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Abstract. Ionizing radiation (IR) is an important cancer 
treatment approach. However, radioresistance eventually 
occurs, resulting in poor outcomes in patients with cancer. 
Radioresistance is associated with multiple signaling pathways, 
particularly pro-survival signaling pathways. The extracellular 
signal-regulated kinase 1/2 (ERK1/2) cascade is an important 
signaling pathway that initiates several cellular processes 
and is regulated by various stimuli, including IR. Although 
numerous studies have demonstrated the pro-survival effects 
of active ERK, activation of ERK has also been associated 
with cell death, indicating that radiosensitization may occur by 
ERK stimulation. In this context, the present review describes 
the associations between ERK signaling, cancer and IR, and 
discusses the association between ERK and its pro-survival 
function in cancer cells, including stimuli, molecular mecha-
nisms, clinical use of inhibitors and underlying limitations. 
Additionally, the present review introduces the view that active 
ERK may induce cell death, and describes the potential factors 
associated with this process. This review describes the various 
outcomes induced by active ERK to prompt future studies to 
aim to enhance radiosensitivity in the treatment of cancer.
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1. Introduction

Ionizing radiation (IR) serves an essential role in modern 
cancer management due to its unique advantages, including 
non-invasiveness and a lack of intense systemic toxicity (1). 
As an integral component of adjuvant and palliative treat-
ment strategies for primary and advanced/metastatic tumors, 
respectively, radiation therapy (RT) is administered for the 
management of nearly two-thirds of all types of cancer, 
including cancer of the prostate, cervix, bladder, head and 
neck, breast, lung, brain, pancreas and skin, anorectal cancer, 
and soft-tissue sarcomas (2). Although RT has demonstrated 
various degrees of success, recurrence and treatment failure 
may occur in patients due to intrinsic or external radiore-
sistance (3). Therefore, strategies are urgently required for 
enhancing radiosensitivity in the treatment of cancer. Targeted 
molecular therapy has gained increasing attention for evalu-
ating the effect of IR on targets of specific cancer‑associated 
signaling pathways. Numerous preclinical and clinical studies 
have demonstrated that combination therapies using radiation 
and targeted molecular agents improve tumor response rates 
and clinical outcomes (4-6). Five potential therapy mecha-
nisms have been described: i) Spatial cooperation; ii) temporal 
modulation; iii) biological cooperation; iv) cytotoxic enhance-
ment; and v) normal tissue protection (7). Among the numerous 
signaling molecules, extracellular signal-regulated kinase 
(ERK) is one of the most important.

The ERK cascade functions as a crucial intermediary in 
intracellular signal transduction networks to transmit signals 
from extracellular stimuli, such as growth factors, hormones 
and neurotransmitters, among others (8). Increasing evidence 
indicates that activation of ERK induces cell proliferation and 
confers a survival advantage on cells, giving it a major role 
in human cancer (9). Therefore, pharmaceutical inhibitors 
targeting one of the common signals, the RAS/RAF/MEK/ERK 
signaling pathway, have been developed to improve the 
clinical outcomes of patients with cancer (6,10). However, 
even when tumors exhibit a positive primary response to these 
inhibitors, poor therapeutic effects may result from acquired 
resistance (11). Additionally, the mechanisms of resistance to 
ERK1/2 pathway inhibitors are unknown. Some studies have 
demonstrated that ERK activation leads to non-prosurvival 
effects in cancer cells (12-15). Particularly, active ERK may 
lead to cell death under different circumstances, such as loca-
tion of ERK and time and extent of active ERK, which may 
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result in radiosensitization in human cancer (4,5). Therefore, 
the true effect of ERK must be clarified before combining 
RT and ERK inhibitors for cancer treatment. In the current 
review, the dual effects of activated ERK on cancer cells and 
their respective potential mechanisms are summarized. The 
ways in which active ERK induces cell survival are described, 
including the molecular mechanisms, clinical use and limita-
tions. Additionally, the association between ERK activation 
and cell death is described, as well as the influence of ERK on 
the response to IR in cancer cells. The present review provides 
a foundation for developing cancer therapies targeting the 
function of ERK.

