events were negatively correlated with 
the expression of splicing factors, such as AT PSI value of 
UBAP2L with expression of TRA2B, ES PSI value of RPS24 
with expression of SYNCRIP, ES PSI value of RHOA with 
expression of ELAVL4. Representative correlations between 
AS events and splicing factors are shown in the dot plots 
(Fig. 5B‑G).

Figure 3. ROC curves with AUCs of chemoresistance predictors built by one 
type or all seven types of AS events in ovarian serous cystadenocarcinoma. 
AS, alternative splicing; ROC, receiver operating characteristic; AUC, area 
under the curve; AA, alternate acceptor site; AD, alternate donor site; AP, 
alternate promoter; AT, alternate terminator; ES, exon skip; ME, mutually 
exclusive exons; RI, retained intron.

Table III. Information for AS event candidates involved in the model based on all types of AS events.

Gene	 OR (95% CI)	 P‑value	 Type	 Exon

SMIM7	 41.5291 (8.0671‑228.7526)	 0.00024	 AD	 7.2
COL1A2	 0.0043 (0.0003‑0.0549)	 0.00061	 ES	 23:24:25:26:27:28:29:30:31:32:33:34:35:36:37:45:46:47
GAA	 130.2634 (13.7266‑1,594.0712)	 0.00075	 ES	 2.2
EEF1D	 0.0247 (0.0035‑0.1586)	 0.00133	 ES	 6
ZNF544	 0.0508 (0.0107‑0.2331)	 0.00142	 AT	 10.2
SLC10A7	 0.0916 (0.0257‑0.3090)	 0.00151	 ES	 13
FAM49B	 0.0373 (0.0064‑0.2078)	 0.00186	 ES	 5
RBM6	 0.0705 (0.0163‑0.2871)	 0.00233	 ES	 4:05:06
TRAPPC6B	 0.0109 (0.0009‑0.1213)	 0.00235	 ES	 4
CLEC16A	 10.9329 (3.0549‑40.9032)	 0.00237	 AD	 11.2
PDE4D	 0.3015 (0.1554‑0.5813)	 0.00274	 AP	 1
TRAPPC13	 25.9213 (4.4025‑167.8280)	 0.00322	 ES	 9
SERPINA1	 0.03190 (0.0043‑0.2147)	 0.00357	 AA	 2.4

OR, odds ratio; AA, alternate acceptor site; AD, alternate donor site; AP, alternate promoter; AT, alternate terminator; ES, exon skip; AS, 
alternative splicing.
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Discussion

Previous studies have focused on the function of single AS events 
associated with ovarian cancer. Elevated expression of gluta-
thione‑specific γ‑glutamylcyclotransferase splicing variants has 
been related to poor outcomes in ovarian cancer (35). Researchers 
have also found that an increased level of the mesenchymal 
spliced variant CD44s and reduced expression of the epithelial 
variant CD44v promotes epithelial‑mesenchymal transition 
and invasion of ovarian cancer cells (36). A splice variant of 
the tetraspanin KAI1 mitigates its tumor‑suppressive function, 
inducing cell migration and resulting in poor prognosis (37). 
Chemotherapy sensitivity is the main factor influencing survival 
in serous ovarian cancer (38). However, to the best of our knowl-
edge, only a few studies have investigated the potential role of 
AS events in chemotherapy resistance of ovarian cancer (39,40). 
AS events of the multidrug resistance‑associated protein 1 gene 
in ovarian tumors have been reported to confer resistance to 
doxorubicin therapy (39). Overexpression of the VIII‑deficient 
excision repair cross‑complementing group 1 (ERCC1) exon is 
able to enhance cisplatin sensitivity in ovarian cancer cell lines 
by reducing the protein expression levels of ERCC1 (40). The 
present study demonstrated that the ES event of the ERCC1 
gene was a protective factor for chemotherapy resistance, with 
an OR of 0.069 and a 95% CI of 0.008‑0.638 (Table SI), indi-
cating that these results are consistent with the aforementioned 
study. Hence, these studies demonstrated the potential role of 
AS in chemotherapy resistance of OV, and further systematic 
studies of AS signatures in OV may help to identify potential 
biomarkers and targets for chemoresistance.

The present study systemically analyzed the role of 
AS signatures in chemotherapy resistance using data from 

320 patients with OV from the TCGA database, and then built 
powerful resistance predictors. A total of 22,036 AS events 
were detected in 7,404 genes. Approximately 38% of the AS 
events were ES, and the risk model based on ES events exhib-
ited high efficiency. ES events can be validated by PCR. Thus, 
future research should investigate associations between ES 
events and chemotherapy resistance in more detail. The predic-
tive model based on all types of AS had the best efficiency, 
with the AUC of the ROC curve reaching 0.931. This was 
much higher than the AUC for models based on a single type 
of AS and was more efficient than previous predictors based 
on single mRNA expression (AUC, 0.8056) (41), the lncRNA 
signature (AUC, 0.83) (42) or the clinical serum CA125/ascites 
leptin (AUC, 0.846) (43). These combined results suggest that 
this model could provide accurate predictions of chemotherapy 
resistance in patients with OV.

Additionally, the present study investigated the poten-
tial role of splicing factors in chemotherapy resistance. 
Five splicing factors were associated with chemotherapy 
resistance, and their possible targets were identified. These 
results suggested that splicing factors were involved in 
chemotherapy resistance in patients with serous ovarian 
cancer. Further work is required to determine whether 
regulation of these specific splicing factors could increase 
the sensitivity to chemotherapy and prevent disease recurrence.