2. ERK and cancer

ERKs belong to the family of mitogen-activated protein kinases 
(MAPKs), which also includes ERK5, c-JunNH2-terminal 
kinase and p38 MAPK (15). The present review focuses on 
ERKs, which include two isoforms, ERK1 and ERK2 (also 
known as p44 and p42 MAPK, respectively). Generally, 
ERK activation may occur in two ways; activated-ERK is 
associated with the autocrine/paracrine signaling of mito-
genic growth factors through tyrosine kinase receptors, 
such as the epidermal growth factor receptor (EGFR), the 
insulin-like growth factor receptor or c-MET, induced by 
various stimuli (16). Additionally, ERK activation may occur 
as a result of abnormal activation or genetic alterations in 
its upstream signaling molecules, such as RAS, RAF and 
MEK1/2 (17). The RAS/RAF/MEK/ERK cascade is the 
typical signaling pathway following the three-stage enzy-
matic cascade of MAPKs (18). In this pathway, growth and 
survival factors activate RAS GTPases by promoting the 
release of GDP to allow GTP binding. Active RAS-GTP then 
binds to one of the RAF protein kinases, ARAF, BRAF or 
CRAF (also known as MAPK3K), resulting in their activation. 
Subsequently, RAF phosphorylates and activates MEK1/2 
(also known as MAP2K1/2), which in turn phosphorylate and 
activate ERK1/2 (19). Once activated, ERK1/2 can regulate 
~250 potential substrates, including transcription factors, 
protein kinases and phosphatases, cytoskeletal elements, regu-
lators of apoptosis and a variety of other signaling-associated 
molecules (20,21). Activated-ERK can lead to various physi-
ological responses, as shown in Fig. 1 (22).

Under normal conditions, ERK signaling is regulated by 
feedback loops at multiple levels, which are essential for regu-
lating cell growth and homeostasis. However, under abnormal 
circumstances, activated ERK may lead to various pathological 
changes (23), including tumorigenesis (24), diabetic nephrop-
athy (25), viral infection (26), cardiovascular disease (27) 
and Alzheimer's disease (28). Nearly one-third of all types of 
cancer, including melanoma, uveal melanoma, and pancreatic, 
non-small cell lung, colorectal, basal-like breast and hepatic 
cancer, involve deregulated ERK (9). Hoshino et al (29) 
revealed that ERK was constitutively active in ~50 tumor cell 
lines (36.2%) in a tissue‑specific manner; cell lines derived 
from the pancreas, colon, lung, ovary and kidney exhibited high 
frequencies of constitutive ERK activation, while those derived 
from the brain, esophagus, stomach and liver, and those of 
hematopoietic origin, exhibited low frequencies with a limited 
degree of ERK activation. Additionally, other stimuli, such 

as IR and chemotherapy drugs, can activate ERK and affect 
the efficacy of cancer therapy, with some exceptions (11,30). 
For example, Corn et al (31) observed that phosphorylated 
ERK-positive cancer cells became ERK-negative after RT in 
colorectal cancer. Overall, active ERK seems to be closely 
associated with the onset, development, invasion, metastasis 
and therapy-resistance of most types of tumor.

3. ERK and irradiated cancer cells

IR is known to induce cell toxicity by damaging biological 
molecules directly and indirectly. High-linear energy transfer 
(LET) radiation, such as α particles and neutrons, directly 
ionizes cellular macromolecules, including DNA, RNA, 
lipids and proteins, while low-LET radiation, such as X-rays 
and γ-rays, indirectly damages biological macromolecules by 
generating reactive oxygen species, such as superoxide and 
hydroxide radicals (32). Indirect DNA damage from free radi-
cals accounts for ~65% of radiation-induced DNA damage, 
which is characterized by both single- and double-stranded 
breaks (DSBs) in DNA, with the latter being more lethal than 
the former (30).