The present study presented some limitations. The present 
study was based on RNA‑seq data from the TCGA database. 
Validation using other databases or larger cohorts is required 
in future studies. Numerous splicing events and splicing 
factors that may be associated with the biological behavior of 
OV were identified and should be further evaluated in future 
experimental studies.

Table IV. Univariate and multivariate logistic regression analyses for chemoresistance in The Cancer Genome Atlas datasets.

	 Univariate	 Multivariate
	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ 
Characteristics	 OR	 95% CI	 P‑value	 OR	 95% CI	 P‑value

Age, years						    
  <60	 1 (reference)			   1 (reference)		
  ≥60	 0.90	 0.52‑1.53	 0.741	 1.72	 0.77‑3.91	 0.270
Stage						    
  FIGO I/II	 1 (reference)			   1 (reference)		
  FIGO III/IV	 4.10	 0.94‑41.14	 0.186	 inf	 0‑inf	 0.989
Grade						    
  Low	 1 (reference)			   1 (reference)		
  High	 0.99	 0.43‑2.42	 0.978	 0.37	 0.06‑1.61	 0.290
Debulking status						    
  Optimal	 1 (reference)			   1 (reference)		
  Suboptimal	 2.53	 1.38‑4.63	 0.012	 5.13	 2.01‑15.21	 0.007
Risk score						    
  Low	 1 (reference)			   1 (reference)		
  High	 64.88	 22.55‑284.86	 <0.001	 192.07	 41.20‑2087.85	 <0.001

FIGO, International Federation of Gynecology and Obstetrics; OR, odds ratio; inf, infinity.
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In summary, the present study determined that AS events 
provided valuable predictors for chemotherapy resistance. The 
model used provided efficient risk stratification for predicting 
chemotherapy resistance in patients with OV. A splicing correla-
tion network was generated to explore the potential relationship 

between splicing factors and AS. A number of valuable targets 
were identified for future validation. The present study 
elucidated the role of AS events in primary platinum‑based 
chemoresistance in patients with serous ovarian cancer and 
provided potential targets to overcome chemoresistance.

Table V. Information for splicing factors in the correlation network from SpliceAid 2. 

	 Gene		  Expression in	 Expression in
Splicing factors	 names	 Descriptions	 normal ovary tissue	 ovarian cancer

hnRNP I (PTB)	 PTBP1	 Polypyrimidine tract binding 	 P(3)_M(4)	 H(1)_M(4)_L(5)
		  protein 1. In the context of CALCA
		  gene, PTB enhances exon 4 inclusion
		  (PMID:9858533). nPTB functionally
		  compensates for PTB and is upregulated
		  when PTB is removed (PMID:17679092).
HTra2beta1	 TRA2B	 Splicing factor arginine/serine‑rich 10. 	 P(3)_L(4)	 H(1)_M(4)_L(5)
HuD	 ELAVL4	 Embryonic lethal abnormal vision  	 A(4)	 A(1)_L(4)_A(5)
		  Drosophila‑like 4 (Hu antigen D).
YB‑1	 YBX1	 Y box binding protein 1. 	 P(3)_M(4)	 H(1)_M(4)_M(5)
hnRNP Q	 SYNCRIP	 Synaptotagmin binding cytoplasmic 	 P(3)_M(4)	 M(1)_M(4)_L(5)
		  RNA interacting protein. 

(1) Human Protein Atlas; (2) Human Protein Reference Database; (3) Human Proteinpedia; (4) Human Transcriptome Map; (5) Cancer Genome 
Anatomy Project. A, absent; L, low; M, medium; H, high; P, present. 

Figure 4. Kaplan‑Meier plots of chemoresistance predictors for patients with OV. (A) Kaplan‑Meier curves of chemoresistance predictors built with AA 
events for patients with OV. (B) Kaplan‑Meier curves of chemoresistance predictors built with AD events for patients with OV. (C) Kaplan‑Meier curves of 
chemoresistance predictors built with AP events for patients with OV. (D) Kaplan‑Meier curves of chemoresistance predictors built with AT events for patients 
with OV. (E) Kaplan‑Meier curves of chemoresistance predictors built with ES events for patients with OV. (F) Kaplan‑Meier curves of chemoresistance 
predictors built with ME events for patients with OV. (G) Kaplan‑Meier curves of chemoresistance predictors built with RI events for patients with OV. 
(H) Kaplan‑Meier curves of the chemoresistance predictor built with all types of AS events for patients with OV. AS, alternative splicing; OV, ovarian serous 
cystadenocarcinoma; AA, alternate acceptor site; AD, alternate donor site; AP, alternate promoter; AT, alternate terminator; ES, exon skip; ME, mutually 
exclusive exons; RI, retained intron.
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Figure 5. Splicing correlation network in OV. (A) Expression of five survival‑associated splicing factors (blue circles) was positively (red lines) or negatively 
(green lines) correlated with the PSI values of 38 favorable (green circles) or 32 adverse prognosis AS events (red circles). (B) AT PSI value of UBAP2L was 
negatively correlated with expression of TRA2B. (C) ES PSI value of RPS24 was negatively correlated with expression of SYNCRIP. (D) AP PSI value of 
SH3YL1 was positively correlated with expression of PTBP1. (E) AD PSI value of RPL15 was positively correlated with expression of YBX1. (F) ES PSI value 
of RHOA was negatively correlated with expression of ELAVL4. (G) AP PSI value of CLUL1 was positively correlated with expression of SYNCRIP. P<0.05. 
AS, alternative splicing; OV, ovarian serous cystadenocarcinoma; PSI, percent spliced‑in.
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