IR or DNA damage are important stimuli that can activate 
ERK, one of the most crucial signaling pathways (33,34). 
Notably, IR induces phosphorylation of ERK in a time-depen-
dent manner; activation of ERK1/2 appears as early as 15 min 
after IR, with maximum activation observed after 24 h (35,36). 
The extent of ERK activation by radiation varies. For example, 
intense ERK activity is typically induced by low doses of radia-
tion (1 Gy) rather than by high doses (6 Gy) (37). Additionally, 
IR can induce numerous other signaling pathways within cells, 
including EGFR, PI3K/AKT/mTOR and cell cycle checkpoint 
signaling pathways (38-40). These pathways in turn activate 
ERK and are upstream molecules of ERK (41). For example, 
Sambade et al (42) observed that activation of ERK1/2 by 
EGFR typically occurred at a later phase (60 and 90 min) 
rather than an early phase (15 and 30 min) after radiation.

Once activated, ERK participates in cell proliferation and 
survival through a variety of mechanisms that affect the radio-
sensitivity of tumor cells. In general, activated ERK protects 
tumor cells from radiation-induced death in numerous ways. 
Park et al (43) determined that ionizing radiation-induced 
MAPK can activate the progression elevated gene 3 promoter, 
thereby increasing the expression levels of vascular endo-
thelial growth factor (VEGF) protein in glioblastoma. 
VEGF promotes tumor angiogenesis and is associated with 
endothelial radiosensitization (3). Similarly, activated ERK 
increases RAD51 expression in pancreatic cancer cells (44), 
which promotes homologous DNA repair, leading to RT 
resistance (45). In addition, a recent study determined that 
γ-ray irradiation alone can increase cell migration in vitro, 
which is mainly achieved by activating the EGFR/ERK/AKT 
signaling pathway and increasing the expression of nuclear 
factor γB (NFγB) (46). After pretreatment with olaparib, a 
poly(ADP-ribose) polymerase inhibitor, activation of the 
EGFR/ERK/AKT signaling pathway induced by γ-rays was 
inhibited, thereby reducing the metastatic capacity of tumor 
cells (46). However, some studies have found that activated 
ERK can promote RT-induced cell death, thereby increasing 
radiosensitivity (47). The mechanisms involved in this process 
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mainly include abrogating radiation-induced G2/M arrest, 
apoptosis and autophagy (47-49). Therefore, activated ERK 
serves various roles in cancer cells, and the functions of acti-
vated ERK1/2 are influenced by numerous factors, including 
cell type, location of ERK, and time and extent of active 
ERK (5). The present review discusses two opposite outcomes 
of ERK activation: Pro-survival and pro-death.

Improvement in radiosensitivity by ERK inhibition. As afore-
mentioned, radiation can induce rapid activation of ERK in 
various cancer cell types (50). A study has demonstrated that 
activated ERK protects cancer cells from the cytotoxic effects 
of radiation (51). ERKs promote cell survival in various ways, 
including via the inhibition of apoptosis, the induction of DNA 
damage repair and the arrest of the cell cycle.

Apoptosis, or programmed cell death type I, is an 
essential process leading to the removal of damaged cells 
without affecting normal cells, following DNA damage or 
during development (52). Apoptosis can be triggered by the 
caspase-mediated intrinsic signaling pathway, which is mainly 
regulated by the B-cell lymphoma 2 (Bcl-2) family of intracel-
lular proteins, or by an extrinsic signaling pathway, which is 
closely regulated by the tumor necrosis factor (TNF) receptor 
family (53,54). Deregulation of apoptosis is associated with 
uncontrolled cell proliferation, cell growth, progression 
of cancer and cancer resistance to drug therapies (55,56). 
Therefore, apoptosis deregulation is considered a hallmark 
of cancer (55). Two types of proteins determine the cellular 
outcome: Pro-apoptotic proteins, such as Bcl-10, Bak, Bid, 
BAG, Bax, Blk, Bad and Bim, and anti-apoptotic proteins, such 
as Bcl-2, Bcl-x, Bcl-XS, Bcl-xl, Bcl-w, IAP and Mcl-1 (56). 
ERK activation induced by IR can activate various substrates, 
which transmit the signaling of ERK to apoptosis-associated 
proteins; common substrates include transcription factors, 

such as nuclear factor erythroid 2-related factor 2 (NRF2), 
cyclic AMP-responsive element binding protein (CREB) 
and CAAT/enhancer binding protein β (C/EBP-β) (57,58). 
Chen et al (57) observed that radiation-induced ERK1/2 
phosphorylation increased NRF2 expression in osteosarcoma 
U-2 cells; activation of NRF2 served a radioprotective role by 
stimulating Bcl-2 and p65 expression, while inhibiting Bax and 
p53 expression. Similarly, ERK1/2 can induce Bcl-xl, Mcl-1 
and c-FLIPs expression via CREB and C/EBP-β activated by 
ERK1/2 (38). Additionally, ERK is able to activate the NFγB1 
dimer, a crucial regulator of anti-apoptotic genes, including 
genes encoding inhibitors of apoptotic proteins and members 
of the Bcl-2 family (59). Furthermore, ERK can directly 
stimulate Bid and Bim (38). Therefore, ERK1/2 is associated 
with apoptosis and can protect against cell death mainly by 
increasing or decreasing levels of anti- and pro-apoptotic 
proteins, respectively.

DNA damage repair is essential in the cancer cell response 
to IR and includes at least five main processes: Base excision 
repair, nucleotide excision repair, mismatch repair, homolo-
gous recombination (HR) repair and non-homologous end 
joining (NHEJ) (60). HR and NHEJ, the major repair path-
ways for DNA DSBs and closely associated with ERK (61), 
are mainly regulated by PI3K-like kinases, including ataxia 
telangiectasia mutated (ATM), RAD3-related protein 
(ATR) and DNA-dependent protein kinase (DNA-PK) (62). 
Additionally, DNA DSB repair is modulated directly or indi-
rectly by other means, such as EGFR and the ERK axis (63). 
ERKs can directly activate ATM or DNA-PK, which mainly 
participate in NHEJ-mediated DSB repair (4). Furthermore, 
ERK can activate ATR followed by cell cycle arrest (22). 
Additionally, activation of ERK induced by IR has been 
associated with increased levels of transcriptional proteins 
(such as ERCC1 and XRCC1) involved in DNA repair in 
DU145 and LNCaP prostate carcinoma (64,65). However, in 
one study, radiation-induced ERK activation was affected 
by the extent or scope of DSB: Low-level DSBs (equivalent 
to 2 Gy) resulted in ERK activation, while high-level DSBs 
(>2 Gy) led to phosphatase-mediated ERK dephosphorylation 
and subsequent suppression of the ERK signaling pathway (4). 
Therefore, activation of ATM or ATR by activated ERK may 
depend on the radiation dose. Overall, ERK seems to be asso-
ciated with DNA repair to protect against cell death.

Cell cycle arrest, which is governed by cell cycle check-
point-associated proteins, such as cell cycle proteins (cyclins) 
and cyclin-dependent kinases, can maintain gene stability by 
blocking cell cycle progression and initiating processes to 
repair the detected damage (66). Some studies have demon-
strated that ERK1/2 pathway activation following IR or DNA 
damage is critical for the activation of cell cycle checkpoints in 
response to radiation cytotoxicity; these studies confirmed that 
phosphorylation of ERK1/2 is a prerequisite for inducing ATR 
expression, which can activate Wee1 and checkpoint kinase 1 
as key regulators of the G2/M checkpoint (67,68). Additionally, 
one study indicated that expression of basal breast cancer type 1 
susceptibility protein (BRCA1) tumor suppressor is necessary 
for IR-induced activation of ERK, followed by G2/M arrest, 
in MCF-7 cells (69). Therefore, ERK is associated with key 
cell cycle checkpoint proteins to induce cell cycle arrest, and 
serves a protective role in response to radiation cytotoxicity.

Figure 1. ERK signaling. The ERK signaling pathway can be stimulated by 
ionizing radiation via growth factor and EGFR. Active ERK participates 
in various cellular processes, such as apoptosis, DNA repair, cell cycle, 
autophagy and senescence. IR, ionizing radiation; GF, growth factor; 
EGF, epidermal GF; MEK1/2, mitogen-activated protein kinase 1/2; ERK, 
extracellular signal-regulated kinase 1/2; EGFR, epidermal growth factor 
receptor.



LU et al:  DUAL EFFECTS OF ACTIVE ERK ON RADIOSENSITIVITY996

Previous studies have demonstrated that ERK signaling 
serves a radioprotective role in cancer therapy and contrib-
utes to radioresistance (9,29,70). Therefore, inhibition of the 
ERK signaling pathway may provide a valuable approach to 
increase the radiosensitivity of cancer cells in response to IR. 
Various inhibitors for suppressing ERK signaling have been 
tested in preclinical and clinical investigations, including 
RAF inhibitors (vemurafenib, dabrafenib, LGX818, TAK-632, 
MLN2480 and PLX-4720), MEK inhibitors (trametinib, 
cobimetinib, MEK162, AZD6244, RO5126766, GDC-0623 
and PD0325901) and ERK inhibitors (SCH772984, VTX11e 
and GDC-0994) (10,11,71,72). Radiation in combination 
with RAF and MEK inhibitors has been widely tested 
in vitro and in vivo for multiple types of cancer cells and 
various biological mechanisms (73). Estrada-Bernal et al (74) 
demonstrated that GSK212, a MEK1/2 inhibitor, downregu-
lates several intermediates of DSB repair signaling, including 
BRCA1, RAD51, DNA-PK and PPM2, in irradiated pancreatic 
cancer cells, and suppresses DSB damage repair, particularly 
through HR repair pathways. Similar results were obtained 
by Marampon et al (75) using another MEK1/2 inhibitor, 
U0126, which reduced DNA-PK expression induced by IR. 
Furthermore, radiosensitization induced by a MEK inhibitor, 
AZD6244, was associated with a decreased cell cycle check-
point response and increased mitotic catastrophe compared 
with no inhibitor present; in these in vitro and in vivo experi-
ments, an apparent growth delay in xenografts of A549 cancer 
cells was observed after AZD6244 was combined with irradia-
tion, compared with treatment by irradiation alone. Notably, 
the DNA repair pathway did not differ between the combined 
model and each treatment alone, which may be attributable 
to differences in molecular structure. A study observed that 
ERK inhibitors sensitized cancer cells to irradiation by down-
regulating specific molecules, such as transforming growth 
factor-α and TNF-α converting enzyme, which can stimu-
late a radioresistance mechanism by activating EGFR after 
inhibiting mutant RAS (76). Therefore, ERK inhibitors may 
increase cell death by suppressing phosphorylation of EGFR 
signaling pathways. Other potential mechanisms, such as ERK 
inhibition, can disrupt the production of c-Myc induced by IR, 
which can promote the onset, progression and resistance to 
targeted therapy in numerous types of cancer, such as prostate 
cancer (6,77). Active ERK-induced apoptotic effects have 
been confirmed by promoting pro‑apoptotic and inhibiting 
anti-apoptotic proteins (59). The aforementioned data suggest 
that inhibition of ERK signaling may be an effective treatment 
for some types of cancer cells.

The effects of inhibitors of ERK signaling on tumor 
suppression are being evaluated in various clinical trial 
phases; however, the observed poor outcomes are the result 
of acquired resistance, clinical side effects, varying functional 
times, intensity or other unclear reasons, which are limiting 
their value for clinical application (78-80). The main mecha-
nisms of acquired resistance include: i) NRAS or KRAS 
mutations, amplification of BRAF V600E, mutations in 
MEK1/2 and loss of CDKN2A, which lead to BRAF inhibitor 
resistance; ii) MEK mutations or BRAF amplification, which 
result in MEK inhibitor resistance; iii) ERK mutations, which 
contribute to ERK inhibitor resistance; iv) other abnormally 
activated or elevated levels of molecules, such as PI3K/AKT, 

CCND1, receptor tyrosine kinase and CRAF128; v) a decreased 
dependency of tumor cells on the ERK signaling pathway for 
growth; and vi) rebound of MEK/ERK after inhibition treat-
ment or compensatory mechanisms (11,18,81).

Numerous studies have revealed less satisfactory outcomes 
regarding ERK inhibition (11,12). Therefore, the opposing 
functions of active ERK must be considered, particularly 
when evaluating whether radiosensitivity may be improved by 
inducing ERK activation.

Activation of ERK: A potential strategy for radiosensitization. 
Some studies have suggested that activation of ERK by IR or 
other compounds may lead to cell death; active ERK can have 
a pro-death or growth-arrest role in cancer cells (15,82). Dual 
effects are the result of the numerous mechanisms upstream 
and downstream of ERK. However, the association between 
the pro-death effect of active ERK and radiosensitivity has not 
been systematically evaluated in cancer cells.

Studies have identified various stimuli that can further 
induce cancer cell death by activating ERK, including 
antitumor agents, such as taxol (83), carboplatin (48), etopo-
side (84), doxorubicin and cisplatin (85), elements, such as 
cadmium (86,87) and benzo(a)pyrene (88), irradiation (89,90), 
naturally derived products, such as chelerythrine (91) and 
piperlongumine (92), and others (82,93). Additionally, consti-
tutively activated ERK mediates cell death. In two diffuse 
large B-cell lymphoma (DLBCL) cell lines, CD40-sensitive 
DLBCL cells were induced to undergo apoptosis by CD40 
ligand (CD40L) only when ERK was constitutively activated, 
and this effect disappeared when the MEK inhibitor U0126 
inhibited ERK phosphorylation; by contrast, CD40-resistant 
DLBCL cells exhibited no response to CD40L due to a lack 
of constitutively activated ERK (82). Three main pro-death 
or anti-proliferative mechanisms were involved in this 
process, including apoptosis-induced cell death, autophagic 
programmed cell death and senescence (15,94,95).

As aforementioned, both constitutive and stimuli-induced 
ERK signaling contribute to apoptosis and are influenced 
by numerous factors, some of which are closely associated 
with IR or radiosensitivity. Lee et al (47) demonstrated 
that overexpression of protein kinase C δ (PKCδ), a PKC 
isoform, contributed to the expression of phosphorylated 
ERK; the PKCδ-ERK signaling pathway further enhanced 
radiation-induced apoptosis and radiosensitivity by abrogating 
radiation-induced G2/M arrest. Another isoform of PKC, 
PKCε, also led to radiation-induced cell death by mediating 
ERK activation; this pro-death effect was inhibited when 
NIH3T3 cells were pretreated with the MEK inhibitor 
PD98059 (69,89). Watanabe et al (90) demonstrated that 
PD98059 significantly inhibited radiation‑induced apoptosis, 
further leading to radioresistance, indicating that active 
ERK may serve a radiosensitizing role in rat cells. In terms 
of ERK substrates, several studies have demonstrated that 
activated ERK in numerous cancer cells can phosphorylate 
p53, an essential tumor suppressor that serves a pivotal role in 
protecting genome integrity and mediating cell death (96-98), 
and is key to the radiation response in tumor cells. Functional 
p53 regulates irradiated cancer cell death by inducing apop-
tosis or senescence, and by inhibiting autophagy-associated 
cell survival (30,49,99). Pseudo-ginsenoside-Rh2, which is a 
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derivative of ginsenoside Rh2, has been shown to suppress 
cell growth and induce intrinsic apoptotic pathways through 
activation of the Ras/Raf/ERK/p53 signaling pathway, subse-
quently upregulating Bax expression and downregulating 
Bcl-2 and Bcl-xl expression (100). Furthermore, excessive 
activation of the Ras/Raf/ERK/p53-p21 signaling pathway 
was shown to induce apoptosis and G2/M arrest in human lung 
carcinoma cells (101). A study demonstrated that activation 
of ERK/p53/Beclin-1 could mediated autophagic cell death 
in A549 cells (102). Therefore, p53 upregulation seems to be 
an essential mechanism of ERK-induced cell death (Fig. 2). 
However, other studies have suggested that ERK induces 
cell death independently of p53 such as cPLA2-FasL and 
DAPK-TNF pathway (83,103).

In addition, there are a number of other factors for which 
the intensity and localization of ERK activation may be 
key in the choice between cell survival or cell death (104). 
Tang et al (84) demonstrated that etoposide and IR resulted 
in DNA damage that activated ERK with the same intensity; 
however, low-intensity DNA damage resulted in cell cycle 
arrest, while high-intensity DNA damage caused apoptosis. 
Inactive ERK localizes in the cytoplasm, while activated 
ERK1/2 typically exerts its role by entering the nucleus and 
phosphorylating transcription factors (105). However, some 
studies have suggested that active ERK1/2 can access specific 
substrates and affect cell conditions by translocating to other 
organelles, such as the mitochondria (106), the endoplasmic 
reticulum (107) and various membranes (108). Studies have 
demonstrated that nuclear ERK mainly improves cell prolif-
eration or oncogenic transformation and migration in various 
types of cancer either by inducing oncogenic signals, such as 
c-Myc or c-Fos, or by inhibiting tumor suppressors such as Tob 
or Foxo3a (109-112). However, stimulation of mitochondrial 
ERK is involved in both cell survival and apoptosis (105). 

For example, Cook et al (106) demonstrated that activation 
of the mitochondrial ERK1/2 signaling pathway promoted 
mitochondrial fission or fragmentation, with the latter being 
involved in the onset of cell apoptosis. A previous review 
stated that the specific mechanisms of the aforementioned 
translocation are mediated by a number of anchoring and scaf-
fold proteins (105).

Overall, the aforementioned data suggest that activating, 
rather than inhibiting, ERK may increase cancer cell death. 
Therefore, an activator of ERK, honokiol, has been tested 
in vitro and in vivo. Honokiol exhibits the potential to treat 
cancer by inhibiting cell growth and migration by inducing 
ERK-dependent apoptosis and autophagy (113,114). Therefore, 
ERK-induced cell death may be a potential therapeutic strategy 
that requires further evaluation.

4. Conclusions and perspectives

RT is an indispensable tumor treatment; however, its effective-
ness is limited by radioresistance. Radiobiology has revealed 
that increasing the radiation dose improves local tumor control, 
but also causes unavoidable damage to normal organs at higher 
doses. Therefore, the identification of novel RT strategies, such 
as changing the segmentation method and increasing radio-
sensitivity, is required to improve RT efficiency. At present, 
ERK is a promising target for enhancing the radiosensitivity 
of tumors, which are dependent on the survival-promoting role 
of ERK activation; however, there are numerous challenges 
and limitations that require further evaluation to improve 
clinical treatment. Since ERK activation has dual roles, the 
exact function of ERK should be clarified and the potential 
mechanisms elucidated, such as the intracellular localization 
of ERK and the corresponding microenvironment, before 
combining RT with ERK inhibitors. A number of studies have 
indicated that ERK activation serves a role in promoting cell 
death associated with the degree and duration of activation. 
The main role served by ERK at different doses and treatment 
times for different current RT regimens, such as stereotactic 
body and conventional RT, should be further investigated. 
Combining RT with targeted molecular therapy and chemo-
therapy may markedly enhance the therapeutic window for 
RT use. Clarification of the individual and comprehensive 
effects of treatment measures on the direction of ERK func-
tion is required before implementation of combined treatment. 
Therefore, in order to develop an effective treatment plan for 
patients with tumors by targeting the ERK signaling pathway, 
it is crucial to understand the mechanism of action and charac-
teristics of combined therapy on ERK function.
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